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Intercomparison of phenological 
transition dates derived from 
the PhenoCam Dataset V1.0 and 
MODIS satellite remote sensing
Andrew D. Richardson1,2, Koen Hufkens3, Tom Milliman4 & Steve Frolking4

Phenology is a valuable diagnostic of ecosystem health, and has applications to environmental 
monitoring and management. Here, we conduct an intercomparison analysis using phenological 
transition dates derived from near-surface PhenoCam imagery and MODIS satellite remote sensing. We 
used approximately 600 site-years of data, from 128 camera sites covering a wide range of vegetation 
types and climate zones. During both “greenness rising” and “greenness falling” transition phases, 
we found generally good agreement between PhenoCam and MODIS transition dates for agricultural, 
deciduous forest, and grassland sites, provided that the vegetation in the camera field of view was 
representative of the broader landscape. The correlation between PhenoCam and MODIS transition 
dates was poor for evergreen forest sites. We discuss potential reasons (including sub-pixel spatial 
heterogeneity, flexibility of the transition date extraction method, vegetation index sensitivity in 
evergreen systems, and PhenoCam geolocation uncertainty) for varying agreement between time 
series of vegetation indices derived from PhenoCam and MODIS imagery. This analysis increases our 
confidence in the ability of satellite remote sensing to accurately characterize seasonal dynamics in a 
range of ecosystems, and provides a basis for interpreting those dynamics in the context of tangible 
phenological changes occurring on the ground.

Phenology is a key driver of the seasonality of ecosystem processes, an essential indicator of the biological impacts 
of climate change, and a valuable diagnostic of ecosystem health for land managers1. However, observer records 
of phenology are inherently subjective. And, it is difficult to make these observations at sufficiently high temporal 
resolution, and sufficiently dense spatial sampling, to fully characterize phenological patterns at ecosystem (or 
larger) scales. While satellite remote sensing of phenology provides global information on the seasonality of veg-
etation activity2,3, tradeoffs between spatial and temporal resolution—not to mention data quality issues associ-
ated with atmospheric corrections, cloud screening, and varying look angles—are also acknowledged to result in 
substantial uncertainties4. Multi-scale monitoring of vegetation phenology, which requires linking observations 
at the scale of individual organisms to patterns recorded via satellite remote sensing at the ecosystem or regional 
scale, can potentially overcome some of these limitations and therefore help to improve resource management 
and decision-making5,6. Real-time phenological forecasting, leveraging this multi-scale perspective, would fur-
ther contribute to such efforts7.

However, progress towards these objectives is hindered by uncertainties regarding the congruence between 
what is happening on the ground and what is actually observed by satellite sensors. And, more generally, the lack 
of standardized phenological data sets, with scale-relevant observations, has—until recently—hobbled the evalu-
ation and interpretation of remotely sensed phenological data products8.

Over the last two decades, technological developments have reduced the cost and the infrastructure required 
to develop on-the-ground monitoring networks that can provide data on vegetation phenology in real time 
and at high spatial and temporal resolution9. The data from this near-surface remote sensing, whether derived 
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from radiometric instruments10,11 or imaging sensors12–14, is critical for improving our understanding of the 
strengths and limitations satellite remote sensing of phenology, and for conducting cross-scale phenological data 
integration5.

The PhenoCam Network is one such near-surface monitoring effort. PhenoCam uses imagery from digital 
cameras to track vegetation phenology at high temporal resolution12,15,16. Images, recorded every 30 minutes from 
dawn to dusk, are processed using analysis methods that yield quantitative information about changes in vegeta-
tion color, from which measures of phenology can be derived in a manner that is analogous to the processing of 
vegetation indices derived from satellite imagery17. With a canopy-scale perspective, but the capacity to resolve 
individual organisms, the PhenoCam approach therefore provides a direct link between on-the-ground monitor-
ing by human observers and satellite-based monitoring at comparatively coarse spatial and temporal resolution18.

At present, over 400 cameras are contributing imagery to PhenoCam; sites are distributed across North 
America, from Alaska to Florida and from Hawaii to Arizona to Maine, with additional sites in Central and South 
America, and Europe12. A number of previous studies have used relatively small subsets of PhenoCam data to 
evaluate vegetation phenology derived from the MODIS17,19–22, Landsat21,23,24, AVHRR17, VIIRS22,25, and MERIS26 
platforms. Most of these studies have focused on temperate and boreal deciduous forests, with little attention to 
other ecosystems or vegetation types.

Efforts to produce a curated, processed and quality-controlled dataset for public release have resulted in the 
PhenoCam Dataset V1.027, which consists of nearly 750 site-years of observations from the tropics to the subarc-
tic. Time series of “canopy greenness” have been processed to yield phenological transition dates corresponding 
to the start of the “greenness rising” and end of the “greenness falling” cycles of vegetation activity12. This data 
set offers a unique opportunity to investigate the spatiotemporal coherence between phenological transitions on 
the ground and as seen from space, and to explore the conditions associated with varying degrees of agreement.

Here we use phenological transition date data from the PhenoCam Dataset V1.0, together with MODIS dates3 
corresponding to the timing of “greenup onset” and “dormancy onset” for the same ground location, to investigate 
the following questions:

	(1)	 Across all vegetation types, what is the overall agreement between phenological transitions derived from 
near-surface remote sensing and satellite remote sensing?

	(2)	 Do the results from (1) vary according to vegetation type, and how important is it that the vegetation in the 
camera field of view be representative of the larger MODIS pixel?

