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Abstract
This study assesses crop residues in the EU from major crops using empirical models 
to predict crop residues from yield statistics; furthermore it analyses the inter-annual 
variability of those estimates over the period 1998-2015, identifying its main drivers 
across Europe. The models were constructed based on an exhaustive collection of 
experimental data from scientific papers for the crops: wheat, barley, rye, oats, triti-
cale, rice, maize, sorghum, rapeseed, sunflower, soybean, potato and sugarbeet. We 
discuss the assumptions on the relationship between yield and the harvest index, 
adopted by previous studies, to interpret the experimental data, quantify the uncer-
tainties of these models, and establish the premises to implement them at regional 
scale –i.e., NUTS level 3– within the EU. To cope this, we created a consolidated 
sub-national statistical data along with an algorithm able to aggregate (figures are 
provided at country level) and disaggregate (production at 25 km grid is provided as
supplementary material) estimates. The total lignocellulosic biomass production in 
the EU28 over the review period, according to our models, is 419 Mt, from which 
wheat is the major contributor (155 Mt). Our results show that maize and rapeseed 
are the two crops with the highest residue yield, respectively 8.9 and 8.6 t ha-1. The 
spatial analysis revealed that these three crops, which, according to our results, are 
feedstocks highly suitable a priori for second generation biofuels in the EU and are 
unevenly distributed across Europe. Weather fluctuation was identified as the major 
driver in residue production from cereals, while, in the case of starch crops and oil-
seeds – which are predominant in northern Europe – corresponded to the marked 
production trend likely influenced by the agricultural policies and agro-management 
over the review period. Our results, among others, could help to understand and 
quantify the ecological boundaries of the bioeconomy from agriculture.
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advanced biofuels, cereals, downscaling, harvest index, oilseeds, production trends, spatially explicit 
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1  |   INTRODUCTION

The European Union (EU) aims at decarbonizing its econ-
omy by 2050 with a 80%–95% reduction in greenhouse gas 
(GHG) emissions compared to 1990 (European Council, 
2011). This ambitious goal has been mainly driven by set-
ting several targets and introducing multisectorial EU policy 
packages (Scarlat, Dallemand, Monforti-Ferrario, & Nita, 
2015). These are currently being updated for a shorter hori-
zon to ensure that they fit to the economic, environmental 
and social challenges that our society faces (EEA, 2015; 
European Commission, 2016; OECD, 2014). Within this con-
text, bioenergy is expected to play a central role (Cudlínová, 
Lapka, & Vávra, 2017; European Commission, 2011, 2012). 
Specifically, bioenergy is expected to contribute, among oth-
ers, to climate-change mitigation by providing energy ser-
vices that displace fossil fuels while generating fewer GHG 
emissions (Koponen, Soimakallio, Kline, Cowie, & Brandão, 
2018; Schlamadinger et al., 1997).

In this regard, the Intergovernmental Panel on Climate 
Change (IPCC) agrees with the critical role that bioenergy 
can play for mitigation, but also remarks that there are is-
sues to consider, such as the sustainability of practices and 
the efficiency of bioenergy systems (IPCC, 2014). Indeed, 
biofuels do not necessarily have a lower environmental im-
pact than conventional fossil fuels (McCoy, 2017; Mueller 
& Kwik, 2013; Posen, Jaramillo, & Griffin, 2016; Weiss 
et al., 2012), e.g. when indirect land-use change (iLUC, 
Finkbeiner, 2014; Wicke, Verweij, van Meijl, van Vuuren, 
& Faaij, 2012) is taken into account, GHG emissions from 
biofuels may actually be higher than those from fossil 
sources (Searchinger et al., 2008). The concurrent uses of 
the biomass feedstock for bioenergy with food and feed pro-
duction along with the mentioned environmental impacts 
of biofuels production have led policy frameworks to em-
phasize techno-scientific innovation for producing energy 
using lignocellulosic biomass through second-generation or 
advanced biofuels (Boucher, 2012; Hansen, 2014; Levidow 
& Papaioannou, 2016), and combined heat and power 
from nonfood biomass (Creutzig et al., 2015; Martinez-
Hernandez et al., 2013).

Crop residues are the main feedstock of lignocellulosic 
biomass from agriculture and are expected to provide a 
major contribution to the production of advanced biofuels 
(Bourguignon, 2017). Although the production of advanced 
biofuels have been explicitly supported by the EU since 2015 
(European Parliament, 2018), there are still economic and 
technological challenges (Marelli et al., 2015) to establish 
an operational industrial-scale production capacity in EU, 
and hence a mature bioeconomy market. In this context, a 
quantitative assessment of residues production is an essential 
preliminary step for the deployment of a second-generation 
biofuel industry in the EU.

