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Abstract

Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their

efficient prevention and control. However, it is notoriously difficult to estimate dispersal

parameters at scales that are relevant to real epidemics. Epidemiological surveys can pro-

vide informative data, but parameter estimation can be hampered when the timing of the epi-

demiological events is uncertain, and in the presence of interactions between disease

spread, surveillance, and control. Further complications arise from imperfect detection of

disease and from the huge number of data on individual hosts arising from landscape-level

surveys. Here, we present a Bayesian framework that overcomes these barriers by integrat-

ing over associated uncertainties in a model explicitly combining the processes of disease

dispersal, surveillance and control. Using a novel computationally efficient approach to

account for patch geometry, we demonstrate that disease dispersal distances can be esti-

mated accurately in a patchy (i.e. fragmented) landscape when disease control is ongoing.

Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed for 15 years

in 605 orchards, we obtain the first estimate of the distribution of flight distances of infectious

aphids at the landscape scale. About 50% of aphid flights terminate beyond 90 m, which

implies that most infectious aphids leaving a tree land outside the bounds of a 1-ha orchard.

Moreover, long-distance flights are not rare–10% of flights exceed 1 km. By their impact on

our quantitative understanding of winged aphid dispersal, these results can inform the

design of management strategies for plant viruses, which are mainly aphid-borne.

Author summary

In spatial epidemiology, dispersal kernels quantify how the probability of pathogen dis-

semination varies with distance from an infection source. Spatial models of pathogen

spread are sensitive to kernel parameters; yet these parameters have rarely been estimated

using field data gathered at relevant scales. Robust estimation is rendered difficult by prac-

tical constraints limiting the number of surveyed individuals, and uncertainties concern-

ing their disease status. Here, we present a framework that overcomes these barriers to

permit inference for a between-patch transmission model. Extensive simulations show

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006085 April 30, 2018 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Pleydell DRJ, Soubeyrand S, Dallot S,

Labonne G, Chadœuf J, Jacquot E, et al. (2018)

Estimation of the dispersal distances of an aphid-

borne virus in a patchy landscape. PLoS Comput

Biol 14(4): e1006085. https://doi.org/10.1371/

journal.pcbi.1006085

Editor: Samuel Alizon, CNRS, FRANCE

Received: May 5, 2017

Accepted: March 3, 2018

Published: April 30, 2018

Copyright: © 2018 Pleydell et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The sharka

surveillance dataset used in this study contains

confidential information and is owned by the

French Plant Health Services. Applications to

access this dataset should be sent to Christine

Colas (SRAL/DRAAF; christine.colas@agriculture.

gouv.fr).

Funding: This work was supported by: European

Union (SharCo, FP7 204429), Département Santé
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that dispersal kernels can be estimated from epidemiological surveillance data. When

applied to such data collected from more than 600 orchards during 15 years of a plant

virus epidemic our approach enables the estimation of the dispersal kernel of infectious

winged aphids. This kernel is long-tailed, as 50% of infectious aphids leaving a tree termi-

nate their infectious flight beyond 90 m whilst 10% fly beyond 1 km. This first estimate of

flight distances at the landscape scale for aphids–a group of vectors transmitting numer-

ous viruses–is crucial for the science-based design of control strategies targeting plant

virus epidemics.

Introduction

Infectious diseases of humans, animals and plants severely impact the world’s health and econ-

omy. To gain knowledge on disease dynamics, powerful mathematical models have been

developed [1–3]. However, for predicting the relative efficacies of competing control strategies

across realistic heterogeneous landscapes, spatially-explicit in silico simulation models provide

the main avenue [2]. The dispersal parameters of such models critically affect the predicted

spatio-temporal dynamics of the disease, and thus the predicted outcome of potential control

strategies [4]. Obtaining reliable estimates for these parameters is therefore a fundamental

issue in epidemiology [5–7]. Models frequently employ dispersal kernels to represent how the

probability of dispersal events diminishes as a function of distance, and simulation studies

have proven that dispersal parameters can be identified in idealised scenarios [5]. Indeed, this

has been achieved for simple models or small-scale datasets [8–13]. Recent advances in Bayes-

ian methods and computing power have enabled fitting more realistic models to larger-scale

surveillance data [6, 14–19]. However, most dispersal kernels are still unknown. Indeed, esti-

mation gets more complex when graduating from idealised toy problems to reconstructing the

spatio-temporal dynamics of real epidemics. The first issue is the mismatch between the spa-

tio-temporal coordinates of the epidemic, sampling and model [20]. For example, the timing

of key events (e.g. when a susceptible individual becomes infected) is often censored (i.e.

known only within certain bounds), and failure to account for this can bias estimates. More-

over, the challenge of inference is increased by uncertainty arising from missing observations

[21, 22] or imperfect sensitivity of disease detection [23, 24]. Further difficulties arise when

surveillance data are aggregated at the patch scale because a landscape comprising patches of

various shapes or sizes often cannot be summarized by patch centroids without biasing con-

nectivity estimates. All these issues require appropriate correction measures to avoid biased

inference and prediction [25].

In the case of aerial vector- or wind-borne diseases, dispersal kernels critically depend on the

flight properties of the vectors or infectious propagules [26]. When the probability of dispersal

decreases more slowly than an exponential distribution, kernels are termed “long-tailed” and

lead to non-negligible long-distance flights [27]. Such events are an important component of

disease epidemiological–and evolutionary–dynamics and call for kernel estimation at the land-

scape scale [28]. However, among plant diseases, there are few available kernel estimates. The

dispersal kernel of black Sigatoka (a fungal disease of banana) has been estimated experimentally

up to 1 km from a point source, based on the direct observation of spore-induced lesions [29].

This is the only available direct estimate at this scale for the dispersal kernel of a plant disease,

which reflects the extreme practical difficulties of such field studies and highlights the critical

need for developing in silico solutions. A promising way forward is to infer dispersal parameters

indirectly, i.e. from spatio-temporal patterns observed in epidemiological data [5] whilst

Dispersal distances of an aphid-borne virus
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accounting for the added complexity (outlined above) of observational studies. This approach

has been used to infer the dispersal kernels of the wind-dispersed plantain fungus Podosphaera
plantaginis [15], the fungus Leptosphaeria maculans affecting oilseed rape and dispersed both by

wind and wind-driven rain [30], and two pathogens transmitted only by wind-driven rain: the

oomycete Phytophthora ramorum that is responsible for sudden oak death [16], and the bacte-

rium Xanthomonas axonopodis that causes Citrus canker [17]. A dispersal kernel has been esti-

mated for two other Citrus diseases: Bahia bark scaling of Citrus, a disease with an elusive

etiology [13], and Huanglongbing, which is caused by bacteria from the ‘Candidatus Liberibac-

ter’ genus and transmitted by psyllids [18]. To date, this is the only vector-borne plant disease

for which the dispersal kernel is documented. Although aphids are responsible for transmitting

almost 40% of more than 700 plant viruses [31] and impose large economic burdens, their dis-

persal remains ill-characterized at the landscape scale [32, 33]. For a vast number of aphid-

borne diseases, this lack of basic knowledge affects science-based control strategies by under-

mining the reliability of quantitative risk assessment and predictive epidemiological models.