We conclude by discussing specific examples, with varying levels of agreement between time series of 
PhenoCam canopy greenness and MODIS NDVI (normalized difference vegetation index), to provide more gen-
eral insight into the limitations of either approach, and to uncover potential avenues for improvement.

Results
Geographic and eco-climatic distribution of sites.  We used data from 128 camera sites in our analy-
sis (Supplementary Table 1; see also the interactive map and data visualization tools available at http://explore.
phenocam.us). The average image time series was over 5 y in length. Camera sites included in our analysis range 
across more than 60 degrees of latitude, from 9°N to 71°N, with half of all sites falling within the latitudinal 
band from 40–48°N. Based on WorldClim28 data, these sites span almost 40 °C in mean annual temperature 
(from −12 °C to +26 °C; mean ± 1 SD = 8.9 ± 6.0 °C), and a 20-fold range in annual precipitation (from 115 mm 
to 2600 mm; mean ± 1 SD = 925 ± 435 mm) (Fig. 1).

Within the camera imagery, the dominant vegetation type was DB (deciduous broadleaf; 67 sites), followed 
by GR (grassland; 25 sites), EN (evergreen needleleaf; 18 sites), SH (shrub; 11 sites), and AG (agriculture, 10 
sites). For 16 of 128 cameras, there were separate regions of interest (ROIs) defined for two distinct vegetation 
types within the camera field of view. According to MODIS land cover classification, half the camera sites were 

Figure 1.  Climate space spanned by the 128 camera sites included in this analysis. Mean annual temperature 
and mean annual precipitation are from the WorldClim database. Symbols are colored according to a 
simplified IGBP land cover classification (Forest = IGBP 1, 2, 4, 5; Grassland and cropland = IGBP 10, 12, 14; 
Savanna = IGBP 8, 9; Shrubland = IGBP 7; Urban = IGBP 13).

http://explore.phenocam.us
http://explore.phenocam.us
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dominated by forest, with mixed forest (32 sites) and deciduous broadleaf forest (22 sites) being the most com-
mon (Table 1). Across all camera sites and ROIs, there were 581 greenness rising phenological transition dates 
with corresponding MODIS greenup onset retrievals, and 602 greenness falling phenological transition dates 
with corresponding MODIS dormancy onset retrievals.

Overall agreement between PhenoCam and MODIS transition dates.  Considering all vegetation 
types together, the mean greenness rising transition date calculated from our canopy greenness index, the Green 
Chromatic Coordinate (Gcc_best; see Methods), was DOY 109 ± 34 d (mean ± 1 SD, across all camera sites, ROIs, 
and years) for the 10% amplitude threshold, DOY 117 ± 32 d for the 25% amplitude threshold, and DOY 126 ± 31 
d for the 50% amplitude threshold. These dates were all biased late relative to the mean MODIS greenup onset 
date of DOY 102 ± 36. Overall, the bias was 8 ± 21 day for the 10% amplitude threshold, 15 ± 20 d for 25% ampli-
tude threshold, and 23 ± 20 d for the 50% amplitude threshold. The linear correlation between the 10% amplitude 
threshold date and the MODIS greenup onset date was r = 0.81.

By comparison, across all camera sites and vegetation types, the mean greenness falling date calculated 
from Gcc_best was 267 ± 36 d (mean ± 1 SD, across all camera sites and years) for the 50% amplitude threshold, 
282 ± 36 d for the 25% amplitude threshold, and 290 ± 36 d for the 10% amplitude threshold. These dates were 
biased early relative to the mean MODIS dormancy onset date of DOY 298 ± 35 d. Overall, the bias was 29 ± 24 d 
for the 50% amplitude threshold, 16 ± 24 d for the 25% amplitude threshold, and 8 ± 25 d for the 10% amplitude 
threshold. The linear correlation between the 10% amplitude threshold date and the MODIS dormancy onset 
date was r = 0.74.

Agreement between PhenoCam and MODIS transition dates, by vegetation type.  In the above 
analysis, we lumped all vegetation types together, and did not consider whether the vegetation in the PhenoCam 
field of view was similar to the broader landscape as seen from MODIS. However, it is possible that the agreement 
between PhenoCam and MODIS is stronger for some vegetation or land cover types than others. Additionally, for 
some camera sites, landscape heterogeneity may result in “apples to oranges” PhenoCam-MODIS comparisons. 
In other words, the vegetation within the PhenoCam field of view (or for a particular PhenoCam ROI) may be 
representative (“apples to apples” comparison) or may not be representative (“apples to oranges” comparison) of 
the vegetation that is dominant at the scale of 500 m MODIS observations.

Our operating hypothesis is that by accounting for representativeness and heterogeneity, we may be able to 
obtain improved agreement between PhenoCam and MODIS phenological transition dates. In fact, in some but 
not all cases, the agreement between PhenoCam and MODIS phenology dates was indeed better for “apples 
to apples” comparisons than “apples to oranges” comparisons. For example, for PhenoCam DB (deciduous 
broadleaf) vegetation ROIs, the agreement with MODIS dates was very strong during the greenness rising phase 
when the MODIS pixel was assigned IGBP landcover class 4 (deciduous broadleaf forest) or 5 (mixed forest), but 
less strong for landcover class 13 (urban) (Supplementary Table 2). By comparison, for EN (evergreen needleleaf) 
vegetation ROIs, the agreement with MODIS was surprisingly poor even when the MODIS pixel was assigned 
IGBP landcover class 1 (evergreen needleleaf forest) or 5 (mixed forest) (Supplementary Table 2). Clearly the level 
of agreement between PhenoCam and MODIS depends on both the type of vegetation within the camera field of 
view, and the representativeness of that field of view of the broader landscape. For four vegetation types (AG, DB, 
EN, and GR), there were enough data (n ≥ 25 paired PhenoCam-MODIS observations) to examine these patterns 
in greater detail (Table 2).