This assessment is indirect since there are no systematic 
statistics of the amount of crop residues biomass produced. 
To that end, one of the most frequently used approach is 
based on constructing empirical models that infer resid-
ual biomass (R) from crop yield statistics (Y). Following 
this statistical approach, in the last couple of years there 
have been several studies that try to estimate crop residues 
potentials in the EU (Bentsen, Felby, & Thorsen, 2014; 
Böttcher et al., 2010; de Wit & Faaij, 2010; Monforti, 
Bódis, Scarlat, & Dallemand, 2013; Scarlat, Martinov, & 
Dallemand, 2010). Although there is evidence of this rela-
tionship between Y and biomass partitioning (e.g. Larsen, 
Bruun, & Lindedam, 2012), the effect of different environ-
mental and management factors (weather, agro-climatic 
conditions, fertilization, crop genetics) on crop yield and 
biomass partitioning can be quite complex (Unkovich, 
Baldock, & Forbes, 2010). Indeed, reference works study-
ing the variability of the harvest index (HI) such as Donald 
and Hamblin (1976) or Hay (1995), have highlighted the 
contrasting ways in which biomass partitioning changes 
depending on these factors.

The main objective of this paper is assessing the produc-
tion of lignocellulosic biomass from agricultural residues in 
the EU 28. To achieve it, we first propose empirical models 
to infer residue production from agricultural production sta-
tistics. Such models are constructed from experimental data, 
and assume that a relationship exists between the crop eco-
nomic yield (Y, grain and tuber/root yield, expressed in t/ha) 
and the residue yield (R, lignocellulosic biomass production 
per unit area, expressed in t/ha). Compared to previous works 
proposing such kind of models –e.g. Bentsen et al. (2014) or 
Scarlat et al. (2010)– we put the emphasis on two aspects: 
explaining the nature and factors determining the observed 
relationship between economic and residue yield for the 
main crops in EU (complete analysis provided as Supporting 
Information 1, S1); and quantifying the uncertainties of these 
models.

Secondly, we apply these models to estimate the agri-
cultural residues production in the EU28 from agricultural 
production statistics. Special attention is paid to analyse the 
interannual variability in residues production in the period 
from 1998 to 2015, disentangling the effect of variations 
in crop area, variability in weather conditions, and agro-
management for the different crops and EU countries. That 
analysis helps in understanding the existing trends in residue 
production linked to new policies and technological improve-
ments, and the possible effects of adverse weather extremes 
in the residues production figures.

Moreover, the analysis also permitted to identify those 
crops and countries that are characterized by a residue yield 
higher and less susceptible to weather fluctuation. This re-
lates to stability of feedstock supply from crop residues in 
the EU.
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2  |   MATERIALS AND METHODS

2.1  |  Generation of a complete dataset on 
crop area, yield and production in the EU
Economic production (P) and harvested crop area (A) from 
1998 to 2015 were collected from Eurostat –the statistical 
office of the European Union–, whose database provides sta-
tistics in the European NUTS system (Nomenclature d'Unités 
Territoriales Statistiques). Concretely, P and A at national 
(NUTS 0) and subnational (NUTS 2) level were extracted 
from the table called apro_cpnh1 (Eurostat database, 2017) 
for the following crops: wheat, barley, rye, oats, triticale, 
rice, maize, sorghum, rapeseed, sunflower, soybean, potato 
and sugar beet.

The same crops and parameters –P, A– were also collected 
by contacting the different National statistical services in the 
EU for the period 1998–2012 in the most detailed administra-
tive units available, being mainly NUTS 3 that corresponds 
to provinces or departments. Finally, both datasets were inte-
grated to generate a unique statistical dataset at regional level 
NUTS 3.

Yield and production statistics, expressed with a given 
moisture content, were transformed to dry matter, based on 
the moisture content reported by Eurostat. When this infor-
mation was not reported in the statistics, the values of crop-
specific reference moisture content in the Eurostat Handbook 
(Eurostat, 2015) were used instead. For potatoes and sugar 
beet, Eurostat has no reference value; therefore, the mois-
ture content measured in field experiments from Deblonde, 
Haverkort, and Ledent (1999) and Draycott (2006), respec-
tively, were applied.

