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Abstract

For the analysis of multiblock data, a unified approach of several strategies such as

Generalized Canonical Correlation Analysis (GCCA), Multiblock Principal Compo-

nents Analysis (MB-PCA), Hierarchical Principal Components Analysis (H-PCA)

and ComDim is outlined. These methods are based on the determination of global

and block components. The unified approach postulates, on the one hand, two

link functions that relate the block components to their associated global compo-

nents and, on the other hand, two summing up expressions to compute the global

components from their associated block components. Not only several well-known

methods are retrieved but we also introduce a variant of GCCA. More generally,

we hint to other possibilities of extensions thus emphasizing the fact that the uni-

fied approach, besides being simple, is versatile. We also show how this approach

of analysis although basically unsupervised could be adapted to yield a supervised

method to be used for a prediction purpose. Illustrations on the basis of simulated

and real case studies are discussed.

Keywords: Multiblock data, Generalized Canonical Correlation Analysis, Multi-

block Principal Components Analysis, Hierarchical Principal Components Analysis,

ComDim
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1 Introduction

The collection of several blocks of variables has become a common practice to study

complex systems in several domains of investigation. For example, in chemometrics, the

coupling of different sources of measurements generates a large amount of data which

can be arranged into meaningful blocks of variables for the characterization of the same

set of samples [1]. In health science, several measurements (e.g., clinical, metabolomic,

transcriptomic) can be made to assess the incidence and the prevalence of a disease. In

sensory analysis, assessors can be asked to score the intensity of several sensory attributes

to characterize a set of products [2]. For the purpose of exploring the structure of these

data blocks and investigating their relationships, unsupervised multiblock methods are

often used. Since multiblock data analysis has been the focus of many research works

these last three decades or so, a plethora of methods dedicated to such a purpose have

been proposed and are compared in the literature [3–7]. They include in particular: H-

PCA, MB-PCA also called Consensus Principal Components Analysis (CPCA), ComDim,

GCCA, etc.

The aim of the paper is manifold: (i) to provide a unified approach that brings several

methods of unsupervised data analysis under the same umbrella; (ii) clearly pinpoint the

similarities and differences between these strategies of analysis; (iii) open venues for the

developments of yet new methods of analysis, as illustrated by the introduction of an

original variant of GCCA; (iv) propose optimization criteria that underly the methods

of analysis. The interest of the optimization criteria is to help better interpreting the

outcomes of the methods. They may also help proving the convergence of iterative al-

gorithms. In the case of multi-start procedures where several solutions are obtained by

considering several starting points, the optimization criteria make it possible to compare

these solutions and choose the most optimal one. A common feature of the methods con-

sidered herein is that they fit under the umbrella of multiblock component analysis [7].

This means that they involve the determination of latent variables or components. A

latent variable associated with a dataset is, by definition, a hidden variable that underlies

the vector space generated by the variables in this dataset. Very often, this latent variable
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is defined as a linear combination of the variables that is determined in an optimal way

so as to highlight a specific purpose such as investigating the structure of the dataset,

relating this dataset to other datasets, etc. Latent variables may differ in how they are

standardized or how the vectors of weights are standardized. This standardization is more

or less arbitrary, although some procedures of standardization may be more convenient

than others for purposes such as interpretation, graphical displays, prediction, etc.

The paper is organized as follows. We start by giving a general strategy of multiblock

data analysis. Then, we present the optimization criteria that underly the various meth-

ods. Thereafter, each method is reviewed in turn to specifically highlight its properties.

In a subsequent section, we show how an unsupervised method can be adapted to yield

a supervised method to be used for a prediction purpose. The multiblock methods are

illustrated and compared on the basis of simulated data and real case studies. Finally, we

end the paper by a discussion and concluding remarks.

2 Theory

2.1 A general strategy of multiblock data analysis

2.1.1 General considerations

Throughout this paper, we use the well-known Cauchy-Schwartz inequality, which

states that: for two vectors x and a, x>a ≤ ||x||||a|| and the maximum of the function

Ψ(x) = x>a is achieved if and only if x = λa, with λ, a scalar which can be deter-

mined by considering the constraint that is imposed on x (e.g., ||x|| = 1). Another

relationship that we will use is that, for given blocks of variables Xk (k = 1, 2, ..., K),∑K
k=1XkX

>
k = XX>, where X = [X1|X2|...|XK ] (i.e., horizontal concatenation of the

blocks of variables).

2.1.2 Block and global components

We consider the multiblock setting where we have K blocks of variables

X1,X2, ...,XK , measured on the same n observations and assumed to be column-centered
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and pre-scaled so as to have their norms equal to 1. This pre-scaling makes it possible to

put all the datasets on the same footing [5].

As stated above the methods of analysis discussed hereinafter belong to the family

of multiblock component analysis [7]. They consist in determining global components

or latent variables and, associated with each global component, K block components re-

spectively associated with the K blocks of variables. We will focus on how to determine

the first order global component and its associated block components. The subsequent

components of higher order than 1 are determined following the same strategy of analysis

as for the first order after a deflation with respect to the global component [8, 9]. This

consists in regressing the variables in the various blocks on the global component that

has just been determined and replacing the blocks of variables by the residuals of these

regressions. Note that different procedures of deflation such as deflating with respect to

the block latent variables could be adopted [4, 10].