For AG sites, the “apples to apples” correlation between PhenoCam and MODIS was generally excellent 
(Table 2, Fig. 2), although MODIS dates tended to be biased early by almost a month during the greenness ris-
ing phase, and biased late by a smaller amount during the greenness falling phase (Table 2). However, Deming 
regression slopes were not significantly different from 1.0 in either phase (Table 2). Based on the perpendicular 

IGBP Numeric 
Class Description Count

1 Evergreen Needleleaf forest 9

2 Evergreen Broadleaf forest 1

4 Deciduous Broadleaf forest 22

5 Mixed forest 32

7 Open shrublands 11

8 Woody savannas 7

9 Savannas 3

10 Grasslands 10

11 Permanent wetlands 1

12 Croplands 14

13 Urban and built-up 10

14 Cropland/Natural vegetation mosaic 7

N/A Not classified 1

Table 1.  Distribution of 128 camera sites included in this analysis, according to MODIS land cover 
classification.
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regression distance d, the mean regression error was less than three weeks, although there were several instances 
of much larger d (six weeks or more) (Table 2). There were not sufficient data to make a meaningful assessment of 
“apples to oranges” comparisons for AG sites.

For DB sites, the “apples to apples” agreement between PhenoCam and MODIS was very good overall (Fig. 2). 
Unlike the AG sites, large discrepancies between PhenoCam and MODIS dates were rare for the DB sites. But, 
similar to AG sites, MODIS dates were again biased early during the greenness rising phase, and biased late dur-
ing the greenness falling phase (Table 2). The Deming regression slope was indistinguishable from one during the 
greenness rising phase, but was significantly greater than one during the greenness falling phase (Table 2). For 
“apples to apples” comparisons, regression distances d were substantially lower for DB sites than for AG, EN, or 
GR (Table 2). However, for “apples to oranges” comparisons, regression distances d were roughly twice as high as 
for “apples to apples” comparisons, and thus similar to those for other vegetation types (Table 2).

For EN sites, low correlation coefficients during both greenness rising and falling phases indicate the relatively 
poor agreement between PhenoCam and MODIS dates (Fig. 2), even for “apples to apples” comparisons (Table 2). 
In contrast to AG and DB sites, MODIS dates were biased late during the greenness rising phase, but biased early 
by an even larger amount during the greenness falling phase (Table 2). Indeed, it is readily apparent (Fig. 2) that 
the PhenoCam–MODIS agreement is much worse for evergreen conifers than other vegetation types. Note that 
this result is not driven by the inclusion of IGBP landcover class 5 (mixed forests) in the “apples to apples” com-
parison, as the absolute RMS differences between PhenoCam and MODIS were actually no larger for IGBP class 
5 than for IGBP class 1 (evergreen needleleaf forests) (Supplementary Table 2).

For GR sites, and during both the greenness rising and greenness falling phases, the correlation of PhenoCam 
and MODIS dates were as high as those for any other vegetation type (Fig. 2). And, for GR sites these correlation 
were as good for “apples to oranges” as for “apples to apples” comparisons (Table 2). In both cases, Deming regres-
sion slopes were not significantly different from 1.0 during either greenness rising or greenness falling phases 
(Table 2). However, the regression distance d tended to be marginally smaller for “apples to apples” comparisons 
than “apples to oranges” comparisons (Table 2).

The above results were conducted using the 10% amplitude threshold date as our phenological metric for 
the PhenoCam data. We initially selected the 10% threshold because it minimized the overall bias between 
PhenoCam transition dates and MODIS transition dates. But, for each ROI vegetation type, and for both green-
ness rising and greenness falling phases, we found that the results described above were not particularly sensitive 
to this choice (Fig. 3). For example, for AG sites, correlations were similarly strong (r ≈ 0.90 for both phases) 
regardless of whether 10%, 25% or 50% amplitude threshold dates were used. For DB, correlations were equally 

PhenoCam ROI
Vegetation Type

IGBP
Landcover n

SD
(camera DOY)

SD
(MODIS DOY)