Most aphid-borne viruses belong to the Potyvirus genus and are transmitted in a non-per-

sistent manner, i.e. by winged aphids that acquire and transmit the virus immediately while

probing on various plants in search of a suitable host species [31]. Potyviruses are transmitted

by a wide range of aphid species, and aphid infectivity is lost after the first probes. For these

reasons, estimating the natural dispersal kernel of a potyvirus provides an indirect way of esti-

mating the dispersal kernel of infectious winged aphids. Plum pox virus (PPV) is a potyvirus

that is listed as one of the 10 most important plant viruses [34]. This virus is the causal agent of

sharka, a quarantine disease affecting trees of the Prunus genus (i.e. mainly peach, apricot and

plum), reducing fruit yield, quality (modified sugar content and texture) and visual appeal

(due to deformations and discolouration) [33]. Sharka is a worldwide plague that has infected

over 50 countries in Europe, Asia, America and Africa [33], inflicting estimated economic

losses of 10 billion Euros over 30 years [35]. The transfer of infected (possibly symptomless)

plant material can disseminate PPV over long distances [35], and the natural spread of the dis-

ease is ensured by more than 20 aphid species [36]. Virus-infected trees cannot be cured, and

insecticides do not act fast enough to prevent the spread of the virus by non-colonising aphids

[31, 37]. In addition, resistant or tolerant peach and apricot varieties are too scarce to provide

a short-term alternative to cultivated varieties. However, aphid-mediated transmission can be

reduced by removing infected trees as soon as they are detected. As a result, various countries

have implemented PPV eradication or control strategies based on regular surveys and removal

of trees or orchards when PPV is detected [33, 35, 38]. Given the cost of surveillance, tree

removal and compensation, these strategies should benefit from model-assisted optimisation,

which requires estimating the aphid dispersal kernel.

In this context, the aims of this study are: (i) to develop a Bayesian inference framework for

estimating, from surveillance data, the parameters of a spatially-explicit epidemiological model

that accounts for patch geometry and for interactions between disease spread, surveillance and

control, (ii) to assess through simulations the accuracy and precision of the dispersal parame-

ters estimated under various epidemic scenarios, and (iii) to apply our method to 15 years of

geo-referenced surveillance data collected during an epidemic of Plum pox virus in order to

estimate the dispersal kernel of the aphid vectors.

Materials and methods

Surveillance database

In the early 1990’s, an outbreak of the M strain of PPV was detected in peach/nectarine patches

(orchards) in southern France [39]. The plant health services implemented a control strategy

Dispersal distances of an aphid-borne virus
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based on disease surveillance and removal of symptomatic trees. This process involved the rou-

tine collection of patch-level data comprising the observed number of new cases (trees with

PPV-typical discolouration symptoms on flowers and leaves) and the corresponding inspec-

tion dates, as well as patch attributes (location, planting and removal years, planting density,

etc.). We aggregated the information about a 5.6×4.8 km production area over surveillance

years 1992-2006 into a unique georeferenced database, with patch boundary coordinates

obtained from digitised aerial photographs. With 4820 inspections over 15 years in 553 patches

(mean area: 0.95 ha; 52 orchards were replanted in these patches during that period), this data-

base is a precious resource for inference on aphid-mediated viral dispersal in patchy (i.e. frag-

mented) landscapes. Moreover, to account for seasonal variation in the number of flying

aphids, we used in our model the average (over 17 years) weekly number of flying aphids col-

lected from a 12-m-high Agraphid suction tower located within the bio-geographical region of

the study area.

Modelling framework

Our model has a compartmental Susceptible-Exposed-Infectious-Removed (SEIR) structure

that aims to reduce bias in parameter estimates by accounting for irregular patch geometry,

detection-dependent removal, imperfect detection sensitivity, interval censoring of between-

compartment transition times, missing data and parameter uncertainty. We address these

challenges by: (i) integrating a mixture of exponential dispersal kernels over source and

receiver patches to compute between-patch connectivity; (ii) splitting the infectious state I into

hidden (H) and detected (D) sub-states (Fig 1); (iii) integrating over uncertainty in the times of

transition between compartments; (iv) using Bayesian data augmentation and inference. Two

versions of our discrete-time spatio-temporal SEHDR model–one for stochastic simulations

Fig 1. Susceptible-Exposed-Hidden-Detected-Removed (SEHDR) model of an individual’s epidemiological status.

At T0, patch i is planted with infectious (I) or susceptible (S) individuals with probabilities pi and 1-pi, respectively. An

individual passes between compartments at event times TE, TH, TD and TR. Apart from T0, only the detection time TD
can be known (yellow); all other event times are censored (blue). Infectious individuals from both within and outside

the patch contribute to the force of infection ltr
, which is the expected number of infectious events affecting an

individual over time interval (tr−1, tr]. The probability that a given susceptible (S) individual becomes exposed (E) in

this time interval is 1-exp(-ltr
), assuming independent infection events. A latent period of duration TH-TE follows,

after which the individual becomes infectious (H). Infectious individuals are removed (R) only after detection (D) or

when the entire patch is removed. For simplicity, the i and tr subscripts are omitted in the figure.

https://doi.org/10.1371/journal.pcbi.1006085.g001
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and the other for Bayesian inference–are described below (for further details, see Texts A and

B in S1 Texts).

Simulation model

Whole patches are removed and replanted at predefined dates throughout the study period.

Each patch i is planted with Ni individuals. At the planting date, a proportion pi of these indi-

viduals are infectious (in state H) and 1-pi are susceptible (in state S). If patch i is an introduc-

tion patch, pi>0; otherwise, pi = 0. Up to four transition times (TE, TH, TD and TR) can be

associated with any given individual (Fig 1), i.e. individuals pass sequentially from state S to E
to H to D to R, and all other transitions occur with zero probability. The exposed state E
accounts for the latent period, i.e. the time-lag between the infection date TE and the date at

which the individual becomes infectious TH. In this discrete-time model (whose time steps are

denoted by the index r), the transitions (denoted by ‘!’) between the five compartments are

modelled as:

~SEi;tr
� BinomðSi;tr� 1

; 1 � e� li;tr Þ; ð1Þ

lagð ~EHÞ � GammaTrðy1; y2Þ; ð2Þ

~HDi;tr
� BinomðHi;tr� 1

; ri;tr
Þ; ð3Þ

lagð ~DRÞ � GeomTrð1=dÞ; ð4Þ

where: Si;tr� 1
(resp. Hi;tr� 1

) is the number of individuals in patch i that are in state S (resp. H) at

the beginning of the time interval (tr−1, tr], and ~SEi;tr
(resp. ~HDi;tr

) represents how many of

them make the transition from S to E (resp. from H to D) in this time interval; the correspond-

ing transition probabilities are 1 � e� li;tr for a given individual in state S to incur at least one

infection event (transmission of non-persistent viruses is principally driven by independent

vectors), and ri;tr
for the detection of symptoms on an infectious (H) individual (ri;tr

¼ r

when patch i is inspected in (tr−1, tr], and ri;tr
¼ 0 otherwise); the sojourn times in compart-

ments E and D are determined per individual via random variables lagð ~EHÞ ¼ TH‐TE and

lagð ~DRÞ ¼ TR‐TD, respectively; the latent period is modelled classically with the flexible

gamma distribution, and here the left truncation of GammaTr represents an absolute minimal

latent period for sharka [33] to account for seasonality in Prunus phenology and prevent sec-

ondary transmission prior to the first winter; the delay between detection and removal is mod-

elled with a geometric distribution where the probability of removal is the same (1/δ) at each

time step, up to the right truncation of GeomTr which represents the maximal delay before

removal (detected trees must be removed before the end of the year). The force of infection

(i.e. the expected number of transmission events) incurred by each individual in patch i over

(tr−1, tr] is defined as:

li;tr
¼

atr
b

Ni � Ri;tr� 1

X

i0
mi0iIi0 ;tr� 1

� �
; ð5Þ

where atr
is the normalized flight density, i.e. the proportion of annual flights occurring over

(tr−1, tr]; β is the transmission coefficient, i.e. the annual number of vector flights per source

(infectious) host that would lead to infection if the recipient host is susceptible; Ni � Ri;tr� 1
is

the number of remaining hosts on which the incoming vectors distribute themselves in patch

Dispersal distances of an aphid-borne virus
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i, and Ii0 ;tr� 1
is the number of infectious hosts in patch i0 over (tr−1, tr]. Note that Ni is constant

(i.e. Ni ¼ Si;tr
þ Ei;tr

þ Ii;tr
þ Ri;tr

) for all tr between the planting and removal dates of patch i.
Finally, the connectivity mi0i is the probability that a vector flight starting in patch i0 terminates

in patch i.
The connectivity between source patch i0 of area Ai0 and receiver patch i is obtained via:

mi0 i ¼

R

x2i0
R

y2if
2Dðkx � ykÞdydx

Ai0
; ð6Þ

where x and y are coordinate vectors in R2, and f 2D is the 2-dimensional dispersal kernel [40].