2.1.3 Relationships between the global and block components

Figure 1: Relationships between the global and block components.

Figure 1 depicts a conceptual scheme which shows the various elements at hand. The

connection between the global component t, on the one hand, and the block components

tk, on the other hand, is a two-way relationship: (i) the block components are the reflexion
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of the global component in the space spanned by the variables in the various blocks, (ii)

the global component stands as a summary of the block components.

To comply with the first requirement, we shall mainly consider two kinds of relation-

ships between the global component and its associated block components. To comply

with the second requirement, we shall consider two strategies of computing a synthetic

variable (i.e., t) from individual variables (i.e., t1, t2, ..., tK). These two procedures (i.e.,

relationships between t and tk and computation of a synthesis) could be crossed, leading

to four methods of analysis.

The first relationship between tk (k = 1, 2, ..., K) and t postulates that:

tk = Xk(X>k Xk)−1X>k t = Pkt (1)

where Pk is the projector upon the space spanned by the variables in Xk. This link

function between t and tk clearly pinpoints the idea behind the fact that tk is a reflexion

of t since, in this case, tk is the closest variable to t in the space spanned by the variables

in Xk. However, since this relationship involves the inversion of the matrices X>k Xk, we

may face a problem of instability in presence of quasi-colinearity among the variables in

one or several blocks Xk (k = 1, 2, ..., K) [11–14]. To counteract this problem, we propose

a second relationship between tk (k = 1, 2, ..., K) and t, namely:

tk = XkX
>
k t = Wkt (2)

where Wk = XkX
>
k is the matrix of scalar products between the observations. This

expression also reflects a kind of projection of t upon the space spanned by the variables in

Xk. Indeed, if we denote by xk1 ,xk2 , ...,xkp the Xk - variables, we have: tk = XkX
>
k t =∑p

j=1 xkjx
>
kj
t = n

∑p
j=1 cov(xkj , t)xkj . This means that tk is colinear to the first partial

least squares (PLS) regression component of t upon Xk.

We may consider a third relationship between tk and t which consists in setting

tk = Xk(γI + (1 − γ)X>k Xk)−1X>k t, where I is the identity matrix and γ is a tuning

parameter comprised between 0 and 1. For γ = 0, we retrieve the relationship tk = Pkt

and for γ = 1, we retrieve the relationship tk = Wkt. The introduction of the tuning

parameter, γ, is motivated by a regularization procedure akin to Ridge regression whose
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aim is to prevent the problem of quasi-colinearity in a less drastic manner than that

which consists in removing the matrices (X>k Xk)−1 altogether [15, 16]. This kind of

regularization will not be pursued any further in this paper except in the discussion

section.

Let us discuss two kinds of syntheses that we can operate on the block components

t1, t2, ..., tK to form the global component t. We may state that t is proportional to the

average of t1, t2, ..., tK or, equivalently, to their sum:

t ∝ t1 + t2 + ...+ tK (3)

where the symbol ∝ means ”proportional to”. Alternatively, we may state that t is

proportional to the first principal component of t1, t2, ..., tK :

t ∝ α1 t1 + α2 t2 + ...+ αK tK (4)

where αk ∝ cov(t, tk).

In order for the global latent variable to be close to its block latent variables, we

can imagine an iterative process of reciprocal updating between the global latent variable

and the block components using alternatively the link functions to compute the block

components from the global component and the summing up expressions to compute the

global component from the block components. Let us assume that we impose that the

global component should be of norm equal to 1. Typically, we shall encounter two kinds

of algorithms akin to Non Iterative PArtial Least Squares (NIPALS). The first algorithm

is the following:

Step 0. Choose randomly t and set t = t/||t||

Step 1. (Link function) : compute the block components, tk, using one or the other of the

relationships considered above (i.e., tk = Pkt or tk = Wkt)

Step 2. (Summing up expression) Update t: t =
∑∑∑K

k=1 tk

Step 3. Set t = t/||t||

Step 4. Iterate from Step 1, until convergence.

The second algorithm runs as follows:
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Step 0. Choose randomly t and set t = t/||t||

Step 1. (Link function) : compute the block components, tk, using one or the other of the

relationships considered above (i.e., tk = Pkt or tk = Wkt)

Step 2. Set αk = t>tk (= ncov(tk, t))

Step 3. (Summing up expression) Update t: t =
∑∑∑K

k=1 αktk

Step 4. Set t = t/||t||

Step 5. Iterate from 1, until convergence.

The convergence of these two iterative algorithms will be assessed in the next section.

Table 1 gives a classification of the methods of multiblock data analysis that we shall

discuss further in subsequent sections.

Table 1: Classification of some unsupervised methods of multiblock data analysis.

Link function

(Relationship between tk and t)

Summing up expression

(Summing up tk by t)
Algorithm Method of analysis

tk = Xk(X>k Xk)−1X>k t t ∝
∑K

k=1 tk 1 GCCA

tk = Xk(X>k Xk)−1X>k t t ∝
∑K

k=1 αktk 2 A new variant of GCCA

tk = XkX
>
k t t ∝

∑K
k=1 tk 1 MB-PCA

tk = XkX
>
k t t ∝

∑K
k=1 αktk 2 ComDim/H-PCA

2.2 Optimization criteria

We define optimization criteria for the determination of the global latent variable t

and, as a byproduct, its associated block latent variables tk = Pkt or tk = Wkt, according

to which choice of the link function has been made. These optimization criteria will come

as an echo to the summing up expressions defined above and which allowed us to compute

the global components from the block components. Convergence properties of the two

algorithms introduced above will also be discussed.