Pearson’s
r

∆ 
DOY ± SD

Deming regression

Distance Slope ± SE Intercept ± SE

(a) “Greenness rising” phase

AG
12, 14 40 65 58 0.91 −25.1 ± 27.1 18.7 0.89 ± 0.09 −12.8 ± 11.3

Other 2 12 0 −8.5 ± 12.0

DB
4, 5 284 15 16 0.83 −9.4 ± 9.1 6.4 1.07 ± 0.06 −17.4 ± 6.8

Other 74 25 29 0.74 −18.0 ± 19.8 13.7 1.22 ± 0.22 −41.6 ± 24.4

EN
1, 5 49 14 15 0.37 26.1 ± 15.9 11.3 1.15 ± 0.36 13.0 ± 31.7

Other 7 7 18 0.55 16.6 ± 15.3 6.2

GR
10, 12, 14 49 58 60 0.97 −11.4 ± 14.5 10.3 1.03 ± 0.06 −14.7 ± 6.5

Other 37 54 58 0.90 −6.0 ± 25.0 17.6 1.08 ± 0.12 −12.7 ± 12.1

(b) “Greenness falling” phase

AG
12, 14 40 51 56 0.87 10.6 ± 27.4 19.3 1.11 ± 0.11 −17.9 ± 31.0

Other 4 16 32 −0.42 29.8 ± 41.5 20.1

DB
4, 5 302 12 17 0.66 15.0 ± 12.9 8.0 1.68 ± 0.18 −182.4 ± 52.7

Other 75 33 41 0.75 4.9 ± 27.1 18.3 1.31 ± 0.22 −89.5 ± 68.0

EN
1, 5 50 23 17 0.38 −33.4 ± 22.7 14.9 0.49 ± 0.22 134.4 ± 72.3

Other 7 13 14 0.22 −42.6 ± 16.5 12.8

GR
10, 12, 14 50 43 47 0.84 15.4 ± 25.5 17.9 1.13 ± 0.10 −18.1 ± 26.6

Other 36 67 64 0.89 16.6 ± 30.2 21.6 0.95 ± 0.06 30.1 ± 14.4

Table 2.  Statistics of agreement between phenological transition dates derived from PhenoCam imagery (10% 
seasonal amplitude threshold during “greenness rising” and “greenness falling” phenological phases) and from 
MODIS satellite remote sensing (onset of greenness, onset of senescence) Data reported only for vegetation 
types for which there were n = 25 or more paired PhenoCam-MODIS observations with similar land cover 
classification (“apples to apples” comparisons; see text) during both greenness rising and greenness falling 
phases (see Supplementary Table 2 for the full [vegetation type x IGBP landcover] matrix). Vegetation types 
are as follows: AG = agricultural; DB = deciduous broadleaf; EN = evergreen needleleaf; GR = grassland. IGBP 
Landcover classes are defined in Table 1. ROI = region of interest; SD = standard deviation; SE = standard 
error; DOY = day of year. Deming (orthogonal) regression slope and intercept reported only when the slope 
is significantly different from 0 at p < 0.05 and n ≥ 10. The Deming regression distance is the RMS (root mean 
squared) distance, measured perpendicular to the regression line and assuming (n − 2) degrees of freedom.
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strong for all thresholds during the greenness rising phase, but the 10% threshold date generally performed mar-
ginally better than either the 25% or 50% threshold dates during the greenness falling phase. For EN, the agree-
ment between PhenoCam and MODIS was generally poor for the 10% threshold date, as described above, and 
neither the 25% nor the 50% threshold dates substantially improved the correlation statistics (Fig. 3).

Figure 2.  Pairwise correlation between phenological transition dates derived from PhenoCam imagery and 
MODIS satellite remote sensing. Results are broken down by vegetation type: (a,b) agriculture (AG); (c,d) 
deciduous broadleaf forest (DB); (e,f) evergreen needleleaf forest (EN); and (g,h) grassland (GR). For clarity, 
PhenoCam greenness rising (x) and MODIS onset of green-up (y) transition dates (left column) after DOY 270 
have been wrapped to the beginning of the year (DOY < 0), while PhenoCam greenness falling (x) and MODIS 
onset of senescence (y) transition dates (right column) prior to DOY 90 have been wrapped to the end of the 
year (DOY > 365).
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Discussion
Our analysis has shown a generally high level of agreement between phenological transition dates derived from 
near-surface PhenoCam imagery and from MODIS satellite remote sensing. Relative to other studies that com-
pared transition dates derived from MODIS data with ground observations recorded by citizen scientists29,30, 
our analysis shows as good or better agreement between what is seen from space and what is happening on the 
ground. The inherent subjectivity of ground observers, and the ability of PhenoCam imagery to integrate across 
the canopy, may be key factors contributing to these patterns.

We have drawn on a far more extensive set of PhenoCam-derived dates than have been used in previous phe-
nological intercomparison studies6,17,19,24,25. This enhances our confidence in the robustness and generality of the 
results. However, we found that agreement varied according to vegetation type, with considerably better agree-
ment for agricultural (AG), deciduous broadleaf (DB) forest, and grassland (GR) sites compared to evergreen 
needleleaf (EN) forest sites. We now use a case study approach to investigate and discuss the potential causes of 
varying levels of agreement between PhenoCam and MODIS. Landscape heterogeneity and a mismatch between 
the camera field of view and the associated MODIS pixel are recurring themes that will be discussed in the context 
of data from specific camera sites.

For PhenoCam AG sites, landscape heterogeneity appears to be a key issue. At the Kellogg Biological Station 
(kelloggcorn) site in Michigan, the PhenoCam data clearly resolve a well-defined seasonal cycle that starts later 
and ends earlier than would be inferred from the MODIS data (Fig. 4a). But, inspection of high-resolution aerial 
imagery (Google Earth) indicates the presence of deciduous forest stands to the east and south, which if included 
in the same MODIS pixel would potentially lead to the observed bias: trees within the camera field of view (but 
outside of the analyzed ROI) are green earlier in spring, and stay green later in autumn, than the corn field being 
monitored. Landscape heterogeneity would be less of an issue with finer-resolution satellite imagery, because 
pixels with mixed vegetation types would be less likely. Methods to estimate vegetation phenology from Landsat 
imagery, which is available at 30 m, have been recently developed and validated using PhenoCam data24,31. 
However, the 16-day revisit interval of Landsat 8 is a major limitation, and precludes phenological retrievals 
in many years31. Newer satellite platforms, offering both higher spatial and temporal resolution, such as the 
European Space Agency’s Sentinel-2 mission (every 5 days at 10 m resolution), have the potential to produce dra-
matically better characterization of vegetation phenology in heterogeneous landscapes. And, ongoing efforts to 
harmonize data from Landsat and Sentinel-2 will result in 30 m data at a temporal resolution of 2–3 days, offering 
substantial improvement over Landsat-only phenological retrievals.