The computation time required to calculate connectivity mi0i between several hundreds of

patches prohibits the use of iterative algorithms to directly estimate the parameters of flexible

(e.g. two-parameter) kernels. Thus, we developed an approach to approximate long-range (e.g.

exponential-power) dispersal kernels. We defined f 2D as a mixture of J components:

f 2Dðkx � ykÞ ¼
XJ

j¼1

wjf
2D

j ðkx � ykÞ
h i

; ð7Þ

where the wj are positive mixture weights summing to 1, and 2hj is the mean dispersal distance

for exponential kernel f 2D
j defined as:

f 2D
j ðkx � ykÞ ¼

e� kx� yk=hj

2ph2
j

: ð8Þ

Under this mixture formulation, the connectivity becomes:

mi0 i ¼

R

x2i0

R

y2i

PJ
j¼1

wjf 2D
j ðkx � ykÞ

h i
dydx

Ai0

ð9Þ

¼
XJ

j¼1

wj

R

x2i0
R

y2if
2D

j ðkx � ykÞdydx
Ai0

" #

: ð10Þ

This formulation permits the connectivity of each mixture component j to be computed

just once, since only the weights wj require updating in an estimation procedure. We set

hj ¼
3

2
� 1:08j� 1 (and J = 100), to obtain kernel components with mean distances ranging from

3 to 6110 m and higher resolution at smaller distances. To simplify parametrisation, and to

avoid identifiability issues with the mixture of exponentials, we restrain weights using:

wj ¼ P
j
J
js1; s2

� �

� P
j � 1

J
js1; s2

� �

; ð11Þ

where P is the cumulative distribution function of a beta distribution with parameters s1 and

s2. We call any kernel of the form (Eq 7) using exponential kernels (Eq 8) weighted by (Eq 11)

a beta-weighted mixture of exponentials (BWME) kernel.

In order to test whether BWME kernels provide a good approximation of other dispersal

kernels, we fitted a BWME kernel to 3 standard [28] dispersal kernel types (exponential-

power, power-law, and 2Dt), all with the same mean distance travelled (100 m). Model fitting

was performed by minimizing the total absolute difference between the marginal cumulative

distribution functions at 20,000 points spaced evenly between 0 and 1000 m. For each type of

disperal kernel, 4 values of the shape parameter were tested.

Dispersal distances of an aphid-borne virus
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Bayesian estimation procedure

Among the four transition times, only TD (i.e. the time when an infectious individual is

detected) can be known precisely. Let (ti;1; � � � ; ti;k; � � � ; ti;Ki
) denote the set of Ki inspection dates

in patch i (which may be partly censored by omissions in surveillance records). Let p(TD,i = ti,k)

denote the probability for an individual in patch i to be detected as infected at inspection date

ti,k. Data provide the associated number Dþi;k of newly detected individuals, and the number D�i
of individuals upon which symptoms were not detected in any of the Ki inspections. These vari-

ables are modelled as:

ðDþi;1; � � � ;D
þ
i;Ki
;D�i Þ � Multinomial Ni; pðTD;i ¼ ti;1Þ; � � � ; pðTD;i ¼ ti;Ki

Þ; 1 �
XKi

k¼1

pðTD;i ¼ ti;kÞ

 !

; ð12Þ

where Ni is the initial number of trees planted in patch i. A survival model [41] was used to

derive p(TD,i = ti,k) whilst accounting for censoring, imperfect detection sensitivity, and the

expected dependencies between infections (Text A in S1 Texts). The probabilities p(TD,i = ti,k)

were determined from the set of model parameters Θ, using a smoothed representation of the

expected epidemic, and were not conditioned on past observations. Thus, Eq (12) provides a

pseudo-likelihood for the observed data (Text A in S1 Texts). Based on this pseudo-likelihood,

Bayesian inference (for parameter set Θ) was performed via Markov chain Monte Carlo

(MCMC) using a Gibbs sampler with embedded adaptive Metropolis-Hastings steps and data

augmentation for the unknown planting and inspection dates (Texts B and C in S1 Texts). By

data augmentation, we mean the explicit introduction of latent variables [42–44].

Estimation for simulated epidemics

To assess the accuracy (i.e. amount of bias) and precision (i.e. amount of variance) of the esti-

mation of dispersal parameters, 10 epidemics were simulated under each combination of 7 dis-

ease introduction scenarios × 3 dispersal kernels × 4 parameter estimation scenarios. All

simulations were performed under the same virtual landscape derived from the surveillance

database: we retained the spatial coordinates (and thus the geometry) of the patch polygons,

but all other potential spatio-temporal dependencies were suppressed through the random

permutation of orchard-level data including planting densities and patch planting/removal/

replanting dates. When density or planting date were missing in the database, their values

were drawn from the corresponding empirical distribution. Simulations were performed with

1 time step per day, and 1 survey per patch per year, with inspection days drawn from the cor-

responding empirical distribution. The transmission coefficient β was fixed at 1.5 (which leads

to realistic epidemic dynamics) and all other parameters were fixed at the expected values of

their prior distributions (Text B in S1 Texts).

The three simulated kernels correspond to short-, medium- and long-range dispersal. They

were parametrised using low-dimension mixtures of exponential kernels (Eq 7) with fixed

mean distances and weights (Table 1, mixture parameters). These were subsequently approxi-

mated by the BWME kernel minimizing the Kullback-Leibler (KL) distance [45] between the

two probability density functions (Table 1, simulation parameters).

The seven introduction scenarios were defined by the following number of introduction

patches (and the initial prevalence pi in these patches): 1 (25%), 5 (10%), 10 (5%), 15 (2%), 20

(1%), 25 (1%) or 30 (1%). For a given introduction scenario, all simulations were performed

with the same introduction patches, which were chosen at random with the constraint that

the first introduction occurred at year 1 and all other introductions occurred before year 6

(S1 Fig).

Dispersal distances of an aphid-borne virus
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In order to identify whether our MCMC estimation procedure (Text C in S1 Texts) encoun-

tered identifiability issues with some parameters, we tested 4 estimation scenarios targeting

parameter sets of increasing size (Table 2), with all other parameters fixed at the values used

for simulation.

Both simulated epidemics and the smoothed epidemics of the pseudo-likelihood started at

the beginning of year 1 and stopped at the end of year 22. Because some MCMC chains

became trapped in local maxima associated with negligible likelihoods, we performed 10

MCMC chains under each estimation scenario (applied to each simulated epidemic), which

produced 8400 MCMC chains in total. Within each combination of epidemic replicate × ker-

nel × introduction × estimation scenario, we retained the MCMC chain with the highest mean

posterior log-likelihood. Then, for each of these 840 chains, indices of accuracy (resp. preci-

sion) were defined as the mean (resp. span of the 95% credibility interval) of the posterior KL

distances between the probability density functions f 2D (Eq 7) of simulated and estimated ker-

nels. For ease of interpretation, simulated and estimated kernels were plotted using the distri-

bution function of the distance travelled:

F1Dðkx � ykÞ ¼
XJ

j¼1

wj 1 � 1þ
kx � yk

hj

 !

e
�

kx � yk
hj

" # !

: ð13Þ

This function is the cumulative version of the 1-dimensional f1D (i.e. the probability density

function of the distance travelled), which is obtained by integrating (marginalising) f 2D (Eq 7)

over all directions.

Finally, to assess the impact of detection sensitivity (ρ) on the accuracy and precision of the

estimation of the dispersal kernel, we performed an additional simulation-estimation study.

For 99 equally spaced values of ρ between 0.01 and 0.99, a unique epidemic was simulated.

Each epidemic started at year 1 from a single introduction patch with 25% prevalence, and

Table 1. Parameters of the three dispersal kernels used in the simulation study.