The fact that the global component should be highly related to its associated block

components can be reflected by stating that the covariance between the global component

and its associated block components should be, on average, as large as possible. This leads

us to maximize:
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K∑
k=1

cov(t, tk) =
1

n

K∑
k=1

t>tk =
1

n
t>(

K∑
k=1

tk). (5)

We choose as a determination constraint ||t|| = 1. This optimization problem is precisely

solved by Algorithm 1. Indeed, for t fixed, tk are defined by tk = Pkt or tk = Wkt, as

the case applies. For tk fixed, we can apply the Cauchy-Schwartz inequality to the last

member of the equation (5). This leads us to consider t = ψ
∑K

k=1 tk. The scalar ψ can

be computed by considering the determination constraint imposed on t, namely ||t|| = 1.

We can also note that at each updating of the global component, the criterion to be

maximized increases. Moreover, we can show that the criterion is upper bounded. For

instance, if we consider the case where tk = Wkt, we have:

t>
K∑
k=1

tk ≤ ||t|| ||
K∑
k=1

tk|| ≤
K∑
k=1

||tk|| =
K∑
k=1

√
t>XkX>k XkX>k t

≤
K∑
k=1

√
||XkX>k XkX>k ||. (6)

Being an increasing and upper bounded criterion, the algorithm will converge as the

number of iterations increases. Thus, the convergence of Algorithm 1 should be under-

stood in the sense that criterion (5) ceases to increase by less than a pre-specified threshold

(e.g., ε = 10−8). It is also worth noting that in order to avoid that the iterative algorithm

gets stuck in local optima, it is recommended to operate a multi-start procedure and

eventually choose the solution that corresponds to the largest value of the criterion.

As a matter of fact, we can propose a straightforward solution to the maximization

problem (5) which does not necessitate an iterative algorithm. For the case where the

link function is given by tk = Wkt = XkX
>
k t, we have:

∑K
k=1 cov(tk, t) = 1

n
t>

∑K
k=1 tk =

1
n
t>

∑K
k=1XkX

>
k t = 1

n
t>XX>t, where X = [X1|X2|...|XK ]. It is known that the

maximum of this expression with respect to t is achieved for t equal to the eigenvector of

1
n
XX> associated with the largest eigenvalue. The implication of this finding is that t is

the first standardized principal component ofX. This is a known property of MB-PCA [4].

As for the case where the link function is given by tk = Pkt = Xk(X>k Xk)−1X>k t, we

can show following the same pattern of development that t is an eigenvector of
∑K

k=1Pk

associated with the largest eigenvalue. This is a characteristic property of GCCA [17].
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The advantage of the NIPALS-like algorithm over the eigenanalysis solution is that it

is faster, can handle very large matrices and can be accomodated in order to cope with

missing data [18].

An alternative criterion to express that the global latent variable is highly linked to

its associated block components is the following:

K∑
k=1

cov2(t, tk) =
1

n2

K∑
k=1

(t>tk)2 =
1

n2

K∑
k=1

t>tkt
>
k t =

1

n2
t>(

K∑
k=1

tkt
>
k )t =

1

n2
t>TT>t (7)

where T = [t1|t2|...|tK ]. The solution to this problem entails that t is the first stan-

dardized principal component of T . From the second member of the formula (7), we can

write
∑K

k=1 cov
2(t, tk) = 1

n2

∑K
k=1 αkt

>tk, where αk = t>k t, which is proportional to the

covariance between tk and t. It follows that for a fixed t, tk = Wkt or tk = Pkt as the

case applies and for fixed tk, t ∝
∑K

k=1 αktk, by virtue of Cauchy-Schwartz inequality.

At each updating of t in this iterative algorithm, criterion (7) increases. Moreover,

since the criterion is upper bounded, this entails that its algorithm converges.

2.3 Methods of multiblock data analysis

To enable us to achieve a straightforward comparison of the various methods of un-

supervised data analysis, we will present these methods in summary tables which in a

way represent the identity card for each method. Hopefully, the comparison between the

methods could easily be made. Additional properties will be discussed with the aim of

enhancing the interpretation of the outcomes when applying these methods to specific

datasets.