At another AG site, the Atmospheric Radiation Measurement (armoklahoma) site in Oklahoma, the agree-
ment between PhenoCam and MODIS is reasonably good through 2006 and 2007 but the earlier green-up seen 
by MODIS in 2008 is obvious (Fig. 4b). This leads to a 40-day difference between the MODIS onset of greenness 
date and PhenoCam greenness rising 10% threshold date. As at the kelloggcorn site, the PhenoCam at armokla-
homa is focused on a relatively small field that is situated within a heterogeneous matrix of agricultural fields all 
subject to different planting and harvesting schedules, again suggesting that finer-resolution satellite imagery 
would result in improved agreement. On top of this, multiple vegetation cycles and sometimes abrupt changes 
in surface properties as a result of harvesting and tilling may combine with differing methods in transition date 
extraction17 to yield poor agreement.

Although DB forests in eastern North America are typically comprised of a diverse mix of species, stands are 
commonly extensive, stretching for kilometers across the landscape. Thus, fine-scale heterogeneity is offset by 
coarse-scale homogeneity32. By permitting integration across crowns of various species that make up the canopy, 
PhenoCam imagery effectively minimizes the impact of fine-scale heterogeneity on the derived phenological 
transition dates33. For example, at the Mammoth Cave National Park (mammothcave) site in Kentucky, where 

Figure 3.  Correlation coefficient between phenological transition dates derived from PhenoCam digital 
camera imagery and from MODIS satellite remote sensing. Results are separated according to vegetation 
type (AG = agriculture; DB = deciduous broadleaf forest; EN = evergreen needleleaf forest; GR = grassland). 
Progressively darker shades of green are used to designate transition dates corresponding to 10%, 25%, and 50% 
of the seasonal amplitude in vegetation greenness. Patterning is used to distinguish greenness rising (rising left 
to right) and greenness falling (falling left to right) phases of the seasonal cycle.
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various oak (Quercus spp.) and hickory (Carya spp.) species dominate, and canopy cover is nearly continuous 
for 10 km in all directions, the coherence between PhenoCam GCC and MODIS NDVI is generally very good, 
particularly in springtime (Fig. 4c). It can be seen, however, that GCC declines in autumn somewhat in advance of 
NDVI. This is likely because declines in GCC are associated with changing leaf color in autumn, rather than actual 
shedding of leaves, which is what drives autumn declines in NDVI34,35. Thus, we believe these differences result 
predominantly from the differences in seasonality of GCC and NDVI. However, saturation of NDVI at relatively 
low leaf area index values may also contribute to the observed pattern. Interestingly, in spring 2007 the initial rise 
in GCC from 0.32 to 0.40, followed by a decline to 0.36, and then a secondary rise to a seasonal maximum of 0.44, 
is the result of the spring frost event following unusually early spring leaf-out at mammothcave. The frost event 
was seen across the southeastern US36. This event is not so clearly visible in the 16-day MODIS data, although the 
somewhat delayed increase in NDVI is consistent with frost damage.

At the Boston Common (bostoncommon) site in Massachusetts, the PhenoCam is directed at trees in a rela-
tively large (1 km × 1 km) urban park37, which is bounded on all sides by a dense mix of residential and commer-
cial development. The seasonality of the trees within the PhenoCam field of view is evident, and approximately 
tracks the upper envelope of the 500 m MODIS data for a 3 × 3 pixel window around the camera location 
(Fig. 4d). However, for the center pixel of this 3 × 3 window, the agreement between PhenoCam and MODIS 

Figure 4.  Sample time series showing agreement between satellite and near-surface remote sensing of 
vegetation phenology. Green lines indicate the Green Chromatic Coordinate (GCC) calculated from PhenoCam 
imagery (see Eq. 1). Grey bars indicate the spatial variability (range) in 500 m MODIS NDVI (normalized 
difference vegetation index) across a 3 × 3 pixel window centered on the camera’s location, with blue dots 
indicating the mean value. (a,b) Agricultural (AG) sites; (c,d) Deciduous Broadleaf (DB) forest sites; (e,f) 
Evergreen Needleleaf (EN) forest sites; (g–j) Grassland (GR) sites.
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dates is generally poor, presumably because this particular pixel is dominated by the built environment. Thus, 
as with the AG sites, there are instances where the resolution of MODIS satellite imagery hinders the agreement 
between near-surface and satellite remote sensing for DB sites. Additionally, at some DB sites, understory vegeta-
tion – which is often green earlier in spring and later in autumn than the overstory – may play a role in the earlier 
greenup onset (bias of 9 days early; Table 2) and later dormancy onset dates (bias of 15 days late; Table 2) observed 
by MODIS relative to PhenoCam38,39. At other sites, this effect may be negligible.