Kernel range Simulation parameters Mixture parameters

s1 s2 J Mean distances in m (weights)

short 12727.3 29264.2 1 25 (1)

medium 9.3 18.1 2 25 (2/3), 100 (1/3)

long 5.5 8.4 3 25 (3/6), 100 (2/6), 300 (1/6)

Epidemics were simulated using BWME kernels with parameters s1 and s2 (left), approximating exponential mixture

kernels with J mixture components (right).

https://doi.org/10.1371/journal.pcbi.1006085.t001

Table 2. Parameter sets for four estimation scenarios.

Parameter Definition Θ1 Θ2 Θ3 Θ4

β transmission coefficient ✔ ✔ ✔ ✔
μ = s1/(s1+s2); mean of kernel weight distribution ✔ ✔ ✔ ✔
σ = s1+s2; shape of kernel weight distribution ✔ ✔ ✔ ✔
ρ detection sensitivity - ✔ - ✔
θ1 shape of latent period distribution - - ✔ ✔
θ2 scale of latent period distribution - - ✔ ✔

For each estimation scenario, the set of parameters to be estimated, Θ, comprises the parameters indicated with a✔.

https://doi.org/10.1371/journal.pcbi.1006085.t002
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spread under the long-range kernel scenario (Table 1). Default values were used for all other

parameters. For each of the 99 simulated epidemics, independent estimations were carried out

under the most exhaustive scheme (Θ4) with 3 prior distributions for detection sensitivity ρ
corresponding to different levels of available prior information (Text B in S1 Texts). For each

combination of prior × detection sensitivity, 10 MCMC chains were run, leading to 2970

MCMC chains. For each value of ρ, posterior distributions were inferred using all chains with

non-negligible mean posterior likelihood.

Estimation for a real epidemic

Using PPV surveillance data, estimation was carried out under the most exhaustive scheme

(Θ4) to infer parameters of the spatial SEHDR model. As above, and for the same reasons, we

ran multiple MCMC chains and retained the chain with the highest mean posterior log-likeli-

hood (Text C in S1 Texts). The number of introduction patches κ was fixed at integer values in

the range 1-24, and 30 chains were run per fixed κ. This approach was taken because each unit

increase in κ adds two parameters (additional introduction patch identity and initial preva-

lence) to Θ, which always increases the posterior log-likelihood (various uninformative and

weakly informative priors were tested). Thus, to avoid over-fitting, identification of κ was

treated as a model selection problem for which we maximised the Fisher information criterion

IðkÞ (Text D in S1 Texts).

Results

Impact of parameter values on simulated epidemics

The parameter combinations chosen to test the inference procedure cover a wide range of epi-

demic behaviour, from local to widespread epidemics and from low to high incidence (Fig 2).

The general trends are that the stochastic variability has less effect than the introduction sce-

nario or kernel type, that more introduction patches generally lead to more widespread epi-

demics, and that higher disease prevalence in the introduction patches does not necessarily

increase the final local cumulative incidence (S2 and S3 Figs). Increasing kernel range gener-

ally decreases the cumulative incidence (S2 and S3 Figs), especially near the introduction

patches, although these epidemics are more widespread (Fig 2).

Evaluation of the estimation procedure

A key inovation in our estimation procedure is the BWME dispersal kernel. This kernel pro-

vides close approximations to exponential-power and power-law kernels for all tested values of

the shape parameter (S4 and S5 Figs). Such flexibility is an interesting property when one does

not know which kernel type to assume, which is a common issue. However, the fit to the 2Dt

kernels was more approximate (S6 Fig). This is not surprising since the 2Dt kernel is essentially

a continuous mixture of Gaussians. Thus, switching the basis functions from exponential to

Gaussian (giving a BWMG kernel) may greatly improve the fit.

The distribution of Kullback-Leibler (KL) distances between simulated and estimated ker-

nels demonstrates that estimation accuracy is not affected by the inclusion of sensitivity and

latent period parameters in the estimation scheme (Fig 3A). Neither is the median accuracy of

the estimated kernels affected much by the range of the dispersal kernel (Fig 3B). However, for

longer-range dispersal kernels, KL distances can become more extreme (Fig 3B), and the span

and variance of their 95% credibility intervals increase (S7B Fig). This shows that the precision

of the estimated kernel decreases with increasing dispersal range. The most influential factor

on the accuracy and precision of estimated dispersal kernels is the introduction scenario

Dispersal distances of an aphid-borne virus
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(Fig 3C and S7C Fig). However, the effect of the introduction scenario is neither strongly

related to the number of introduction patches nor to the associated initial prevalence, but

rather to the presence of an introduction patch in the dense central cluster of patches (Fig 3

and S1 Fig). The impact of kernel range and introduction scenario on kernel estimation can

also be seen by the visual comparison between simulated and estimated kernels (S8, S9 and

S10 Figs).

For each of the 3 simulated kernels, the distribution of KL distances was summarised by its

minimum, quartile and maximum values across all 7 introduction scenarios × 10 epidemics

per scenario. The comparison between simulated kernels and their estimates within the most

exhaustive scheme (Θ4) shows that the 3 kernels are very accurately estimated for some simu-

lated epidemics (left column in Fig 4 and S11 Fig). However, dispersal distances are often over-

estimated, with the median KL distance increasing from 5.2×10−2 to 6.1×10−2 with increasing

kernel range. A closer look at the estimation curves corresponding to the median KL distance

reveals that estimated distances do not exceed the simulated distances by more than 0.25 on

the log10 scale. Dispersal distances are thus overestimated by a factor below 1.8 (1.2 for the

mode; see central column in S11 Fig). Even for the most challenging of the 70 epidemics simu-

lated with the long-range dispersal kernel (bottom-right panel in Fig 4 and S11 Fig), the differ-

ence between the two curves remains below 0.6 on the log10 scale. This value translates into

less than 4-fold estimation errors (less than 4.3 for the mode; see right column in S11 Fig),

which is high but still within one order of magnitude. By contrast, precision is very high for all

Fig 2. Cumulative detected incidence at the end of year 22 for nine simulated epidemics. Each polygon represents

one peach orchard. From left to right, the number of introduction patches (with initial disease prevalence) are: 1

(25%), 15 (2%) and 30 (1%). From top to bottom: simulations generated under short-, medium- and long-range kernel

scenarios.

https://doi.org/10.1371/journal.pcbi.1006085.g002
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Fig 3. Boxplots of distances between simulated and estimated dispersal kernels. Impact of (A) estimation scenario,

(B) kernel range, and (C) disease introduction scenario [number of introduction patches (with initial disease

prevalence)] on the accuracy of estimated dispersal kernels. Accuracy is measured by the Kullback-Leibler distance

(KLD) between simulated and estimated dispersal kernels. Each panel consists of 840 points, which correspond to 10

epidemics × 7 disease introduction scenarios × 3 dispersal kernels × 4 parameter estimation schemes.

https://doi.org/10.1371/journal.pcbi.1006085.g003

Fig 4. Comparison of simulated and estimated dispersal kernels. From left to right: kernels with the minimum,

lower quartile, median, upper quartile and maximum Kullback-Leibler (KL) distances (posterior mean), as estimated

(red) under the most exhaustive scheme (Θ4), based on simulated epidemics with short-, medium- and long-range

kernels (from top to bottom; black). Kernels are represented by their marginal cumulative distribution function F1D

(with distance from the source represented on the log10 scale). The mean KL distance is indicated for each estimation.

https://doi.org/10.1371/journal.pcbi.1006085.g004
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kernel ranges, as indicated by a median span below 0.04 for the 95% posterior credibility inter-

val of KL distances (S7 Fig) and the corresponding overlapping red lines in each plot of Fig 4

and S11 Fig.

The estimated values of the other parameters are generally close to the values used for simu-

lation, but the relative bias varies among parameters, kernel ranges, and introduction scenarios

(S12 Fig). Detection sensitivity (ρ) is the most precisely estimated parameter, followed by the

shape of the latent period (θ1) for which the estimates are also almost unbiased. Bias can be

more severe for the scale of the latent period (θ2) and the transmission coefficient (β), with up

to 45% under- and over-estimation (respectively) in the worst-case combinations of kernel

and introduction scenarios (S12 Fig, top row for θ2 and bottom row for β). For these two

parameters, the impact of the introduction scenario on parameter estimation increases with

kernel range.