2.3.1 GCCA

As early as 1936, Hotelling [19] introduced canonical correlation analysis whose aim is

to seek linear combinations of two blocks of variables with maximum correlation. In 1968,

Carroll [17] extended this method of analysis to investigate the structure of K blocks of

variables. This consists in finding, in a first stage, a global component t and its associated

block components tk so as to maximize
∑K

k=1 cor
2(t, tk), where tk = Pkt and cor() is the
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correlation coefficient. Since the correlation coefficient is scale invariant, we can arbitrary

choose ||t|| = 1. The criterion to be maximized is equivalent to:
∑K

k=1
(t>Pkt)

2

||t||2||Pkt||2
=∑K

k=1
(t>Pkt)

2

||Pkt||2
=

∑K
k=1

(t>Pkt)
2

t>P>
k Pkt

. Since Pk is symmetric (P>k = Pk ) and idempotent

(P 2
k = Pk ), it follows that the criterion to be maximized is equivalent to

∑K
k=1 t

>Pkt =

n
∑K

k=1 cov(t,Pkt), which is, in its turn, equivalent to the criterion (5) introduced in

section 2.2. The quantity cov(t, tk) = 1
n
t>Pkt which appears in the maximization criterion

is also equal to 1
n
t>P>k Pkt = var(Pkt), where var() stands for the variance, because as

stated above Pk is symmetric and idempotent. Moreover, since we have assumed that

||t|| = 1, it follows that t>Pkt = var(Pkt)
var(t)

is the coefficient of determination, R2(t/Xk) of

t with respect to Xk. From this stand point, it appears that GCCA seeks the direction in

the space, that is, on average, best explained by the blocks of variables Xk. The overall

importance of the component t can be assessed by 1
K

∑K
k=1 t

>Pkt, which highlights how,

on average, t is related to the blocks of variables Xk. Table 2 gives a summary of the

properties of the global component t and its associated block components.

Table 2: Generalized canonical correlation analysis (GCCA).

Link function between block

and global components
tk = Xk(X>k Xk)−1X>k t = Pkt

Summing up expression t ∝
∑K

k=1 tk

Maximization criterion
∑K

k=1 cov(t, tk) = 1
n

∑K
k=1 t

>Pkt, with ||t|| = 1

Solution Algorithm 1

Eigenanalysis solution t eigenvector of
∑K

k=1Pk

2.3.2 GCCA-V: A variant of GCCA

A variant of GCCA is simply obtained by considering the same link function as for

GCCA but we choose for the summing up expression the one that states that t is the first

principal component of its associated block components. Table 3 sums up this procedure

of analysis.
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Table 3: A variant of Generalized canonical correlation analysis (GCCA-V).

Link function between block

and global components
tk = Xk(X>k Xk)−1X>k t = Pkt

Summing up expression t ∝
∑K

k=1 αktk, with αk = t>tk

Maximization criterion
∑K

k=1 cov
2(t, tk) = 1

n2

∑K
k=1 αkt

>Pkt, with ||t|| = 1

Solution Algorithm 2

Eigenanalysis solution -

Using similar developments as for GCCA, it follows:

cov(tk, t) = 1
n
t>Pkt = var(Pkt) and t>Pkt = R2(t/Xk). This shows that we could com-

pute similar indices as for GCCA to highlight the relative importance of the components.

2.3.3 MB-PCA

With the advent of measurement methods that yield datasets where the number of

variables is often larger than that of the samples and where, moreover, the variables

are highly correlated, MB-PCA also known as Consensus PCA has dethroned GCCA in

terms of popularity [14]. Indeed, in these situations GCCA is not applicable unless a

regularization procedure is introduced [11–14]. Table 4 sums up the main features of

MB-PCA.

Table 4: Multiblock PCA (MB-PCA).

Link function between block

and global components
tk = XkX

>
k t = Wkt

Summing up expression t ∝
∑K

k=1 tk

Maximization criterion
∑K

k=1 cov(t, tk) = 1
n

∑K
k=1 t

>Wkt, with ||t|| = 1

Solution Algorithm 1

Eigenanalysis solution t eigenvector of 1
n

∑K
k=1XkX

>
k = 1

n
XX>

(t is the first standardized principal component of X)

From the criterion to be maximized, we single out the quantity t>XkX
>
k t = n cov(tk, t),
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which reflects the contribution of the block Xk to the determination of the global compo-

nent t. We can also note that since t is assumed to be of length 1, the quantity t>XkX
>
k t

reflects the variation in Xk explained by t. Moreover, since the norm of Xk was set

to 1, the quantity t>XkX
>
k t also expresses the percentage of variation in Xk explained

by t. The overall importance of t (in percentage) is assessed by 1
K

∑K
k=1 t

>XkX
>
k t. In

this expression, the denominator K corresponds to the total variation in all the blocks:∑K
k=1 trace(XkX

>
k ) = K.

For graphical displays, it may be useful to rescale the global component t so that

its variance reflects the variation in the various blocks explained by this component.

This amounts to considering t̃ = µt, where µ =
√∑K

k=1 cov(t, tk) =
√

1
n
t>XX>t.

In other words, t̃ corresponds to the non-standardized principal component of X =

[X1|X2|...|XK ].

2.3.4 ComDim and H-PCA

ComDim stands for an abbreviation of ”Common Dimensions”. It originated in the

context of sensory analysis [5, 20] and was applied to various domains of applications

[21–24]. Hanafi et al. [6] showed that it is equivalent to H-PCA which was introduced by

Wold et al. [25]. Table 5 sums up how ComDim and H-PCA proceed.

Table 5: ComDim / H-PCA.

Link function between block and global components tk = XkX
>
k t = Wkt

Summing up expression t ∝
∑K

k=1 αktk, with αk = t>tk

Maximization criterion
∑K

k=1 cov
2(t, tk), with ||t|| = 1

Solution Algorithm 2

Eigenanalysis solution -

As for MB-PCA, t>XkX
>
k t which is equal to αk, reflects the contribution of the block

Xk to the determination of t. It also represents the total variance in Xk explained by t.