2.2  |  Deriving empirical models to predict 
crop residues production
Kluts, Wicke, Leemans, and Faaij (2017) review of existing 
studies assessing Europe's bioenergy potential provides an 
accurate overview of the existing methodologies used to as-
sess the different potentials of residual biomass. In many of 
these studies, production of crop residues is inferred empiri-
cally from crop economic production –e.g. grain production– 
assuming that both variables are correlated. de Wit and Faaij 
(2010) or Böttcher et al. (2010) used crop-specific empiri-
cal conversion factors, such as the residue-to-product ratio 
(RPR) or the HI for the main cereals and oilseeds, assuming 
a fixed crop biomass partitioning, therefore not influenced by 
weather/climatic conditions or changes in agro-management.

where Y corresponds to economic yield (e.g. the grain yield 
in cereals and oilseeds, tuber yield for potato and root yield 
for sugar beet), expressed in t/ha; and R includes the remain-
ing aboveground biomass –e.g. leaves, stems, husks, chaff– 
not considered as economic yield, also expressed in weight 
per unit area. To calculate consistently the HI or RPR, both 
Y and R must refer always to dry-matter weight (Donald & 
Hamblin, 1976).

Other studies, as Bentsen et al. (2014), Monforti et al. 
(2013) or Scarlat et al. (2010), use empirical regression 
models (e.g. exponential, logarithmic, etc.) between eco-
nomic yield and the RPR or the HI for different crops, 
assuming that a positive correlation between crop yield 
and the proportion of biomass allocated to plant storage 
organs (grains, fruits, tubers, roots…) exists for all crops. 
According to that, any increment in the total crop biomass 
production would be mostly located in the plant storage or-
gans (grains or fruits, tubers, etc.).

To verify the hypothesis of previous works, understand 
the relationship between these variables, analyse the influ-
ence of factors investigated –direct or indirectly– by the sci-
entific community, and identify the most appropriate way 
to infer empirically residues from economic yield, a data-
set of 1,580 experimental observations of crop economic 
yield (Y), residue yield (R) and the HI was collected from a 
selection of 84 scientific papers published in English (see 
Table 1 for references, crops covered and geographical dis-
tributions). This dataset resulted from filtering and trans-
forming the samples originally collected (around 2,500 
observations from more than 130 studies) to make them 
comparable among experiments in terms of weight per area 
and moisture content for yields, and especially for what re-
gards HI definition.

The experimental data on Y, R and HI collected from sci-
entific literature were statistically processed to generate a 
predictive regression model and confidence intervals at 95%. 
Heteroscedasticity appears mainly in regressions between Y 
and R: in some crops, the variance of R increases progressively 
with Y, while in other crops exactly the opposite behaviour is 
observed (see Section 3). The presence of heteroscedasticity 
violates the assumption of uncorrelated variances, leading to 
unsatisfactory results in regression analysis. Using HI as de-
pendent variable in the empirical models instead of R, and 
subsequently estimating R from HI, solves this problem in 
most cases, as we may consider HI as a transformation of 
R, normalized by Y (Equation 1). Therefore, the regression 
model was established using Y –as predictor– and HI –as pre-
dicted variable– in all the crops studied, with the exception of 
sugar beet and potato, where the relationship between Y and 
R does not indicate the presence of heteroscedasticity.

A correct estimation of the confidence intervals requires 
a distribution of residuals close to normal. To satisfy that 
condition, the predicted variables (R for potato and sugar 

(1)HI=
Y

Y +R

(2)RPR=
R

Y
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beet, HI for the remaining crops) were transformed using the 
group of functions proposed by Johnson (1949), commonly 
used for this purpose. The empirical constants and the func-
tional shape for each crop were fitted using the algorithm 
proposed by Hill, Hill, and Holder (1976) as implemented in 
the Johnson Curve Toolbox for Matlab (available at https://
it.mathworks.com/matlabcentral/fileexchange/46123-john-
son-curve-toolbox/). The first function is a logistic transfor-
mation (LT):

where P is the original predicted variable (HI or R), Pt is the 
transformed one and γ, δ, λ and xi are empirical constants. 
The second function is a hyperbolic sine transformation (HS):

Pt is, in all cases, linearly correlated with Y, and then a least-
square method is applied to estimate the slope (a) and offset 
(b) of the linear regression:

The 95% confidence interval (CI) for Pt is calculated mul-
tiplying the standard error of Pt in the linear regression by 
1.96. Then, predicted variables P̂t and CI can be transformed 
back to the original variables using the inverse transform 
functions, respectively, for LT and HS:

Note that P̂t, can be substituted in Equations 6 and 7 
by the linear regression model from Pt (Equation 5) to 
get the complete regression models. The values retrieved 
for all empirical coefficients are presented in the Results 
section.

