M. P. Chapot-chartier and S. Kulakauskas, Cell wall structure and function in lactic acid bacteria, Microb Cell Fact, vol.13, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204431

É. Caliot, S. Dramsi, M. P. Chapot-chartier, P. Courtin, S. Kulakauskas et al., Role of the group B antigen of Streptococcus agalactiae: a peptidoglycan-anchored polysaccharide involved in cell wall biogenesis, PLoS Pathog, vol.8, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01191122

J. Nourikyan, M. Kjos, C. Mercy, C. Cluzel, C. Morlot et al., Autophosphorylation of the bacterial tyrosine-kinase CpsD connects capsule synthesis with the cell cycle in Streptococcus pneumoniae, PLoS Genet, vol.11, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01233373

J. Yother, Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation, Annu Rev Microbiol, vol.65, pp.563-581, 2011.

J. C. Whitney and P. L. Howell, Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria, Trends Microbiol, vol.21, pp.63-72, 2013.

L. Cuthbertson, V. Kos, and C. Whitfield, ABC transporters involved in export of cell surface glycoconjugates, Microbiol Mol Biol Rev, vol.74, pp.341-362, 2010.

Y. Kawai, J. Marles-wright, R. M. Cleverley, R. Emmins, S. Ishikawa et al., A widespread family of bacterial cell wall assembly proteins, EMBO J, vol.30, pp.4931-4941, 2011.

Y. G. Chan, H. K. Kim, O. Schneewind, and D. Missiakas, The capsular polysaccharide of Staphylococcus aureus is attached to peptidoglycan by the LytR-CpsA-Psr (LCP) family of enzymes, J Biol Chem, vol.289, pp.15680-15690, 2014.

L. Zilla, M. Chan, Y. G. Lunderberg, J. M. Schneewind, O. Missiakas et al., LytR-CpsA-Psr enzymes as determinants of Bacillus anthracis secondary cell wall polysaccharide assembly, J Bacteriol, vol.197, pp.343-353, 2015.

K. Schaefer, L. M. Matano, Y. Qiao, D. Kahne, and S. Walker, In vitro reconstitution demonstrates the cell wall ligase activity of LCP proteins, Nat Chem Biol, vol.13, pp.396-401, 2017.

M. P. Chapot-chartier, E. Vinogradov, I. Sadovskaya, G. Andre, M. Y. Mistou et al., Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle, J Biol Chem, vol.285, pp.10464-10471, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204236

G. André, S. Kulakauskas, M. P. Chapot-chartier, B. Navet, M. Deghorain et al., Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells, Nat Commun, vol.1, p.27, 2010.

C. Farenc, S. Spinelli, E. Vinogradov, D. Tremblay, S. Blangy et al., Molecular insights on the recognition of a Lactococcus lactis cell wall pellicle by the phage 1358 receptor binding protein, J Virol, vol.88, pp.7005-7015, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02066309

S. Ainsworth, I. Sadovskaya, E. Vinogradov, P. Courtin, Y. Guerardel et al., Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity, mBio, vol.5, pp.880-894, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204398

S. Spinelli, D. Veesler, C. Bebeacua, and C. Cambillau, Structures and host-adhesion mechanisms of lactococcal siphophages, Front Microbiol, vol.5, 2014.

J. Mahony, W. Kot, J. Murphy, S. Ainsworth, H. Neve et al., Investigation of the relationship between lactococcal host cell wall polysaccharide genotype and 936 phage receptor binding protein phylogeny, Appl Environ Microbiol, vol.79, pp.4385-4392, 2013.

P. R. Reeves, M. Hobbs, M. A. Valvano, M. Skurnik, C. Whitfield et al., Bacterial polysaccharide synthesis and gene nomenclature, Trends Microbiol, vol.4, pp.82912-82917, 1996.

O. P. Kuipers, P. De-ruyter, M. Kleerebezem, and W. M. De-vos, Quorum sensing-controlled gene expression in lactic acid bacteria, J Biotechnol, vol.64, pp.15-21, 1998.

I. Mierau and M. Kleerebezem, 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis, Appl Microbiol Biotechnol, vol.68, pp.705-717, 2005.

B. Al-dabbagh, D. Mengin-lecreulx, and A. Bouhss, Purification and characterization of the bacterial UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase WecA, J Bacteriol, vol.190, pp.7141-7146, 2008.

Y. Yamashita, Y. Shibata, Y. Nakano, H. Tsuda, N. Kido et al., A novel gene required for rhamnose-glucose polysaccharide synthesis in Streptococcus mutans, J Bacteriol, vol.181, pp.6556-6559, 1999.

M. Y. Mistou, I. C. Sutcliffe, and N. M. Van-sorge, Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria, FEMS Microbiol Rev, vol.40, pp.464-479, 2016.

N. M. Van-sorge, J. N. Cole, K. Kuipers, A. Henningham, R. K. Aziz et al., The classical Lancefield antigen of group A Streptococcus is a virulence determinant with implications for vaccine design, Cell Host Microbe, vol.15, pp.729-740, 2014.