The overall importance of t is assessed by 1
K

∑K
k=1 t

>XkX
>
k t. For the graphical displays,

we recommend to rescale t by multiplication of the scalar
√∑K

k=1 cov
2(t, tk).
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It should be noted that there is a version of H-PCA, where the block components are

scaled to unit length after each updating [4]. This version of H-PCA seems to have some

convergence problems. In any case, we are not concerned by this version.

2.4 Comparison of methods

The first key of differentiation between the methods is whether we choose as a link

function between the global component, t, and the block components tk, the expression

tk = Xk(X>k Xk)−1X>k t or tk = XkX
>
k t. The former expression entails that, within each

block of variables, the variation in terms of variances and correlations of the variables is

obliterated. Therefore, the focus of the method of analysis is to investigate the relation-

ships between the datasets. By contrast, if the latter link function (i.e., tk = XkX
>
k t)

is chosen, then the method of analysis will seek to recover the within block variation as

well as investigate the relationships between the blocks of variables. The second key of

differentiation is which summing up expression one considers. By choosing the expression

t ∝
∑K

k=1 αktk (i.e., t is the first principal component of tk), the blocks of variables are

weighted according to how they agree with each others. In particular, those blocks of

variables which do not convey the same information as the other blocks will be down-

weighted.

2.5 From an unsupervised method to a supervised method

The boundary between unsupervised and supervised methods is thin. For instance,

consider the case of GCCA. In this method of analysis, all the datasets at hand play the

same role and, from this perspective, GCCA stands as an unsupervised method. Yet, we

know that multiple linear regression and linear discriminant analysis, which are super-

vised methods par excellence, are particular cases of GCCA [26]. The explanation of this

seemingly paradoxial finding is that a method of analysis can be conceptually unsuper-

vised, yet, the outcomes of the method of analysis could be used for a supervised purpose.

Another method which illustrates this idea is Latent Root Regression [27–29], where a

regression model between a univariate variable y and a dataset X is set up by using the
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outcomes from a PCA of the dataset [y|X]. This idea was extended to the case of a

multivariate Y to be predicted by a dataset X [28]. Bougeard et al. [30] introduced a

method of analysis called Multiblock Latent Root Regression (MB-LRR) where the aim is

to predict a dataset Y from several blocks of variables X1,X2, ...,XK . The rationale be-

hind MB-LRR is to perform a method of analysis akin to MB-PCA on Y ,X1,X2, ...,XK ,

but the global components are constrained to be linear combinations of the variables in

the Xk blocks. The procedure of analysis proposed herein is more straightforward and

takes advantage of the determination of the block components associated with the blocks

of variables. We shall refer to this strategy of analysis as LR-MBPCA, which stands for

”Latent Root Multiblock Principal Component Analysis”. For the sake of simplicity, we

shall restrict ourselves to the case where the multiblock data analysis that is applied to

Y ,X1,X2, ...,XK is MB-PCA. Obviously, the strategy of analysis can be easily adapted

to the other methods.

The general idea is the following. Consider a setting with a dataset Y to be predicted

from K datasets X1,X2, ...,XK . All these datasets are supposed to be column-centered

and pre-scaled as discussed below. We advocate performing MB-PCA on Y ,X1,X2, ...,XK .

This yields, in a first stage, a global component t(1) and its associated block components

t
(1)
0 , t

(1)
1 , t

(1)
2 , ..., t

(1)
K respectively associated with Y,X1,X2, ...,XK . A predictive latent

component t
(1)
X = t

(1)
1 +t

(1)
2 +...+t

(1)
K is used to predict Y fromX1,X2, ...,XK . Note that,

in the expression of t
(1)
X , only the block components associated with the Xk blocks are

considered. The same procedure could be applied to the successive global latent variables

and their associated block latent variables, yielding new predictive components. These

predicitve components are standardized so that their norms are equal to 1.

Two recommendations are of prime importance. The first recommendation is that we

advocate performing a deflation with respect to the predictive components t
(1)
X , t

(2)
X , ..., t

(A)
X

instead of the global components t(1), t(2), ..., t(A); A being the number of components to be

introduced in the prediction model. As a result, the predictive components t
(1)
X , t

(2)
X , ..., t

(A)
X

will be orthogonal, which will very likely improve their predictive ability. As stated in

section 2.1.2, other deflation strategies could as well be adopted. The one advocated herein
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is in line with the deflation that we have adopted up to now (i.e., deflation with respect to

the global components). For the second recommendation, we advocate that the Xk blocks

of variables should be pre-scaled as previously by dividing them by their respective norms.

As for the dataset Y , in addition to the division by its norm, we advocate multiplying

it by
√
K. By so doing, the total variation in the dataset Y alone will become equal

to that of the datasets Xk (k = 1, 2, ..., K) all together. As a consequence, the first

component derived from MB-PCA performed on Y ,X1,X2, ...,XK will likely be related

to Y , carrying along all the connected information from the other blocks of variables.

The multiplication of Y by
√
K should be operated after each deflation with respect to

the predictive components in order to ensure that the new component that emerges is

highly linked to Y .