Because they retain foliage year-round, the seasonal changes in surface reflectance properties are generally 
smaller for EN forests than they are for DB forests, and hence these changes are harder to detect. In EN forests, 
changes in surface properties are driven by both changes in the pigmentation of existing foliage as well as the 
development of new foliage and senescence of old foliage35,40, complicating interpretation of derived phenophase 
transitions. And, while seasonal variation in evergreen conifer GCC has been shown to correlate with changes 
in canopy photosynthesis33,40, the decoupling of conifer GCC and NDVI has been noted previously35,41, which 
makes the poor agreement between PhenoCam and MODIS phenological transition dates for EN sites (Table 2, 
Fig. 3c,d) not particularly surprising. Even in the best of cases, such as the Turkey Point (turkeypointenf39) site 
in Ontario, where the seasonal cycles in both GCC and NDVI are well-defined, it is clear that GCC is ramping up 
ahead of NDVI in spring (Fig. 4e). At the Howland Forest Main Tower (howland1) site in Maine, agreement is 
hampered by the weakly defined and noisy seasonal dynamics of MODIS NDVI (Fig. 4f). For some evergreen 
sites, we found that the seasonality of EVI (the enhanced vegetation index)42 was in better agreement (windriver), 
but in other cases worse agreement (niwot2) with GCC. Since 2012, all newly deployed PhenoCams (over 200 to 
date) have been recording both visible and visible + near-infrared imagery, from which “camera NDVI” (and by 
extension “camera EVI”) can be calculated41. However, one previous study found that for EN forests, transition 
dates derived from camera NDVI were at best in only marginally better agreement than MODIS-derived transi-
tion dates35. Other vegetation indices might still be developed which would consistently provide a better charac-
terization of seasonal changes in evergreen conifer canopies.

For grasslands, the overall agreement between PhenoCam and MODIS is very good, at least in extensive and 
homogeneous landscapes. For example, multiple seasonal cycles—associated with moisture pulses that are irreg-
ular in timing and duration9—are well-resolved at the Parker Ranch (kamuela) site in Hawaii (Fig. 4g), a mixed 
C3/C4 grassland which extends, largely uninterrupted, for 10+ km towards the base of the Mauna Kea volcano. 
However, despite the similarity of the GCC and MODIS time series, we found poor agreement between the derived 
transition dates, with differences of three weeks or more during the greenness rising phase. In cases like this, a 
more flexible curve-fitting approach (e.g. the spline-based method used for PhenoCam data) might yield better 
agreement. Additionally, the existing MODIS algorithm resolves at most two seasonal cycles per year, while in 
some years at this site more than three green-up cycles are observed.

At the Teddy Roosevelt National Park (teddy) site in North Dakota, which is also a fairly extensive and homo-
geneous grassland landscape, both PhenoCam and MODIS show strong reductions in vegetation greenness in 
response to the summer 2012 drought43, and similar capacity to detect recovery in 2013 and 2014 (Fig. 4h). 
However, because of the small amplitude of greenness change in 2012, phenological transition dates were not 
retrieved from the PhenoCam GCC time series. The minimum amplitude requirement in the PhenoCam transi-
tion date procedure is intentionally designed to minimize false positives that do not actually correspond to real 
phenological transitions on the ground. However, a trade-off is that important phenological anomalies—e.g. as 
would be associated with extreme or unusual weather events—may be missed.

For other GR sites, landscape heterogeneity is more of an issue. For example, the Continental Divide (butte) 
site in Montana, although classified as grassland (IGBP class 10), is in fact situated in a heterogeneous environ-
ment, as open grassland is mixed with irrigated residential lawns and riparian shrubs all within approximately 
100 m of the camera location. Because this variation occurs at relatively small spatial scales (less than the 500 m 
size of MODIS pixels), it is not obviously visible in the 3 × 3 pixel window around the camera location, although 
the poor agreement between PhenoCam GCC and MODIS NDVI is clear (Fig. 4i). During spring, MODIS greenup 
onset dates are more than a month earlier than those from the butte PhenoCam, while during autumn MODIS 
dormancy onset dates are more than a month later. Likewise, the University of Illinois Energy Farm’s Restored 
Prairie (uiefprairie) site, consisting of native grasses and forbs, is located within an agricultural matrix including 
adjacent fields of corn (Zea mays) and two switchgrass species (Panicum virgatum, Miscanthus x giganteus). Each 
of the four fields is observed by a different camera, but the prairie camera and the P. virgatum camera (uiefswitch-
grass site) are mounted on the same mast. PhenoCam locations are defined by the location of the camera, and not 
the field of view of the camera. The resulting geolocation error is compounded by the heterogeneity of the vegeta-
tion. Consequently, the agreement between PhenoCam and MODIS is poor for uiefprairie, particularly in autumn 
(Fig. 4j). Efforts to geolocate the ROIs, rather than the camera itself could potentially improve agreement between 
dates derived from near-surface and satellite imagery, especially in heterogeneous landscapes. One approach 
would be to integrate information about the camera’s position (azimuth and angle of inclination, as well as height 
above ground) together with high-resolution Google Earth imagery to create an approximate projection of the 
camera field of view onto the landscape. At the same time, the representativeness of this projected ROI could be 
evaluated in the context of the broader landscape using the same Google Earth imagery.

Our analysis also indicated potentially poor agreement between PhenoCam and MODIS transition dates for 
tundra and wetland sites (Supplementary Table 2). Based on visual inspection of PhenoCam imagery, it appears 
that the poor mismatch for tundra sites may have partially resulted from our failure to distinguish snowy images 
from snow-free images: in some instances, for example, the identified greenness rising transition dates occurred 
when much of the landscape was still snow-covered. Ongoing work using deep learning methods to identify 
snow-contaminated PhenoCam images should help to improve transition date retrievals for cold, high-latitude 
sites. Also, however, the MODIS retrievals for some tundra sites (mid-late July for onset of greenness) would also 
appear to be suspect, and worthy of further investigation.
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The above discussion has identified four key issues: (1) the limitations of coarse resolution of MODIS satellite 
imagery, particularly in heterogeneous landscapes, (2) the need for a more flexible approach to identify phenolog-
ical transition dates from MODIS imagery, particularly in highly dynamic ecosystems; (3) the need for alternative 
vegetation indices that better characterize evergreen vegetation; and (4) the importance of more careful geoloca-
tion of PhenoCam data, and rigorous evaluation of whether the PhenoCam ROI is representative of the broader 
landscape. Resolving these issues will greatly enhance efforts to integrate phenological data across scales, and to 
apply a multi-scale phenological perspective to resource management and decision-making.

