M. P. Kalapos, Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications, Toxicol. Lett, vol.110, pp.145-175, 1999.

H. D. Dakin and H. W. Dudley, An enzyme concerned with the formation of hydroxy acids from ketonic aldehydes, J. Biol. Chem, vol.14, pp.155-157, 1913.

E. Racker, The mechanism of action of glyoxalase, J. Biol. Chem, vol.190, pp.685-696, 1951.

M. P. Kalapos, Where does plasma methylglyoxal originate from?, Diabetes Res. Clin. Pract, vol.99, pp.260-271, 2013.

W. H. Elliott, Methylglyoxal formation from aminoacetone by ox plasma, Nature, vol.185, pp.467-468, 1960.

S. Ray and M. Ray, Formation of methylglyoxal from aminoacetone by amine oxidase from goat plasma, J. Biol. Chem, vol.258, pp.3461-3462, 1983.

J. P. Richard, Reaction of triosephosphate isomerase with l-glyceraldehyde 3-phosphate and triose 1,2-enediol 3-phosphate, Biochemistry, vol.24, pp.949-953, 1985.

J. P. Richard, Mechanism for the formation of methylglyoxal from triosephosphates, Biochem. Soc. Trans, vol.21, pp.549-553, 1993.

M. L. Green and W. H. Elliott, The enzymic formation of aminoacetone from threonine and its further metabolism, Biochem. J, vol.92, pp.537-549, 1964.

N. Rabbani, M. Xue, and P. J. Thornalley, Methylglyoxal-induced dicarbonyl stress in ageing and disease: first steps towards glyoxalase 1-based treatments, Clin. Sci, vol.130, pp.1677-1696, 2016.

P. J. Thornalley, Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification -a role in pathogenesis and antiproliferative chemotherapy, General. Pharmacol.: Vasc. Syst, vol.27, pp.565-573, 1996.

B. Mannervik, Molecular enzymology of the glyoxalase system, Drug Metab. Drug Interact, vol.23, pp.13-27, 2008.

M. Sousa-silva, R. A. Gomes, A. E. Ferreira, A. Ponces-freire, and C. Cordeiro, The glyoxalase pathway: the first hundred years? and beyond, Biochem. J, vol.453, pp.1-15, 2013.

D. J. Creighton, M. Migliorini, T. Pourmotabbed, and M. K. Guha, Optimization of efficiency in the glyoxalase pathway, Biochemistry, vol.27, pp.7376-7384, 1988.

C. D. Rae, S. J. Berners-price, B. T. Bulliman, and P. W. Kuchel, Kinetic analysis of the human erythrocyte glyoxalase system using 1 H NMR and a computer model, Eur. J. Biochem, vol.193, pp.83-90, 1990.

P. W. Kuchel, G. Pagès, and C. Naumann, Chiral compartmentation' in metabolism: Enzyme stereo-specificity yielding evolutionary options, FEBS Lett, vol.587, pp.2790-2797, 2013.

E. Mcgroarty, B. Hsieh, D. M. Wied, R. Gee, and N. E. Tolbert, Alpha hydroxy acid oxidation by peroxisomes, Arch. Biochem. Biophys, vol.161, pp.194-210, 1974.

P. J. Thornalley, Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems -role in ageing and disease, Drug Metab. Drug Interact, vol.23, pp.125-150, 2008.

J. H. Ardenkjaer-larsen, Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR, Proc. Natl Acad. Sci. USA, vol.100, pp.10158-10163, 2003.

J. D. Clelland and P. J. Thornalley, Synthesis of 14 C-labelled methylglyoxal and S-D-lactoylglutathione, J. Label. Compd. Radiopharm, vol.28, pp.1455-1464, 1990.

G. Pagès, Y. L. Tan, and P. W. Kuchel, Hyperpolarized [1, 13 C]pyruvate in lysed human erythrocytes: effects of co-substrate supply on reaction time courses, Nmr. Biomed, vol.27, pp.1203-1210, 2014.

G. Pagès and P. W. Kuchel, FmR a analysis: rapid and direct estimation of relaxation and kinetic parameters from dynamic nuclear polarization time courses, Magn. Reson. Med, vol.73, pp.2075-2080, 2014.

D. Shishmarev, Sub-minute kinetics of human red cell fumarase: 1 H spin-echo NMR spectroscopy and 13 C rapid-dissolution dynamic nuclear polarization, Nmr. Biomed, vol.31, p.3870, 2018.

G. Pagès, Transmembrane exchange of hyperpolarized 13 C-urea in human erythrocytes: sub minute timescale kinetic analysis, Biophys. J, vol.105, pp.1956-1966, 2013.

E. Beutler, Red Cell Metabolism: A Manual Of Biochemical Methods (Grune & Stratton, 1984.

M. A. Schroeder, Real-time asessment of Krebs cycle metabolism using hyperpolarized 13 C magnetic resonance spectroscopy, FASEB J, vol.23, pp.2529-2538, 2009.

T. B. Rodrigues, Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13 C-labeled glucose, Nat. Med, vol.20, pp.93-97, 2014.

L. Dang, Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, vol.462, pp.739-744, 2009.

W. B. Bair, . Iii, C. M. Cabello, K. Uchida, A. S. Bause et al., GLO1 overexpression in human malignant melanoma, Melanoma Res, vol.20, pp.85-96, 2010.

W. Cheng, Glyoxalase-I is a novel prognosis factor associated with gastric cancer progression, PLoS ONE, vol.7, p.34352, 2012.

V. C. Brum, Synthesis of methylglyoxal-14 C, J. Pharm. Sci, vol.55, pp.351-352, 1966.

I. Nemet, D. Viki?-topi?, and L. Varga-defterdarovi?, Spectroscopic studies of methylglyoxal in water and dimethylsulfoxide, Bioorg. Chem, vol.32, pp.560-570, 2004.

H. Günther and . Spectroscopy, , 1980.

S. Wolfram, The Mathematica Book 5th edn, 2003.

E. M. Serrao, Analysis of 13 C and 14 C labeling in pyruvate and lactate in tumor and blood of lymphoma-bearing mice injected with 13 C-and 14 Clabeled pyruvate, NMR Biomed, vol.31, p.3901, 2017.

M. Puckeridge, G. Pagès, and P. W. Kuchel, Simultaneous estimation of T 1 and the flip angle in hyperpolarized NMR experiments using acquisition at nonregular time intervals, J. Magn. Reson, vol.222, pp.68-73, 2012.

D. V. Huntsberger, Elements of statistical inference, 1961.