In order to set up a predictive model, we should note that each block component t
(1)
k =

XkX
>
k t

(1) is, by definition, a linear combination of the variables in Xk: t
(1)
k = Xkw

(1)
k ,

with w
(1)
k = X>k t

(1). Since the global predictive component t
(1)
X =

∑K
k=1 t

(1)
k , it follows

that the global vector of weights, w(1), is formed by the concatenation of the vectors w
(1)
k .

Obviously, these remarks are also valid for the subsequent predictive components, thus

leading to the global vector of weights w(2), w(3), .... Each of these vectors is normalized

to be of length 1. Let us denote by W , the matrix formed by these vectors. Associated

with each predictive component t
(h)
X , we compute the vector of loadings p

(h)
X =

X>t
(h)
X

t
(h)>
X t

(h)
X

.

This is the regression coefficient of X = [X1,X2, ...,XK ] on t
(h)
X . Let us denote by PX ,

the matrix whose columns are the vectors of p
(h)
X . Similarly, we can compute, at each step

h, the vector of loadings p
(h)
Y =

Y >t
(h)
X

t
(h)>
X t

(h)
X

× 1

K
h−1
2

. The constant 1

K
h−1
2

is introduced to

take account of the scaling of the Y -variables after each deflation. Let us denote by PY ,

the matrix containing the vectors p
(h)
Y . It is known that the matrix of weights, W ∗ which

directly refer to the X-variables (instead of the deflated X-variables) is given by [18,31]:

W ∗ = W (P>XW )−1 (8)

A prediction model to predict Y from X = [X1,X2, ...,XK ] is obtained by regressing Y

on the XW ∗, yielding:

Y = Xβ+E (9)
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where, β = W ∗P>Y is the matrix of the regression coefficients, E is the Y -residual matrix.

The appropriate number of components, A, to be introduced in the model can be

selected by a cross-validation procedure as it is common practice with PLS methods

[32,33].

3 Illustrations

A simulation study and a case study are used to illustrate and compare the various

unsupervised methods. A third case study is used to illustrate the predictive approach,

LR-MBPCA, proposed herein.

3.1 A simulation study

The simulated data follow the same pattern as that considered by Westerhuis et al. [4].

Two orthogonal variables d1, d2 and four blocks are considered. All the blocks have fifty

observations and five variables. Variables in block X1 are formed by the variable d1 plus

twenty percent of random noise: x1j = d1 + 0.2ε1j, where j = 1, 2, ..., 5, ε1j ∼ N (m1, σ1)

and m1, σ1 are respectively the mean and standard deviation of the variable d1. In block

X2, only the first variable is formed by the variable d2 plus twenty percent of random

noise; the remaining variables are formed of random noise: x21 = d2 + 0.2ε21, where

ε21 ∼ N (m2, σ2) and m2, σ2 are respectively the mean and standard deviation of the

variable d2. x2j = ε2j, with ε2j ∼ N (0, 1) and j = 2, ..., 5. Blocks X3 and X4 are formed

in a similar way as X2. Note that the variable d1 appears five times in X1, whereas, d2

appears in total three times; once in each block X2,X3,X4.

Table 6 gives the percentages of total variance in X1 to X4 recovered by the first two

global components computed by means of GCCA, GCCA-V, MB-PCA and ComDim/H-

PCA. Not surprisingly, GCCA and GCCA-V seem to be more concerned with the common

direction, d2, to the blocks of variables X2, X3 and X4. The first GCCA component is

highly correlated with d2 (r = 0.97), so is the first GCCA-V component (r = 0.99).

Contrariwise, the first global component of MB-PCA, on the one hand, and ComDim/H-

16



PCA, on the other hand are almost completely devoted to recovering the variation in X1

because this block of variables carries one unique information with a substantial weight

that is, the variable d1 repeated five times, apart from the added noise. The second

global component of MB-PCA, as well as that of ComDim/H-PCA are oriented towards

the variable d2 which constitutes a common pattern to X2, X3 and X4. As for the second

global components of GCCA and GCCA-V, they both seem to be reflecting noise only.

This can be explained by the fact that once the variable d2 is accounted for by the first

global component, no common information is left.

It is worth noting that the findings regarding MB-PCA agree with those presented by

Westerhuis et al. [4]. However, this is not the case for the findings regarding H-PCA since

these authors applied the version of H-PCA where the block components are standardized.

Table 6: Simulated data: Percentages of total variance in blocks X1 to X4 explained by
the first two global components and correlations of these global components with variables
d1 and d2.

% total variance Correlations

X1 X2 X3 X4 Global d1 d2

GCCA Dim.1 0.28 20.52 22.64 19.98 15.85 0.03 0.97

Dim.2 0.56 3.23 8.31 4.47 4.14 0.01 -0.20

GCCA-V Dim.1 0.15 21.10 22.28 21.23 16.19 0.03 0.99

Dim.2 0.07 6.29 4.96 0.40 2.93 0.03 -0.01

MB-PCA Dim.1 96.11 2.55 1.59 1.23 25.37 0.99 0.01

Dim.2 0.17 21.05 23.28 22.09 16.65 -0.01 0.97

ComDim Dim.1 97.14 1.70 1.10 0.73 25.17 1.00 -0.01

Dim.2 0.12 20.88 23.55 22.04 16.65 0.01 0.97

3.2 Sensory data

The data are extracted from a study which concerns eight American dry-cured ham

products differing in aging times [34]. These products were subjected to a sensory eval-

uation performed by a panel of trained assessors. More precisely, assessors described the
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ham flavor (3 variables), aroma (4 variables) and texture (3 variables). Each assessor

was instructed to rate, for each product, the intensity of the sensory variables using a