Equation 5 was applied to predict the transformed HI and 
the confidence intervals at NUST 3 using dry-matter eco-
nomic yield statistics for wheat, barley, rapeseed, sunflower, 
maize, sorghum, soybean and rice. Then Equations 6 or 7, 
depending on the crop, were used to compute the actual 
HI from the transformed one. The HI is considered region-
specific, fixed over the period 1998–2015 for winter cereals 
(wheat, barley, triticale, rye and oats) and rapeseed (see S1), 
and therefore is predicted using the average economic yield 
over that period. This is justified because an analysis of the 
drivers determining the variability of the HI, reported in S1, 
indicates that those changes in yield induced by water stress 

are having a considerable impact on HI. Frequently, the in-
terannual yield variability of these winter crops is not de-
termined by water stress in many of the main EU producers 
(López-Lozano et al., 2015) and, therefore, is not expected 
to change the HI. The values of the empirical parameters in 
Equations 3–7 for wheat were used also to predict residues of 
triticale, rye and oats, as not enough experimental data were 
found for these three cereals and the HI can be expected to 
be close. For the summer crops, HI is computed for every 
year and region.

After Equation 1, residue yield (in t/ha) can be the ob-
tained from observed Y and predicted HI:

For potato and sugar beet Equation 8 is not necessary as 
Equations 5–7 predict the R directly.

Regional residue production (at NUTS 3) and confidence 
intervals are computed multiplying R by the respective sown 
area, and then aggregated to derive country figures (NUTS 
0). The estimations of residue production at NUTS 3 were 
further disaggregated into a regular grid of 25 km, to produce 
a continuous distribution map over the EU based on the fol-
lowing expression:

where Bc,g is the residue production (in tons of dry matter) 
for a given crop c in the grid cell g; Bc,i,N=3 is the residue 
production for that crop in region i at NUTS 3; Lg∩i is the 
area intersection of the land cover L between grid g and re-
gion i; and Li,N=3 is the area of land cover L within region i. 
The sum in the above expression refers to all regions i…n 
intersecting with grid g. The values of L are extracted from 
the Corine Land Cover 2006 map (Büttner & Kosztra, 2014) 
classes “nonirrigated arable land,” “permanently irrigated ar-
able land” and “rice.”

Overall, the algorithm first detects null values in the 
statistical series, differentiating null values from zeros 
and then it fills these null values applying rules recur-
sively for all the NUTS. After gap-filling the algorithm 
calculates regional weights on each dataset as the relative 
A/P of a given region r at NUTS level n to the A/P of the 
region R at NUTS level n − 1 to which it belongs to. Once 
the full set of regional weights is established for a given 
crop and year, the area or production value for any region 
r at NUTS level n can be retrieved by multiplying the na-
tional level Eurostat value of the country (NUTS 0) region 
r belongs to by the regional weight of r and the weights 
of all the regions R from level 1 to l + 1 containing r. The 
downscaled production into the 25 km grid over the EU 
is also provided as Supplemental Material in a separate 
GIS file.
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2.3  |  Analysis of interannual variability and 
main drivers of residue production
The interannual variability of crop residues production was 
quantified using the coefficient of variation (CV), expressed 
in percentage according to:

in which i refers to a crop or a group of crops, σ corresponds 
to the standard deviation and μ the mean.

The measurable-explanatory factors to this variability are 
identified as changes in area (A), weather (W) and technical 
and agro-management drivers (T).

We first quantify the fraction of the variance in residue 
production (as dependant variable, yi) that is attributable to 
changes in area (A) and residue yield (R) by conducting an 
analysis using multiple linear regression:

where, i corresponds to a crop or a group of crops, e0i
 are the 

residuals, �0,i is the intercept, x1,i and x2,i correspond to the inde-
pendent variables R and A, and �1i

 and �2i
 represent the weight 

of these variables in explaining the variance of yi. To make them 
comparable for quantifying the relative proportion of variance 
in crop estimates explained by A and R, the coefficients βj,i were 
standardized as (Bring, 1994):

where j refers to the respective coefficient, and μ
�ij

 and σ
�ij

 

correspond to the mean and standard deviation, respectively.
The variance of R was decomposed in the factors T and 

W. We assume that the influence of technology is mainly 
reflected by the time trend component of the yield series 
(Ceglar, Toreti, Lecerf, Van der Velde, & Dentener, 2016; 
Finger, 2010; Kucharik & Ramankutty, 2005; Lobell et al., 
2005), and by inference, the remaining unexplained vari-
ance is due to weather changes. To this end, a linear trend 
model (Chen, Wang, Zhang, Tao, & Wei, 2017; Li et al., 
2016; Supit et al., 2010) was fitted to the residues yield 
data (as dependant variable, y′

i
) over the 18-year period 

1998–2015 as follows:

where, i refers to a specific crop or crop group, t1,i is the 
year, b0,i the intercept and b1,i represents the annual growth 
rate of residue yield (R, t/ha) over the period 1998–2015 
that is presented per country and EU28 level. The resulted 
coefficient of determination r2 and the complement to unit 
1 − r2, are interpreted as the proportion of the variance of 
R that is explained by T and W, respectively, assuming the 

hypothesis that T and W are statistically independent and 
exhaustive.