The simulation-estimation study on ρ shows that the estimation procedure is robust to

detection sensitivities below the default value (0.8) used in the rest of this work. Indeed,

although reducing ρ reduces (by definition) the proportion of detected cases, the link between

detection and epidemic control results in a disproportionate increase in the total number of

infected hosts as ρ decreases, providing more data for statistical inference–except when ρ
reaches extremely small values (S13 Fig). As a result (see S14 and S15 Figs): (i) accuracy of ker-

nel estimation is not reduced as detection sensitivity decreases; (ii) precision of kernel estima-

tion is only affected when ρ is very close to 0 or 1; (iii) increasing the precision of the prior on

ρ only affects the accuracy of kernel estimation for ρ>0.8 (i.e. when epidemic size–and thus

data available for inference–is strongly reduced by effective control). Finally, we note that sto-

chastic variations among replicated epidemics have more influence than ρ on the KL distance

between simulated and estimated kernels (S15 Fig).

Estimation for a real epidemic

Once validated on simulated epidemics, we used the developed inference framework to esti-

mate the dispersal kernel of Plum pox virus (and thus of the flight distances of the infectious

aphid vectors) based on survey data. As a first step, we inferred the number of introduction

patches. For κ<10, no combination of introduction patches returned a finite posterior log-

likelihood. The Fisher information criterion was maximised at κ = 11 (Fig 5), indicating that

improvement in model fit saturates beyond this point. This suggests that the most robust infer-

ence is obtained with κ = 11. These 11 introduction events among 547-579 orchards planted

over 22 years (planting date is unknown for 32 orchards) correspond to disease introduction

probabilities of 0.5 per year and 1.90-2.01×10−2 per orchard planted.

Summary statistics of the posterior distributions of key parameters and percentiles of the

dispersal kernel were tabulated for κ = 11 (Table 3). From the estimated values of s1 and s2, we

derived the weights of the kernel components (S16 Fig), the dispersal kernel, the cumulative

distribution function (Fig 6) and the probability density function (S17 Fig) of aphid flight dis-

tances. These figures, and the estimated quantiles shown in the second part of Table 3, demon-

strate the substantial contribution of long-range dispersal to aphid-borne virus epidemics.

Indeed, almost 50% of the infectious aphids leaving a tree land beyond 100 m (median dis-

tance = 92.8 m; CI95% = [82.6-104 m]), and nearly 10% land beyond 1 km (last decile = 998 m;

CI95% = [913-1084 m]).

Discussion

In this work, we developed a spatially-explicit Bayesian inference framework for the estimation

of disease dispersal parameters when surveillance data are gathered at the patch level. The
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Fig 5. Impact of the number of introduction patches (κ) on the expected Fisher information for the sharka

epidemic. For each κ, the estimation with the highest mean posterior log-likelihood was retained. For κ<10 no

introduction patch combination returned a finite posterior log-likelihood. The empirical approximation of the Fisher

information was maximal at κ = 11.

https://doi.org/10.1371/journal.pcbi.1006085.g005

Table 3. Summary statistics for parameters estimated from the survey data.

Mean SD TSSEM CI95%

β 1.32 2.80 × 10−2 7.1 × 10−4 1.27-1.38

s1 2.32 1.11 × 10−1 2.4 × 10−3 2.11-2.55

s2 2.45 8.66 × 10−2 1.5 × 10−3 2.29-2.62

ρ 0.659 7.73 × 10−3 1.9 × 10−4 0.643-0.674

θexp 1.92 8.74 × 10−2 2.2 × 10−3 1.75-2.09

θvar 0.442 8.69 × 10−2 2.0 × 10−3 0.291-0.631

d5% 5.0 3.23 × 10−1 7.2 × 10−3 4.4-5.7

d10% 8.9 5.98 × 10−1 1.3 × 10−2 7.8-10.1

d50% 92.8 5.47 1.2 × 10−1 82.6-104

d90% 998 4.35 × 101 7.7 × 10−1 913-1084

d95% 1742 7.20 × 101 1.2 1604-1887

Summary statistics including the posterior mean, standard deviation (SD), time-series standard error of the mean

(TSSEM) and 95% credibility intervals (CI95%) are reported for the transmission coefficient β, the kernel parameters

s1 and s2, the detection sensitivity ρ, the expected duration θexp = θ1×θ2 of the latent period and associated variance

yvar ¼ y1 � y
2

2
. Posterior distributions of the 5th, 10th, 50th, 90th and 95th percentiles of aphid flight distances d are also

summarised.

https://doi.org/10.1371/journal.pcbi.1006085.t003

Dispersal distances of an aphid-borne virus

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006085 April 30, 2018 13 / 24

https://doi.org/10.1371/journal.pcbi.1006085.g005
https://doi.org/10.1371/journal.pcbi.1006085.t003
https://doi.org/10.1371/journal.pcbi.1006085


simulation and inference procedures take into account that disease status assessment is incom-

plete because surveillance has an imperfect detection sensitivity and a finite spatio-temporal

coverage. We assessed the quality of the inference procedure through comparison between

parameter values used for simulation and corresponding estimates. Then, we applied this

approach to Plum pox virus surveillance data, to obtain the first estimate of an aphid dispersal

kernel at the landscape scale. We discuss below the interest and limitations of the proposed

approach and results.

Sources of uncertainty and model validation

Since the dispersal kernel is the key component of spatial epidemiological models, we focused

attention on its estimation and treated the other parameters as nuisance parameters (i.e.

parameters than are inferred to limit bias in the estimation of the distribution of interest). S12

Fig shows how simulated and estimated values compare for all nuisance parameters. Recent

methodological advances have permitted the extraction of crucial information on the dispersal

kernel of four plant diseases from surveillance data [13, 16–18] and observational studies [15,

30]. These estimation procedures all account for unobserved infection times, with additional

methodological challenges related to large heterogeneous landscapes [16], introduction from

external sources [17, 18], or active disease control [18]. The present work handles these various

processes and, contrary to the abovementioned studies which all assume a known detection

Fig 6. Estimated dispersal kernel for the sharka epidemic. The posterior marginal cumulative distribution function,

F1D, of the fitted dispersal kernel, obtained for κ = 11 (i.e. the number of introduction patches maximising the Fisher

information). The plotted posterior distribution was obtained from 4000 MCMC samples. One line is plotted per

sample.

https://doi.org/10.1371/journal.pcbi.1006085.g006
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sensitivity, also accounts for this poorly known variable which adds a layer of uncertainty into

the surveillance process. Inclusion of parameters for detection sensitivity and the latent period

in the estimation procedure (Table 2) barely affects the KL distance between simulated and

estimated kernels (Fig 3 and S7 Fig); hence the inclusion of these extra parameters during

inference based on PPV surveillance data. The resulting estimate of detection sensitivity is ρ =

0.66 (Table 3). Although a previous analysis showed that the presence of undetected infectious

individuals resulted in slightly overestimated dispersal distances [19], here we show that our

estimation procedure is robust to detection sensitivities far below one, even with weak prior

information on ρ (S14 and S15 Figs). The dataset used for inference contains information on

the disease status of more than 401,000 trees over 15 years, and is associated with a substantial

level of censoring (on the dates of planting, inspection, infection, end of the latent period, and

removal). For these reasons, using data augmentation to infer the transition times was unlikely

to scale successfully to our analysis. Instead, we used a pseudo-likelihood where the unknown

numbers of infectious and removed trees were replaced by their expected values. Intuitively,

this approach can be expected to work best in highly connected landscapes, where epidemics

are more likely to follow their expected course, and to become more erroneous in patchy land-

scapes where stochastic events can deflect epidemics away from their expected course. This

might explain in part why the smaller KL distances in Fig 3C correspond to those introduction

scenarios where a source patch was located in the most highly connected region of the study

area.