15-point intensity scale, where 0 corresponds to ”not detected” and 15 corresponds to

”extremely strong”. For each ham and each sensory attribute, the data were averaged

accross the assessors. The average intensities thus obtained were organized in three blocks

of variables respectively corresponding to flavor, aroma and texture. The rows of each

block of variables refer to the eight hams and the columns to the sensory attributes. Ta-

ble 7 shows the total variance explained by the first two global components of GCCA,

GCCA-V, MB-PCA and ComDim.

Table 7: Sensory data: Total variance explained by the first two global components.

X1

(Flavor)

X2

(Aroma)

X3

(Texture)
Global

GCCA Dim.1 48.44 40.74 30.12 39.77

Dim.2 12.68 13.77 16.33 14.26

GCCA-V Dim.1 48.94 40.80 29.46 39.73

Dim.2 12.17 13.71 16.98 14.29

MB-PCA Dim.1 35.49 44.51 62.70 47.57

Dim.2 34.75 28.80 19.30 27.61

ComDim Dim.1 22.58 39.38 74.66 45.54

Dim.2 44.62 30.93 10.31 28.62

From Table 7, we can see that the first global component of GCCA and GCCA-V

recovers a good proportion of variation in X1, X2 and, to a lesser extent, X3.

Table 8, which gives the correlations of these components with the sensory attributes,

shows that the first global component associated to GCCA and GCCA-V carries infor-

mations from the three blocks of variables related to ”Porkcomplex” and ”Savory” (X1),

”Molasses” and ”Caramelized” (X3) and ”Mushiness” (X3). The first global component

of MB-PCA shows a different pattern since it recovers up to 62.70 % of the total variance

in X3 and the smallest recovered variation is that associated with X1. This finding is
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more pronounced with ComDim, since the first global component recovers up to 74.66 %

of variation in X3 and only 22.58 % of variation in X1. This can be explained by the fact

that the block of variables X3 is formed of variables relatively more correlated with each

others than in other blocks of variables. Moreover, the variables of this block are related

to the variables ”Rancid” and ”Earthy” in block X2. By contrast, X1 seems to have been

downweighted by ComDim because, on the one hand, the variables in this group are not

very correlated to each others and, except the variable ”Savory”, these variables are not

highly related to the variables in the other blocks (data not shown).

Table 8: Correlation between the sensory attributes and the first two global components
of GGCA, GCCA-V, MB-PCA and ComDim.

GCCA GCCA-V MB-PCA ComDim

Variable Dim. 1 Dim. 2 Dim. 1 Dim. 2 Dim. 1 Dim. 2 Dim. 1 Dim. 2

Salty -0.05 0.46 -0.04 0.46 -0.38 0.59 -0.46 0.51

Porkcomplex -0.75 -0.34 -0.76 -0.33 -0.73 -0.40 -0.54 -0.60

Savory 0.94 0.23 0.95 0.21 0.63 0.73 0.43 0.85

Rancid -0.46 0.08 -0.46 0.09 -0.76 0.23 -0.73 -0.01

Molasses 0.86 -0.22 0.86 -0.23 0.72 0.43 0.62 0.57

Caramelized 0.81 0.40 0.82 0.39 0.56 0.71 0.37 0.84

Earthy -0.12 0.58 -0.11 0.58 -0.60 0.64 -0.72 0.46

Dryness -0.08 0.32 -0.08 0.33 -0.63 0.66 -0.80 0.45

Juiciness 0.41 -0.47 0.40 -0.48 0.76 -0.37 0.89 -0.17

Mushiness 0.85 -0.40 0.85 -0.41 0.95 0.07 0.90 0.27

Figure 2 shows the configurations of the eight hams on the basis of the first two

global components associated with the various methods of analysis. The interpretation of

these graphical displays can be done using the correlations of the sensory variables with

the global components (Table 8). It is clear that, on the one hand, the configurations

derived from GCCA and GCCA-V agree with each other and, on the other hand, the

configurations from MB-PCA and ComDim bear a high similarity to each other. This

confirms the finding that we are in presence of two families of methods. GCCA and
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GCCA-V, on the one hand, aim at recovering the information that is common to the

blocks of variables and, on the other hand, MB-PCA and ComDim aim at recovering the

within and between variation in the blocks.

(a) GCCA (b) GCCA-V

(c) MB-PCA (d) ComDim

Figure 2: Configurations of the hams on the first two global components derived from (a)
GCCA, (b) GCCA-V, (c) MB-PCA and (d) ComDim.
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3.3 Potatoes data

For the illustration of the predictive strategy called LR-MBPCA, we consider a case

study where the aim is to predict sensory attributes from measurement data. This prob-

lem is of high interest in practice since the collection of sensory data is costly and time

consuming. Twenty potatoes samples were analyzed after one month of storage and six

additional samples were analyzed after eight months of storage. A panel of assessors pro-

filed the texture of these potatoes with respect to nine texture attributes. The sensory

data were averaged accross assessors, yielding a dataset Y . The block X1 is given by

the chemical analysis of the potatoes samples. A second block of variables X2 concerns

the uniaxial compression. The third (X3) and fourth (X4) datasets respectively con-

cern the Time Domain-NMR relaxation curves and near infrared (NIR) measurements.