3  |   RESULTS

3.1  |  Empirical models for crop residues 
prediction
The empirical models proposed to predict residue yield from 
economic yield are shown in Figure 1, whereas the empirical 
coefficients of the full models (Equations 5–7) are given in 
Table 2. The proposed models, except for potato and sugar 
beet, are based on a regression between Y and HI.

Among the crops studied, wheat, barley, rapeseed, sun-
flower and soybean present a positive, strong relationship 
between residues and economic yield. The models do not 
deviate largely from linearity, which means that the pre-
dicted HI tends to be relatively stable and weakly de-
pendent from Y. We can deduct from Equation 1 that the 
curvature of the model between Y and R is determined by 
the slope of the relationship between Y and HI. Therefore, 
a constant HI assumes a perfectly linear model between Y 
and R (Figure 1, dashed black line), which is a good ap-
proximation for sunflower, where the model proposed pre-
dicts a HI close to 0.32 along the Y interval. In wheat and 
barley, by contrast, the assumption of a constant HI would 
lead to a moderate, but systematic overestimation of R at 
high yield values. The reader is referred to S1 for a deeper 
analysis on this.

The models for maize and sorghum, by contrast, are 
strongly nonlinear and indicate a weak relationship between 
Y and R: a positive relationship when Y < 2.5 t/ha and an al-
most constant R while Y increases. Similarly, economic yield 
and residues are uncorrelated in potato and sugar beet, and 
the model predictions would be almost constant −2.5 t/ha of 
residues for potato, 6 t/ha for sugar beet– regardless of the 
observed yield. The slightly negative slope of the model for 
sugar beet seems to be a consequence of the small number 
of observations available. As a consequence of the low cor-
relation between Y and R, the HI is strongly variable and cor-
related with yield (see S1). According to the data analysed, 
the hypothesis of a constant HI is invalid for these crops.

Model uncertainties are large, as indicated by both the 
model errors and the confidence intervals shown in Figure 1. 
Moreover, the relationship between residues and yield is 
highly heteroscedastic, except for potato and sugar beet. For 
those crops presenting an appreciable positive relationship 
between R and Y –wheat, barley, rapeseed, sunflower and 
soybean– the error variance is increasing dramatically with 
Y. In sorghum and maize, the situation is exactly the opposite: 
very large uncertainties in R are expected for low yields, and 
then R converges progressively to a value around 12.5 t/ha, 
while economic yield increases.

(10)CV
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F I G U R E   1   Empirical models computed for the prediction of residue yield (R) for the crops studied, model root mean squared error (RMSE) 
and coefficient of variation (CV). Solid lines represent the model estimation and dashed lines are the confidence intervals at 95%. Dots are the 
observed values from scientific literature. A simple model using a constant HI (average of the observations) and the models proposed in Bentsen 
et al. (2014) and Scarlat et al. (2010) have been added for comparison



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
García-Condado, S., Lopez Lozano, R., Panarello, Cerrani, Nisini, Zucchini, Van der Velde,

Baruth (2019). Assessing lignocellulosic biomass production from crop residues in the European
Union: modelling, analysis of the current scenario, and drivers of inter-annual variability. Global

Change Biology - Bioenergy, 11 (6), 809-831 . , DOI : 10.1111/gcbb.12604

      |  817GARCÍA-CONDADO et al.