A unique feature of the present work is the validation of the estimation of the dispersal ker-

nel through comparing known functions used in simulations and the corresponding functions

estimated from these simulated epidemiological data sets. Although this is an intuitive and

standard practice [46–48], previous estimations of plant disease dispersal parameters instead

used goodness-of-fit statistics between actual and simulated spatiotemporal patterns as a way

to validate their inference models [16–18]. This general trend to rely on goodness-of-fit statis-

tics, without performing simulation-based validation tests, may be due to the high computa-

tional burden associated with such validation procedures which require several simulation

scenarios and several independent estimations per scenario to assess the accuracy and preci-

sion of the estimation algorithms. Since we focus on dispersal kernel estimation, rather than

on model predictions as in [16, 17], simulation-based validation was useful to demonstrate

that, despite the approximations of the pseudo-likelihood, dispersal kernel estimation was gen-

erally very precise. Accuracy was often high for short-range kernels, and dispersal distance

estimates ranged from very accurate to overestimated for longer-range kernels (Figs 3 and 4).

The same approach also showed that both the precision and the accuracy of dispersal kernel

estimation is unaltered when the probability ρ to detect a symptomatic/infectious tree is in the

range 0.05–0.8 (S15 Fig).

The observed overestimation is not likely to be caused by insufficient flexibility in the

BWME kernel because, even for the 2Dt dispersal kernel (which the BWME kernel does not fit

perfectly), the magnitude of the difference between the two kernels is negligible in comparison

with the difference between simulated and estimated kernels. It is not likely either to be caused

by choosing the MCMC chain with the highest mean posterior likelihood (among 10 chains)

since this procedure was just used to remove degenerate chains (and coherence between all

other chains was high). Although this procedure is rather wasteful of problem-free chains, and

provides lower precision than alternative approaches to multi-chain analysis, there is no rea-

son to expect any bias concerning the mean (or other statistics) of the posterior distribution. It

is most likely that the estimation bias reported here arose from approximations made (for

practical reasons) within the pseudo-likelihood.
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Dispersal in a patchy landscape

Our inference procedure explicitly accounts for patch geometry and patch-level aggregation

of surveillance data. Although this choice was data-driven (infected tree numbers–not individ-

ual locations–were included in the database), for landscape-scale studies this approach appears

to strike an interesting compromise between computational feasibility and spatial realism.

Indeed, considering the disease status of over 401,000 individuals simultaneously would cause

major computational issues given the size of the resulting connectivity matrix. Conversely,

spatial models commonly use the coordinates of patch centroids in connectivity calculations

(e.g. [14, 19]). However, this neglects patch geometry and can be expected to bias connectivity

estimates (i) when patch shapes and sizes are disparate, or (ii) when patch dimensions are of

the same order of magnitude as the distances between patches. To exemplify (i), consider a

small patch located next to a large patch, where many of the propagules leaving the small patch

can be expected to land, but a much lower proportion of the propagules leaving the large patch

are expected to fall in the small patch. To exemplify the importance of (ii), consider that many

more propagules can be exchanged between two large adjacent orchards than would be calcu-

lated using the distance between their distant centroids. Although our approach neglects the

effects of disease aggregation within patches, it does account for patch size and geometry that

both impact disease spread [49]. The use of Eq (6) to integrate patch geometry, combined with

the BWME kernel, can thus be useful for the inference of the landscape-scale dispersal kernels

of many wind- and vector-borne diseases.

A rigourous assessment of connectivity between patches is also necessary because of its

influence on parameter estimation. Our study shows that kernel range affects both the KL dis-

tance between simulated and estimated dispersal kernels (Fig 3 and S7 Fig) and the cumulative

incidence (S2 and S3 Figs). This pattern reflects how parameter identifiability depends on sta-

tistical power, which depends on cumulative disease incidence, which in turn depends on

landscape connectivity. Short-range kernels imply greater local connectivity than long-range

kernels, leading to relatively intense local transmission but reduced transmission at greater dis-

tances. Whether or not shorter-range kernels generate larger epidemics depends on the pro-

portion of potential transmission events falling outside host patches, and thus on landscape

configuration. Here, larger cumulative incidences were obtained using smaller kernels

because, in our patchy agricultural landscape, many dispersal events generated by long-tailed

kernels do not end within host patches.

Impact of disease introductions on inference

Disease introduction scenarios had a substantial effect on the accuracy and precision of the

inferred dispersal kernel (Fig 3 and S7 Fig). Surprisingly, this effect does not seem related to

either the number of introduction patches or the associated initial prevalence. However, we

note that lower KL distances between simulated and estimated dispersal kernels (in introduc-

tion scenarios 1, 6 and 7) are associated with introductions occurring in the highly connected

central patches (S1 Fig). The resulting higher cumulative incidence probably improves estima-

tion for the reasons given above.

During parameter estimation, we did encounter multi-modality in the posterior likelihood

surface, which may arise when fitting ecological dynamic models to data, even without observa-

tion error and model mis-specification [50]. For epidemic scenarios with both a short-range ker-

nel and a high number of introduction events, misidentifying some of the introduction patches

had a large negative effect on the likelihood, and some MCMC chains were trapped in degener-

ate solutions. For this reason, we ran the MCMC algorithms many times and carefully compared

the posterior likelihoods and parameter estimates of all chains before making inference. We also
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considered alternative algorithms such as parallel tempering [51] or equi-energy sampling [52],

which increase the likelihood of between-mode transitions. However, the extra computational

burden of these approaches was considered superfluous given that the observed differences in

the posterior likelihoods of various modes were typically relatively large. Thus, launching a large

number of chains to increase the likelihood of identifying the global mode was a reasonable

compromise. We have extensively tested this approach, reporting here the results of several

thousand MCMC chains, and have found that in practice results are consistent.

Overall, inference of epidemiological parameters is easier for epidemics where disease

introductions are well characterized, or at least infrequent. Unfortunately, this was not the case

with the PPV-M dataset, and estimating the number of introduction patches κ was challeng-

ing. Such difficulty is by no means unique to the current study (see e.g. [17]). Reversible-jump

MCMC (RJMCMC) [53] is a method for performing MCMC when the dimension of the

parameter space is unknown and inferred from data. We initially attempted various imple-

mentations of RJMCMC, but found it impossible to construct priors that could both prevent

over-fitting and provide robust posterior probabilities for κ under a wide variety of epidemio-

logical scenarios. To circumvent this issue we inferred κ based on the Fisher information. This

gives a minimum-variance estimator that provides robust inference with a good balance

between under- and over-fitting–although it does not permit the estimation of posterior prob-

abilities associated with the various κ. This approach has been used successfully in similar situ-

ations [54].

Insights into aphid biology

Like most plant viruses, PPV is transmitted by winged non-colonising aphids in a non-persis-

tent manner [33]. To match the characteristics of this widespread transmission process, in our

model transmission events are independent (conditional on infection sources) and transmis-

sion distances directly depend on host locations and on the distance travelled by an aphid

within a single infectious flight. Although estimating this aphid dispersal kernel is crucial to

plant virus epidemiology, it has long remained elusive. Traditional ecological methods such as

capture-mark-recapture provide little information regarding aphid dispersal at the landscape

scale [32]. This has been a major obstacle to the parametrisation of models simulating the dis-

persal of these vectors and the pathogens they spread, as exemplified by the scarcity of land-

scape-scale models on cereal aphids [55] and by the informed guesses of flight-distance

parameters in such models [56]. Here we estimated, for the first time, the dispersal of aphid

vectors at the landscape scale. This estimation indicates that 50% of the infectious aphids leav-

ing a tree land within about 90 meters, while about 10% of flights terminate beyond 1 km.