More details can be found in [35]. The aim is to investigate the relationships between

the sensory attributes Y and the rest of the datasets (X1 to X4). Each dataset was

column-centered and pre-scaled so as to have its norm equal to 1. Moreover, the dataset

Y was multiplied by 2 in order to have a total variance equal to that of the blocks of vari-

ables X1 to X4 all together. By way of assessing the prediction ability of LR-MBPCA,

we also performed MB-PLS [4, 36, 37] on the same data. Figure 3 shows the cumulative

percentage of variation in Y explained by the first three components from LR-MBPCA

and MB-PLS. It turns out that the two methods of analysis lead to results that agree

with each others to a large extent. We also performed a leave one out cross validation

study. Figure 4 shows the Root Mean Squared Errors of Cross Validation (RMSECV)

associated with MB-PLS and LR-MBPCA. Both curves show a typical pattern insofar

as RMSECV is concerned, since they decrease implying that the model improves as the

number of components increases, then the curves start to increase flagging a problem of

overfitting. The two methods seem to have more or the less the same performance. The

minimum RMSECV is reached for A=10 components (RMSECV=1.39) for LR-MBPCA

and A=11 components (RMSECV=1.33) for MB-PLS.
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Figure 3: Cumulative percentage of total variance in Y explained by the first three global
components of MB-PLS and LR-MBPCA.

Figure 4: Root mean squared errors obtained by leave one out cross validation for the
first fifteen global components of MB-PLS and LR-MBPCA.

4 Discussion and concluding remarks

Clearly, the paper sheds light on several unsupervised methods of analysis and high-

lights their common and differing features. It appears that the first differentiation key be-

tween the methods is whether we choose as a link function between the block components
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tk and their association global components, t , the expression tk = Xk(X>k Xk)−1X>k t or

tk = XkX
>
k t. The effect of the former expression is to shed off the variation within the

blocks and, as a consequence, what will emerge from the analysis is what is common to

the blocks of variables no matter whether this is important in terms of variation explained

or not. With the link function tk = XkX
>
k t, the methods of analysis will seek to recover

the variation in the blocks of variables. We have hinted to an intermediary solution by

considering the link function tk = Xk(γI + (1− γ)X>k Xk)−1X>k t. As γ increases from 0

to 1, the variances and the correlations among the variables within each block are grad-

ually taken into account and, as a consequence, the method of analysis is likely to realise

a better compromise between recovering the common structure to the various blocks of

variables and the total variation in these blocks. Another advantage of this link function

is that it acts as regularization procedure to counteract the problem of colinearity of the

variables within each block [15,16].

The second key of differentiation between the methods of multiblock data analysis is

related to the choice of the summing up expression to compute the global component from

its associated block components. Overall, it appears from the case studies that the two

choices lead to results that agree with each others to a large extent. However, we believe

that the expression based on the first principal component of the block components is

likely to offer more possibilities of developments. For instance, instead of postulating that

the global component is the first principal component of the block components, we may

add the constraint that it should be a sparse principal component. This entails that, for

each global component, only a selected number of block components will be included.

We have proposed iterative algorithms to run the multiblock data analyses and for

GCCA and MB-PCA, there are also straightforward solutions based on the eigenanalysis

of specific matrices. Using the simulated data as well as the sensory data which are used

to illustrate the methods of analysis, we have performed a very large number of runs of the

iterative algorithms by considering for each run a random starting point. The findings are:

(i) not surprisingly, in all the situations the algorithms converged; (ii) the same optimum

of the optimization criteria was obtained for all the runs; (iii) this optimum was equal
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to that obtained by the eigenanalysis solution when the case applied. Thus, it appears

that, for the data considered herein, the algorithms were not sensitive to the starting

point. In order to draw a general conclusion regarding this aspect, a large simulation

study is needed. For the time being, we recommend performing a multi-start algorithm

by considering 30 (say) starting points.

The common feature of the link functions that we have cited, namely tk = XkX
>
k t,

tk = Xk(X>k Xk)−1X>k t and tk = Xk(γI + (1− γ)X>k Xk)−1X>k t is that they are based

on the dot-product kernels XkX
>
k , Xk(X>k Xk)−1X>k and Xk(γI+(1−γ)X>k Xk)−1X>k ,

respectively. This hints to the idea that potentially other dot-product kernels could

be used with various purposes such as investigating non-linear relationships among the

datasets at hand. Future research will be devoted to these developments.

We have also proposed a supervised strategy of analysis based on the block compo-

nents associated with the predictive blocks of variables. Besides being very simple, its

performance in terms of prediction seems to be very similar to that of MB-PLS. Obvi-

ously, this strategy of analysis can easily be adapted to GCCA and ComDim and may

offer new extensions by using ideas pertaining to sparse PCA, for instance.

Ongoing research concerns the setting up of a unified approach for supervised methods

drawing from ideas developped in this paper.
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