Repeat photography has long been used to track environmental change occurring on decadal time scales44,45. 
Applications of PhenoCam data go beyond phenology: the high frequency of PhenoCam imagery allows pre-
cise identification of the onset and duration of disturbance events, even months or years after these events have 
occurred. This has potential applications for both environmental monitoring and management9. Notable events 
observed in PhenoCam imagery include: extensive forest fire damage (pasayten, July 2014), controlled burn 
(konza, April 2014), forest tent caterpillar outbreak and defoliation (canadaOA, June 201646), spring frost damage 
(arbutuslake, May 201047), defoliation by Hurricane Irene (woodshole, August 2011), and progressively worsening 
forest mortality in California’s Sierra Nevada (sequoia, beginning in the summer of 2015). With fine-resolution 
PhenoCam imagery, these disturbance events can be visualized—and identified—in a way that is typically not 
possible with satellite data, or with near-surface radiometric instruments. PhenoCam data can uniquely provide 
context for interpretation of anomalies and outliers in time series of satellite vegetation indices. As the PhenoCam 
network continues to grow, the opportunities to use PhenoCam imagery, greenness time series, and phenological 
transition date data for evaluation and interpretation of remotely sensed data products, and linking from organ-
isms to satellite pixels32, will only increase.

Methods
Our analysis leverages data from PhenoCam and MODIS, as well as gridded land cover classification and climato-
logical datasets. We describe these data first, and then summarize the analytical procedures employed.

PhenoCam Data.  We used the PhenoCam Dataset Version 1.027, which is publicly available under the 
Creative Commons CC0 Public Domain Dedication. The processing routines by which the dataset was produced 
are fully described in the accompanying data descriptor12, but are briefly summarized here.

We used all camera sites (Supplementary Table 1) for which there were corresponding MODIS retrievals in 
the MCD12Q2 phenology product3. Camera images (minimally compressed, 3-layer JPEGs) were uploaded to 
the PhenoCam server as frequently as every 15 minutes (but typically every 30 minutes) from 4 am to 10 pm. For 
some older cameras, however, the upload frequency was only 1 image per day.

Image analysis consisted of several steps12. First, an appropriate “region of interest” (ROI) was defined, cor-
responding to the masked area within each digital image from which colour information would be extracted. 
We manually defined ROIs according the dominant vegetation type (or types, in the case where more than one 
vegetation type was clearly present) within each camera field of view. Second, the images were read sequentially, 
and the mean pixel value (digital number, DN) was determined across the ROI mask for each of the red, green 
and blue (RGB) color channels. This yielded an “RGB DN triplet” (RDN, GDN, BDN) for each image. Third, from the 
RGB triplet we calculated the Green Chromatic Coordinate (GCC; Eq. [1]), a simple measure of “canopy green-
ness” which has been used in numerous studies16,18 as a robust metric by which to characterize seasonal changes 
in the state of the canopy.

G G
R G B (1)cc

DN

DN DN DN
=

+ +

Gcc was calculated for every image recorded when the sun was at least 10° above the horizon, provided that 
images were neither too dark nor too bright12. However, the resulting data density is excessive from the point of 
view of detecting seasonal changes. Here we use Gcc statistics calculated over a three-day moving window as a 
compromise between higher temporal resolution and improved noise reduction. The 90th percentile value of Gcc 
(Gcc_90), calculated over this three-day moving window, has been shown to be generally effective for minimizing 
day-to-day variation due to weather (clouds, fog, aerosols) and illumination geometry16.

Aggregation to a three-day product was subsequently followed by outlier detection based on deviations from 
an optimally flexible smoothing spline, with the degree of smoothing identified using Akaike’s Information 
Criterion12. After outlier removal, the spline was re-fit and used to extract phenological transition dates from the 
Gcc time series. We applied the Pruned Exact Linear Time (PELT) method48 to parse the “greenness rising” and 
“greenness falling” phases from each spline. We calculated the seasonal amplitude of Gcc during each phase, and 
then identified the dates when the spline reached 10%, 25%, and 50% of the amplitude. Transition date uncer-
tainties were estimated based on the uncertainty around the smoothing spline (90% confidence). The average 
uncertainty in estimated transition dates was about ±5 days.

Although successfully applied at many sites16, the Gcc_90 method has not been exhaustively validated across 
the entire PhenoCam data set. Thus, we determined the “best” Gcc time series for each (camera site) × (ROI) com-
bination by identifying which of the Gcc time series (mean, 50th, 75th, and 90th percentile values) had the lowest 
residual variance around the spline. We denoted this Gcc_best. Of the almost 200 (camera site) × (ROI) combina-
tions in the data set, we found that in 45% of cases Gcc_mean was best, while Gcc_90 and Gcc_70 were each best in 
20% of cases, and Gcc_50 was best in only 15% of cases. Therefore, contrary to previous results16, it appears that 
the Gcc_90 approach is not universally the optimal method. However, we found that transition dates derived from 
Gcc_best were extremely similar to those extracted from Gcc_90, pointing to the relative insensitivity of our results 
to the specifics of the Gcc time series processing. For example, for the greenness rising phase, the mean difference 
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between dates derived from Gcc_best and Gcc_90 was 0.1 ± 4.7 d (with 90% of all differences in the range from 
−4 to +4 d) for the 10% amplitude threshold. Similarly, during the greenness falling phase, the mean difference 
between dates was −0.1 ± 8.0 d (with 90% of all differences in the range from −7 to +4 d) for the 10% amplitude 
threshold. Thus, while our analysis focuses on results derived from Gcc_best, the conclusions reached are relatively 
insensitive to this choice.