Although dispersal estimation from simulated epidemics suggests that these distances may be

overestimated, the large number of flights estimated to terminate within some tens of meters

of the source tree is consistent with previous studies of within-patch clustering of trees infected

by PPV-M [33, 57, 58] or PPV-D [38, 59]. Indeed, one of these studies [38] shows that 50% of

the new PPV cases occur within 35-70 m of the nearest previous case; in addition, 10% of the

new PPV cases were found beyond 200-460 m from the nearest previous case. Although the

proportion of new PPV cases captured within a given radius is not equivalent to a dispersal

kernel (e.g. because the trees are not always infected by the nearest previously detected neigh-

bour), the figures are of the same order of magnitude. In particular, both studies highlight the

long range of the dispersal kernel. Our estimation of the dispersal kernel at the landscape scale

has important consequences. For example, current French regulations enforce at least one

visual inspection per year within 2.5 km of a detected sharka case (followed by the removal of

all trees with sharka symptoms). Our results suggest that less than 3% of flights should thus go
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beyond this radius (Fig 6). In a patchy French landscape, most of these aphids would land out-

side a peach orchard and thus lead to no infection. Such procedures are thus likely to efficiently

detect most of the aphid-mediated secondary infections; actually, given the cost of surveillance

and the speed of disease spread, this radius may even be oversized. Future work based on this

study could aim at the definition of new management strategies against PPV. More generally,

our results provide a unique reference point on the epidemiology, simulation and control of

the principal group of plant viruses (i.e. those caused by non-persistant aphid-borne viruses),

which have a major epidemiological and economic impact. Finally, by focusing on incidence

data the presented estimation approach is adaptable to many epidemiological situations,

including other vector-borne and airborne fungal diseases.

Supporting information

S1 Fig. Simulated planting years and introduction patch locations used in the simulation

study. The first map (top left) represents the randomisation of the first planting years of the 553

patches. These years were sampled without replacement from their empirical distribution. The

other maps show the location and planting year of each introduction patch in the seven intro-

duction scenarios. The number of introduction patches and their initial prevalence are indicated

for each introduction scenario. Note the greater landscape connectivity in the central area.

(TIFF)

S2 Fig. Cumulative detected incidence for the introduction scenarios tested in the simula-

tion study. For each introduction scenario, the number of introduction patches and the corre-

sponding initial disease prevalence are mentionned above the graph. The three tested kernels

are represented by different colours. For each combination of kernel and introduction scenar-

ios, 10 independant simulated epidemics are shown.

(TIFF)

S3 Fig. Cumulative detected incidence for the kernels tested in the simulation study. For

each kernel, the seven tested introduction scenarios are represented by different colours. For

each combination of kernel and introduction scenarios, 10 independant simulated epidemics

are shown.

(TIFF)

S4 Fig. Best-fit BWME kernel approximations of exponential-power kernels. The kernels

corresponding to 4 values of the shape parameter are represented by their cumulative distribu-

tion function F1D (top) and the associated probability density function f1D (bottom) of the dis-

tance travelled. Green dashed line: mean distance travelled.

(TIFF)

S5 Fig. Best-fit BWME kernel approximations of power-law kernels. The kernels corre-

sponding to 4 values of the shape parameter are represented by their cumulative distribution

function F1D (top) and the associated probability density function f1D (bottom) of the distance

travelled. Green dashed line: mean distance travelled.

(TIFF)

S6 Fig. Best-fit BWME kernel approximations of 2Dt kernels. The kernels corresponding to

4 values of the shape parameter are represented by their cumulative distribution function F1D

(top) and the associated probability density function f1D (bottom) of the distance travelled.

Green dashed line: mean distance travelled.

(TIFF)
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S7 Fig. Boxplots of the variation among estimated dispersal kernels. Impact of (A) estima-

tion scenario, (B) kernel range, and (C) disease introduction scenario [number of introduction

patches (with initial disease prevalence)] on the precision of estimated dispersal kernels. Preci-

sion is measured by the span of the 95% credibility interval of Kullback-Leibler distances

(Span KLD) between simulated and estimated dispersal kernels. Each panel consists of 840

points, which correspond to 10 epidemics × 7 disease introduction scenarios × 3 dispersal ker-

nels × 4 parameter estimation schemes.

(TIFF)

S8 Fig. Influence of introduction scenarios on the estimation of a short-range dispersal

kernel. For each introduction scenario, 10 epidemics were simulated with a short-range kernel

(black dashed curve), and 10 MCMC chains were run per simulated epidemic. The posterior

distributions of the kernel obtained under the most exhaustive estimation scheme (Θ4) are rep-

resented for all chains with non-negligible mean posterior likelihood. The proportion of

MCMC chains with negligible mean posterior likelihood (mean proportion: 10%) increases

quadratically with the number of source orchards. Kernels are represented by their marginal

probability density function f1D (top row), and by their marginal cumulative distribution func-

tion F1D with the distance from the source represented on the natural scale (middle row) or on

the log10 scale (bottom row).

(TIFF)

S9 Fig. Influence of introduction scenarios on the estimation of a medium-range dispersal

kernel. For each introduction scenario, 10 epidemics were simulated with a medium-range

kernel (black dashed curve), and 10 MCMC chains were run per simulated epidemic. The pos-

terior distributions of the kernel obtained under the most exhaustive estimation scheme (Θ4)

are represented for all chains with non-negligible mean posterior likelihood. The proportion

of MCMC chains with negligible mean posterior likelihood varies among introduction scenar-

ios, with a mean proportion of 2.6%. Kernels are represented by their marginal probability

density function f1D (top row), and by their marginal cumulative distribution function F1D

with the distance from the source represented on the natural scale (middle row) or on the log10

scale (bottom row).

(TIFF)

S10 Fig. Influence of introduction scenarios on the estimation of a long-range dispersal

kernel. For each introduction scenario, 10 epidemics were simulated with a long-range kernel

(black dashed curve), and 10 MCMC chains were run per simulated epidemic. The posterior

distributions of the kernel obtained under the most exhaustive estimation scheme (Θ4) are

represented for all chains with non-negligible mean posterior likelihood. The proportion of

MCMC chains with negligible mean posterior likelihood is low (mean proportion: 0.4%) for

all the introduction scenarios. Kernels are represented by their marginal probability density

function f1D (top row), and by their marginal cumulative distribution function F1D with the

distance from the source represented on the natural scale (middle row) or on the log10 scale

(bottom row).

(TIFF)

S11 Fig. Comparison of simulated and estimated dispersal kernels. From left to right: ker-

nels with the minimum, lower quartile, median, upper quartile and maximum Kullback-Lei-

bler (KL) distances (posterior mean), for all chains with non-negligible mean posterior

likelihood. Estimations (red) under the most exhaustive scheme (Θ4) are based on simulated

epidemics with short-, medium- and long-range kernels (from top to bottom; black). Kernels
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are represented by their marginal probability density function f1D. The mean KL distance is

indicated for each estimation.

(TIFF)

S12 Fig. Comparison of simulated and estimated nuisance parameters. For each combina-

tion of short-, medium- and long-range kernels (from top to bottom) and introduction scenar-

ios (colour-coded as in S3, S8, S9 and S10 Figs), 10 epidemics were simulated and 10 MCMC

chains were run per simulated epidemic. The curves represent the posterior distribution of the

parameters obtained under the most exhaustive estimation scheme (Θ4) for all chains with non-

negligible mean posterior likelihood. Dashed lines: parameter values used in the simulations.

(TIFF)

S13 Fig. Cumulative detected incidence at the end of year 22 across the range of detection

sensitivities (ρ) tested in the dedicated simulation study. Each polygon represents one peach

orchard. All eight simulations start at year 1 from a unique introduction patch with 25% initial

prevalence and spread is determined by the long-range kernel. Note that the final detected

prevalence varies non-monotonically with detection sensitivity because the removal of

detected trees reduces disease spread.

(TIFF)

S14 Fig. Influence of detection sensitivity on the estimation of the long-range dispersal

kernel. For each detection sensitivity, a single epidemic was simulated using the long-range

kernel (black dashed curve). The posterior distributions of the estimated kernels (obtained

from all MCMC chains with non-negligible mean posterior likelihood) are shown for three

levels of prior information. Kernels are represented by their marginal probability density func-

tion f1D (top row), and by their marginal cumulative distribution function F1D with the dis-

tance from the source represented on the natural scale (middle row) or on the log10 scale

(bottom row).