These results reflect how differently the nature of the 
relationship between Y, R and HI among the crops is. For 
wheat, barley, rapeseed, sunflower and soybean, a depen-
dence between economic yield and residues exists. In these 
crops, the grain yield is, to some extent, determined during 
vegetative growth, when leaf formation and stem elongation 
occur and the plants adapt some of the yield components 
(e.g. number of tillers and inflorescences) to the available 
resources (Sadras & Slafer, 2012; Unkovich et al., 2010). 
As indicated by Sadras and Connor (1991) pre-anthesis 
transpiration contributes to an important proportion of the 
final yield. In other words, these crops tend to keep biomass 
partitioning between vegetative and reproductive organs 
(and thus HI) stable in the presence of abiotic stress. Most 
of the economic yield variability is caused, first, by agro-
climatic differences among experiments, and second, by 
irrigation and N fertilizing treatments within the same ex-
periment (see S1 for a discussion on the factors influencing 
the relationship between Y, R and HI). Genetic differences 
among cultivars under the same environmental conditions 
cause only a moderate impact on yield, but may have a large 
influence on biomass partitioning, especially between old 
and new varieties. The improvement of wheat and barley 
cultivars was focused in the production of modern semi-
dwarf cultivars (Hay, 1995, Peltonen-Sainio, Muurinen, 
Rajala, & Jauhiainen, 2008) with a different plant archi-
tecture compared to older verities: shorter, thicker plants 
with a higher HI. This variability in the ratio between res-
idues and yield biomass, introduced by differences among 
cultivars, is higher under potential growing conditions (i.e. 
low abiotic stress pressure), which explains the increasing 
variance in R observed for both crops in Figure 1 when Y 
tends to be high.

In maize and sorghum, Y, R and HI are related in a different 
way compared to the above-mentioned crops. Grain yield is 
highly determined by the number of kernels per plant (Otegui 

& Bonhomme, 1998; Tolk, Howell, & Miller, 2013), which 
are established after the onset of vegetative organs and, there-
fore, highly sensitive to available resources (mainly water) 
during reproductive phases (Grant, Jackson, Kiniry, & Arkin, 
1989; NeSmith & Ritchie, 1992). That explains the weak re-
lationship between R and Y (Figure 1), and a large variability 
of the HI, correlated with Y (see S1). Genetic differences and 
irrigation treatments are responsible for the large R uncer-
tainties in the proposed model. Maize and sorghum breed-
ing efforts were focused in identifying cultivars able to cope 
with water stress, for instance reducing water uptake during 
vegetative growth to maximize water availability for the re-
productive phases (D'Andrea, Otegui, & De La Vega, 2008; 
Edmeades, Bolaños, Chapman, Lafitte, & Bänziger, 1999). 
Therefore, the expression of these genetic differences is max-
imum when water stress is high, explaining the high variance 
in R when yields are low. Moreover, the timing of watering 
treatments in irrigation experiments may also have a strong 
impact in the HI of both crops (Farré & Faci, 2006, 2009), for 
instance if water constraints affect exclusively the kernel set 
and grain-filling phases.

Overall the models proposed present a general agreement 
with the previous work of Bentsen et al. (2014), with the 
exception of rice, for which our predictions would give sys-
tematically lower residue production (Figure 1). Compared 
to Scarlat et al. (2010), the discrepancies of maize and rape-
seed models are significant. The maize model in that study 
depicts a positive linear relationship between economic yield 
and residues –an almost constant RPR – that diverges sub-
stantially from our results. For rapeseed, the results in Scarlat 
et al. (2010) indicate a higher biomass production in seeds 
compared to vegetative parts (RPR > 1), whereas the experi-
mental data analysed in this study indicate a much lower bio-
mass partitioning to seeds.

The empirical models proposed in this paper are shown 
here as a relationship between Y and R (Figure 1), whereas 

T A B L E   2   Parameters of the empirical regression models for the estimation of crop HI. Y refers to yield data at 0% moisture content