Y. Shibata, Y. Yamashita, and J. R. Van-der-ploeg, The serotype-specific glucose side chain of rhamnose-glucose polysaccharides is essential for adsorption of bacteriophage M102 to Streptococcus mutans, FEMS Microbiol Lett, vol.294, pp.68-73, 2009.

O. Neiwert, O. Holst, and K. A. Duda, Structural investigation of rhamnoserich polysaccharides from Streptococcus dysgalactiae bovine mastitis isolate, Carbohydr Res, vol.389, pp.192-195, 2014.

A. Czaba?-ska, O. Holst, and K. A. Duda, Chemical structures of the secondary cell wall polymers (SCWPs) isolated from bovine mastitis Streptococcus uberis, Carbohydr Res, vol.377, pp.58-62, 2013.

F. Michon, J. R. Brisson, A. Dell, D. L. Kasper, and H. J. Jennings, Multiantennary group-specific polysaccharide of group B Streptococcus, Biochemistry, vol.27, pp.5341-5351, 1988.

B. R. Clarke, L. Cuthbertson, and C. Whitfield, Nonreducing terminal modifications determine the chain length of polymannose O antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter, J Biol Chem, vol.279, pp.35709-35718, 2004.

E. Vinogradov, I. Sadovskaya, T. Grard, and M. P. Chapot-chartier, Structural studies of the rhamnose-rich cell wall polysaccharide of Lactobacillus casei BL23, Carbohydr Res, vol.435, pp.156-161, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01605049

A. Prakobphol, R. Linzer, and R. J. Genco, Purification and characterization of a rhamnose-containing cell wall antigen of Streptococcus mutans B13 (serotype D), Infect Immun, vol.27, pp.150-157, 1980.

M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, Colorimetric method for determination of sugars and related substances, Anal Chem, vol.28, pp.350-356, 1956.

E. Enghofer and H. Kress, An evaluation of the Morgan-Elson assay for 2-amino-2-deoxy sugars, Carbohydr Res, vol.76, pp.80022-80023, 1979.

M. Meyrand, A. Boughammoura, P. Courtin, C. Mézange, A. Guillot et al., Peptidoglycan N-acetylglucosamine deacetylation decreases autolysis in Lactococcus lactis, Microbiology, vol.153, pp.3275-3285, 2007.

E. Vinogradov, F. Valence, E. Maes, I. Jebava, V. Chuat et al., Structural studies of the cell wall polysaccharides from three strains of Lactobacillus helveticus with different autolytic properties: DPC4571, BROI, and LH1, Carbohydr Res, vol.379, pp.7-12, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01209471

I. Ciucanu and F. Kerek, A simple and rapid method for the permethylation of carbohydrates, Carbohydr Res, vol.131, issue.84, pp.85242-85250, 1984.

S. M. Read, G. Currie, and A. Bacic, Analysis of the structural heterogeneity of laminarin by electrospray-ionisation-mass spectrometry, Carbohydr Res, vol.281, pp.350-359, 1996.

H. Holo and I. F. Nes, High-frequency transformation by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media, Appl Environ Microbiol, vol.55, pp.3119-3123, 1989.

P. G. De-ruyter, O. P. Kuipers, and W. M. De-vos, Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin, Appl Environ Microbiol, vol.62, pp.3662-3667, 1996.

C. Delorme, S. D. Ehrlich, and R. P. , Regulation of expression of the Lactococcus lactis histidine operon, J Bacteriol, vol.181, pp.2026-2037, 1999.

U. Peschke, V. Beuck, H. Bujard, R. Gentz, L. Grice et al., Efficient utilization of Escherichia coli transcriptional signals in Bacillus subtilis, J Mol Biol, vol.186, pp.90129-90138, 1985.

P. Veiga, C. Bulbarela-sampieri, S. Furlan, A. Maisons, M. P. Chapot-chartier et al., SpxB regulates O-acetylation-dependent resistance of Lactococcus lactis peptidoglycan to hydrolysis, J Biol Chem, vol.282, pp.19342-19354, 2007.

S. N. Ho, H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease, Site-directed mutagenesis by overlap extension using the polymerase chain reaction, Gene, vol.77, pp.51-59, 1989.

L. Leloup, S. D. Ehrlich, M. Zagorec, and F. Morel-deville, Single-crossover integration in the Lactobacillus sakei chromosome and insertional inactivation of the ptsI and lacL genes, Appl Environ Microbiol, vol.63, pp.2117-2123, 1997.

J. Law, G. Buist, A. Haandrikman, J. Kok, G. Venema et al., A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes, J Bacteriol, vol.177, pp.7011-7018, 1995.

K. Leenhouts, G. Buist, A. Bolhuis, A. Ten-berge, J. Kiel et al., A general system for generating unlabelled gene replacements in bacterial chromosomes, Mol Gen Genet, vol.253, pp.217-224, 1996.

K. Leenhouts, A. Bolhuis, G. Venema, and J. Kok, Construction of a food-grade multiple-copy integration system for Lactococcus lactis, Appl Microbiol Biotechnol, vol.49, pp.417-423, 1998.

. Sadovskaya,