(TIFF)

S15 Fig. Influence of detection sensitivity on the distance between simulated and estimated

long-range dispersal kernels. For each of the 99 detection sensitivities, a single epidemic was

simulated using the long-range kernel. For three levels of prior information, each bar repre-

sents a 95% credibility interval on the Kullback-Leibler distance (KLD) between simulated and

estimated dispersal kernels (obtained from all MCMC chains with non-negligible mean poste-

rior likelihood). The grey vertical lines correspond to the values of detection sensitivity used in

S13 and S14 Figs.

(TIFF)

S16 Fig. Estimated weights of the (BWME) dispersal kernel for the sharka epidemic. The

posterior distribution of the weights (calculated with (Eq 11) for a mixture of 100 exponential

kernels) is obtained for κ = 11 (i.e. the number of introduction patches maximising the Fisher

information). The plotted posterior distribution of weights (as a function of the expected dis-

tance of each kernel) was obtained from 4000 MCMC samples. One line is plotted per sample.

(TIFF)

S17 Fig. Estimated dispersal density for the sharka epidemic. The posterior distribution of

the marginal probability density function, f1D, of the fitted dispersal kernel, obtained for κ = 11

(i.e. the number of introduction patches maximising the Fisher information). The plotted pos-

terior distributions were obtained from 4000 MCMC samples. One line is plotted per sample.

(TIFF)
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S1 Texts. (A) Probabilistic framework for statistical inference, (B) prior distributions,

(C) Markov chain Monte Carlo, and (D) model selection for κ.

(PDF)
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Project administration: Gérard Labonne, Emmanuel Jacquot, Gaël Thébaud.
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Validation: David R. J. Pleydell, Gaël Thébaud.
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20. Soubeyrand S, Thébaud G, Chadœuf J. Accounting for biological variability and sampling scale: a

multi-scale approach to building epidemic models. J Roy Soc Interface. 2007; 4(16):985–997. https://

doi.org/10.1098/rsif.2007.1154

21. King AA, Ionides EL, Pascual M, Bouma MJ. Inapparent infections and cholera dynamics. Nature.

2008; 454(7206):877–880. https://doi.org/10.1038/nature07084 PMID: 18704085

22. Birrell PJ, Ketsetzis G, Gay NJ, Cooper BS, Presanis AM, Harris RJ, et al. Bayesian modeling to

unmask and predict influenza A/H1N1pdm dynamics in London. Proc Natl Acad Sci USA. 2011;

108(45):18238–18243. https://doi.org/10.1073/pnas.1103002108 PMID: 22042838

23. Gambino B. The correction for bias in prevalence estimation with screening tests. J Gambl Stud. 1997;

13(4):343–351. https://doi.org/10.1023/A:1024971521887 PMID: 12913383

24. Thompson RN, Cobb RC, Gilligan CA, Cunniffe NJ. Management of invading pathogens should be

informed by epidemiology rather than administrative boundaries. Ecol Model. 2016; 324:28–32. https://

doi.org/10.1016/j.ecolmodel.2015.12.014

25. Box-Steffensmeier JM, Jones BS. Event History Modeling: A Guide for Social Scientists. Cambridge

University Press; 2004.

26. Zhang XS, Holt J, Colvin J. A general model of plant-virus disease infection incorporating vector aggre-

gation. Plant Pathol. 2000; 49(4):435–444. https://doi.org/10.1046/j.1365-3059.2000.00469.x

Dispersal distances of an aphid-borne virus

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006085 April 30, 2018 22 / 24

https://doi.org/10.1016/j.tpb.2010.04.003
http://www.ncbi.nlm.nih.gov/pubmed/20452368
https://doi.org/10.1016/j.epidem.2014.06.002
http://www.ncbi.nlm.nih.gov/pubmed/25843374
https://doi.org/10.1016/S0167-5877(02)00122-8
https://doi.org/10.1016/S0167-5877(02)00122-8
http://www.ncbi.nlm.nih.gov/pubmed/12419598
https://doi.org/10.1073/pnas.0400829101
https://doi.org/10.1073/pnas.0400829101
http://www.ncbi.nlm.nih.gov/pubmed/15302941
https://doi.org/10.1073/pnas.0706461104
https://doi.org/10.1073/pnas.0706461104
http://www.ncbi.nlm.nih.gov/pubmed/18077378
https://doi.org/10.1371/journal.pcbi.1002174
http://www.ncbi.nlm.nih.gov/pubmed/21980273
https://doi.org/10.1098/rsif.2011.0506
http://www.ncbi.nlm.nih.gov/pubmed/22048947
https://doi.org/10.1371/journal.pcbi.1003753
http://www.ncbi.nlm.nih.gov/pubmed/25102099
https://doi.org/10.1016/j.epidem.2008.09.001
https://doi.org/10.1016/j.epidem.2008.09.001
http://www.ncbi.nlm.nih.gov/pubmed/21352749
https://doi.org/10.1086/603624
http://www.ncbi.nlm.nih.gov/pubmed/19627233
https://doi.org/10.1890/ES10-00192.1
https://doi.org/10.1371/journal.pcbi.1003587
https://doi.org/10.1371/journal.pcbi.1003587
http://www.ncbi.nlm.nih.gov/pubmed/24762851
https://doi.org/10.1073/pnas.1310997111
http://www.ncbi.nlm.nih.gov/pubmed/24711393
https://doi.org/10.1073/pnas.1611391113
http://www.ncbi.nlm.nih.gov/pubmed/27821727
https://doi.org/10.1098/rsif.2007.1154
https://doi.org/10.1098/rsif.2007.1154
https://doi.org/10.1038/nature07084
http://www.ncbi.nlm.nih.gov/pubmed/18704085
https://doi.org/10.1073/pnas.1103002108
http://www.ncbi.nlm.nih.gov/pubmed/22042838
https://doi.org/10.1023/A:1024971521887
http://www.ncbi.nlm.nih.gov/pubmed/12913383
https://doi.org/10.1016/j.ecolmodel.2015.12.014
https://doi.org/10.1016/j.ecolmodel.2015.12.014
https://doi.org/10.1046/j.1365-3059.2000.00469.x
https://doi.org/10.1371/journal.pcbi.1006085


27. Austerlitz F, Dick CW, Dutech C, Klein EK, Oddou-Muratorio S, Smouse PE, et al. Using genetic mark-

ers to estimate the pollen dispersal curve. Mol Ecol. 2004; 13(4):937–954. https://doi.org/10.1111/j.

1365-294X.2004.02100.x PMID: 15012767

28. Nathan R, Klein E, Robledo-Arnuncio JJ, Revilla E. Dispersal kernels: review. In: Clobert J, Baguette M,

Benton TG, Bullock JM, editors. Dispersal Ecology and Evolution. Oxford University Press; 2012.

p. 187–210.

29. Rieux A, Soubeyrand S, Bonnot F, Klein EK, Ngando JE, Mehl A, et al. Long-distance wind-dispersal of

spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field

experiment. PLoS ONE. 2014; 9(8):e103225. https://doi.org/10.1371/journal.pone.0103225 PMID:

25116080

30. Bousset L, Jumel S, Garreta V, Picault H, Soubeyrand S. Transmission of Leptosphaeria maculans

from a cropping season to the following one. Ann Appl Biol. 2015; 166(3):530–543. https://doi.org/10.

1111/aab.12205

31. Nault L. Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc America. 1997;

90(5):521–541. https://doi.org/10.1093/aesa/90.5.521

32. Loxdale HD, Hardie J, Halbert S, Footit R, Kidd NA, Carter CI. The relative importance of short- and

long-range movement of flying aphids. Biol Rev. 1993; 68(2):291–311. https://doi.org/10.1111/j.1469-

185X.1993.tb00998.x

33. Rimbaud L, Dallot S, Gottwald T, Decroocq V, Jacquot E, Soubeyrand S, et al. Sharka epidemiology

and worldwide management strategies: Learning lessons to optimize disease control in perennial

plants. Annu Rev Phytopathol. 2015; 53:357–378. https://doi.org/10.1146/annurev-phyto-080614-

120140 PMID: 26047559

34. Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, et al. Top 10 plant viruses in

molecular plant pathology. Molec Plant Pathol. 2011; 12(9):938–954. https://doi.org/10.1111/j.1364-

3703.2011.00752.x
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