Crop
Predicted 
variable 

Transformation 
of 

Transformation parameters Linear regression parameters

γ δ xi λ a b CI

Wheat HI LT (Equation 6) −0.2551 1.0835 0.2034 0.4006 0.3093 −1.2958 1.5067

Barley HI LT (Equation 6) −0.0705 0.5421 0.2817 0.3063 0.3319 −0.8631 1.1952

Rice HI LT (Equation 6) −1.6054 2.3282 0.0687 0.5663 0.2823 −1.4310 1.4469

Sunflower HI HS (Equation 7) −0.3057 3.8491 0.3111 0.1717 0.1715 −0.4522 1.9114

Rapeseed HI HS (Equation 7) 0.0000 3.2858 0.2637 0.1575 0.1880 −0.7453 1.8212

Maize HI LT (Equation 6) −1.6992 1.2752 −0.2218 0.8428 0.2509 −1.9424 1.1050

Sorghum HI LT (Equation 6) −0.5530 1.3866 −0.1036 0.7427 0.3446 −1.0251 1.2173

Soybean HI LT (Equation 6) −0.0819 1.0113 0.1910 0.2299 0.7659 −2.2731 1.3811

Sugar beet R HS (Equation 7) 0.5345 2.8868 6.0578 2.8308 −0.1067 1.8538 1.7528

Potato R LT (Equation 6) 2.6877 1.2031 0.6951 16.7831 0.0617 −0.5178 1.7609
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the reference studies of Bentsen et al. (2014) and Scarlat 
et al. (2010) discuss only the relationship between Y and the 
RPR. Models predicting RPR or HI from Y are helpful be-
cause these two predicted variables act as normalization of 
R by Y that remove, to a large extent, the heteroscedasticity 
in the model (see further details in S1). Nevertheless, one 
should be careful when presenting empirical models relat-
ing Y with RPR (or HI) with the purpose of predicting R –as 
done in Bentsen et al. (2014) and Scarlat et al. (2010)– be-
cause the actual relationship between Y and R can be easily 
misinterpreted. Indeed, a strong correlation (a determination 
coefficient r2 close to 1) between Y and RPR or HI implies, 
arithmetically, that R tends to be poorly correlated with Y and 
vice versa.

3.2  |  Estimated production of lignocellulosic 
biomass from agricultural residues in the EU28
Lignocellulosic biomass production from crop residues in 
EU28 is estimated at 419 million tonnes of dry matter (Mt) 
per year for the crop categories considered (cereals, oilseeds, 
and sugar and starchy crops) during the reference period 
2011–2015. These three groups of crops cover, approxi-
mately, 95% of the total EU agricultural residue production 
(García-Condado, López-Lozano, & der van Velde, 2018).

The breakdown of these crop figures is given in Figure 2. 
About 79% of the total (331 Mt) originates from cereals 
(wheat, rye, barley, oats, grain maize, triticale, sorghum 
and rice), whereas oilseeds (rapeseed, sunflower and soya) 

F I G U R E   2   EU28 lignocellulosic 
biomass from crop residue production (in Mt 
dry matter per year) from cereals, oilseeds, 
and sugar and starch crops calculated for the 
reference period 2011–2015

Crop group Crop
Residue yield (dry t/
ha) Area (Mha)

Cereals Maize 8.9 9.6

Oilseeds Rape and turnip 
rape

8.6 6.6

Cereals Rice 6.9 0.4

Cereals Sorghum 6.4 0.1

Cereals Wheat 5.9 26.3

Oilseeds Soya 5.7 0.5

Sugar and starch crops Sugar beet 5.5 1.6

Cereals Triticale 5.2 2.7

Cereals Rye 4.7 2.4

Cereals Oats 4.1 2.6

Cereals Barley 4.0 12.3

Oilseeds Sunflower 3.8 4.4

Sugar and starch crops Potatoes 2.2 1.8

T A B L E   3   Average residue yield 
estimation (in tonnes of dry matter per 
hectare) and harvested area (millions of 
hectares) at EU28 levels in the period 
2011–2015 for the crops studied here
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contribute 76 Mt (18% of total), and residues from sugar and 
starch crops constitute only a minor fraction, 3% and 13 Mt, 
of the EU production. The top four crops – wheat, maize, 
rapeseed and barley – represent, respectively, more than 80% 
(347 Mt) of the total.

In Table 3, the average EU28 residue yield (lignocellu-
losic biomass production per unit area, expressed in t/ha) 
of the crops studied is ranked. Maize is the crop with the 
highest residue yield, as it produces, on average, 8.9 t/ha of 
residues, closely followed by rapeseed. Wheat is the major 
contributor to the EU total residue production thanks to the 
large sown area (26 Mha) but produces, on average, 5.9 t/ha 
of residues, much lower than maize and rapeseed. Barley is 
among the main crops the one with the lowest residue yields 
(on average, 4 t/ha). That variability in the average residue 
yield among the crops is due to two factors: differences in 
biomass partitioning predicted by the models –e.g. low HI 
for rapeseed, high for barley– and irrigation that increases 
overall productivity of crops such as maize or rice, which are 
permanently irrigated in some countries.

The uncertainty of the EU28 residue production esti-
mate –calculated from the confidence intervals of the em-
pirical models– is rather large: the upper and lower limits 
are, respectively, 764 and 292 Mt, which represent, in rel-
ative terms, 112% of the estimated value. The confidence 
intervals are not symmetric –as indicated by the empirical 
models (Figure 1)– being the lower confidence interval rela-
tively close to the model estimate of 419 Mt. By contrast, the 
experimental observations are much more scattered among 
those varieties and growing conditions resulting in a low HI, 
explaining the high distance from the model prediction to the 
upper confidence interval.