MODIS data.  For comparison with PhenoCam data, we assembled two datasets based on 500 m MODIS 
remote sensing imagery. First, we extracted the MCD12Q2 transition dates3 (calculated from the MCD43A4 
NBAR EVI [enhanced vegetation index] product49) for each camera location, and paired these with the corre-
sponding PhenoCam transition dates. MODIS dates were pulled from the Google Earth Engine (GEE) servers 
using the GEE subset tool50. Here, “corresponding” is defined to mean that Gcc and NDVI were moving in the 
same direction (“rising” or “falling”), and the absolute difference (in days) between MODIS and PhenoCam tran-
sition dates was less than 90 days.

To investigate the overall coherence between seasonal trajectories between PhenoCam Gcc and MODIS NDVI, 
we downloaded MCD43A4 Band 1 (620–670 nm) and Band 2 (841–876 nm) nadir reflectances (again at 500 m 
resolution) using the GEE subset tool. From these we calculated NDVI as:

=
−
+

NDVI Band 2 Band 1
Band 1 Band 2 (2)

In addition to the MODIS pixel centered on the PhenoCam location, we included reflectance data from a 3 × 3 
pixel window centered on the camera location as a means of examining coarse-scale spatial variation and land-
scape heterogeneity. Data from this 9-pixel window were used to calculate the range (maximum and minimum 
NDVI) shown in Fig. 4.

Land cover classification and climatological data.  PhenoCam site landcover was evaluated using the 
land cover classification scheme of the International Geosphere-Biosphere Programme, as derived from MODIS 
remote sensing at 500 m resolution51,52 (http://glcf.umd.edu/data/lc/). We used a majority value (excluding 
masked grid cells) for the 3 × 3 pixel window centered on the camera location.

Mean annual temperature (°C) and mean annual precipitation (mm) for each PhenoCam site were obtained 
from the WorldClim28 (http://worldclim.org/) database. These gridded climatological data are produced at a spa-
tial resolution of approximately 1 km2.

Statistical analysis.  In our analysis of the agreement between PhenoCam and MODIS dates, we distin-
guished between “apples to apples” comparisons (similar vegetation types) and “apples to oranges” comparisons 
(dissimilar vegetation types). Our assignment of “apples” and “oranges” was based primarily on vegetation stature, 
leaf habit, and management activity. For example, for AG sites we considered IGBP types 12 (croplands) and 14 
(cropland/natural vegetation mosaic) to be “apples”, but IGBP type 5 (mixed forest) to be an “orange”. Likewise, 
for DB sites we considered IGBP types 4 (deciduous broadleaf forest) and 5 (mixed forest) to be “apples”, but 
IGBP type 1 (evergreen needleleaf forest) to be an “orange”. In Supplementary Table 2, we report the RMS differ-
ence between PhenoCam and MODIS dates, tabulating by PhenoCam vegetation type for each separate MODIS 
land cover type. In Table 2, we present additional statistics, aggregating these results for “apples” and “oranges” 
comparisons.

We used Deming regression (commonly used in clinical chemistry to test whether two analytical methods 
yield comparable results53) to further evaluate the agreement between PhenoCam and MODIS dates. Specifically, 
we investigate whether the slope of the line relating PhenoCam and MODIS dates has a slope that is significantly 
different from 0 but not significantly different from 1, and we use the distance, d, between the data and the regres-
sion line as an overall regression error metric.

Deming regression accounts for measurement errors in both x and y variables, and for this reason is preferable 
to ordinary least squares which assumes that x is measured perfectly and only y is subject to error. In Deming 
regression, the ratio of the error variances is given by /x y

2 2λ σ σ= , and when the error variances are assumed equal 
(i.e. λ = 1), Deming regression is equivalent to orthogonal regression, in which the perpendicular distance, d, 
from each data point to the regression line (intercept b0, slope b1) is minimized:

d y b b x
b

( ( ))
1 ( ) (3)

0 1
2

1
2=

− +
+

Regression analyses were conducted in SAS 9.1 using PROC NLP for the λ = 1 case, with sensitivity analyses 
for other values of λ conducted using the Deming_Linnet macro for SAS54 and the Deming regression package in 
SigmaPlot 12.5.

Based on previous analysis of the statistical uncertainty in phenological transition dates derived from 
PhenoCam and MODIS17, the most plausible range for λ is between 0.25 and 1.0. We report results (Table 2) 
assuming 1λ = , but we also repeated the analysis using [0 25, 0 5, 1, 2, 4]λ = . . . In general, although higher 
regression slope estimates were obtained when we specified a higher value of λ, conclusions about whether b1 was 
significantly different from 0 or 1 were not affected. The RMS values of d varied by less than 20% depending on λ, 
and Pearson correlation coefficients are insensitive to λ.

http://glcf.umd.edu/data/lc/
http://worldclim.org/
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