The estimation uncertainties vary moderately among 
crops, as shown in Figure 3. In wheat and barley, the dif-
ference between the upper and lower confidence intervals 
are close to 100% of the estimated value. Maize residues 
estimations present the largest uncertainties in relative 
terms, around 177% of the predicted value (estimated 
production is 85 Mt, upper and lower intervals are 54 Mt 
to 205 Mt, respectively), consequence of the large error 
variance in the empirical model (Figure 1). By contrast, 
confidence intervals for sugar beet, rice and soybean are 
the smallest ones between 65% and 70% of the model 
estimations.

3.3  |  Influence of weather conditions, agro-
management and agricultural policy in the 
interannual variability of the EU28 production

Figure 4 displays the interannual variability from 1998 to 
2015 of the total EU 28 estimations of lignocellulosic bio-
mass from agricultural residues and the proportion of that 
variability is explained by the different drivers considered. In 
relative terms, the expected interannual variability is 7.5%, 
and would be primarily driven by changes in residue yield, 
with a minor influence of changes in the sown area. Cereals, 
as the most important contributors to total production, pre-
sent similar values. By contrast, the interannual variability 
of residues from oilseeds, sugar and starchy crops is much 
higher –above 20%– and the contribution of area changes is 
much larger, compared to cereals.

Area changes are mainly attributed to the impact of agri-
cultural policies. For instance, the existing market needs and 
the strict regulation of sugar beet production in the EU, lead to 

F I G U R E   3   Estimations of current 
(2011–2015) residue production (in Mt 
of dry matter per year) in EU-28 per 
crop. Solid lines represent the confidence 
intervals of the residue production in EU28 
at 95%

F I G U R E   4   Coefficient of variation 
in percentage, CV% – of residue production 
(left panel) and residue yield (right panel) 
at EU level from 1998 to 2015 for different 
crop groups. The colours in the stacked 
bars represent the proportion of the 
production and yield variances explained, 
respectively, by area, yield, weather and 
agro-management
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a negative area trend of 0.18 Mha (Figure 5), which explains 
almost entirely the variability of residues production from the 
sugar and starchy crops. Conversely, a positive trend in oil-
seeds area is appreciable from 2003 to 2012 coinciding with 
the announcement of the EU to establish a biofuels support 
policy, primarily with the aim of lowering CO2 emissions in 
the transport sector (Bourguignon, 2015). In absolute terms, 
that increase of oilseeds area is mainly coming from rapeseed, 
which is a major contributor to the production of biodiesel 
(Junginger, Goh, & Faaij, 2014). That increasing interest in 
oilseeds led to parallel intensification of agro-management 

in oilseeds (e.g. new varieties, fertilizing, etc.) resulting in a 
positive trend of total crop biomass yield and, consequently, 
also residue yields (+0.11 t/ha). This trend represents, approx-
imately 70% of the residue yield variability of oilseeds.

By contrast, the variability of residue yield –the main factor 
of residue production in cereals– is almost equally explained 
by weather and technological factors (Figure 4, right panel). A 
positive trend in residue yield from cereals (0.05 t/ha, Figure 5) 
explains half of the estimated variance in residue yield, and is 
attributed to an overall increase of cereals biomass yield due 
to improvements in agro-management. The effect of weather 

F I G U R E   5   Time series and 
corresponding trend of harvested area (grey 
surface, Mha) and residue yield (purple line, 
t/ha) for cereals (top), sugar and starch crops 
(middle) and oil crops (bottom)
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conditions in residue yield would explain the remaining half 
of the variance. The lowest residue yields estimated for cereals 
shown in Figure 5 are explained by extreme weather events: 
an exceptionally cold spring followed by a drought in August 
impacted cereals in 2003 (Ceglar et al., 2016; Fontana, Toreti, 
Ceglar, & De, 2015; López-Lozano et al., 2015; Van der Velde, 
Tubiello, Vrieling, & Bouraoui, 2012; Zaitchik, Macalady, 
Bonneau, & Smith, 2006; Zampieri, Ceglar, Dentener, & 
Toreti, 2017); a drought across all the Black Sea area affected 
summer crop yields in 2007 and 2012 (Bussay, van der Velde, 
Fumagalli, & Seguini, 2015). Conversely, in 2014 and 2015 
the high estimates correspond with highly favourable weather 

conditions across the growing season in most of the EU terri-
tory. There are, nevertheless, some differences among cereals: 
trends represent less than 20% of the interannual variability of 
residue yield in maize (Figure 5), which is mostly determined 
by weather conditions.

3.4  |  Differences in lignocellulosic biomass 
production among the EU 28 countries
Table 4 shows the estimates of lignocellulosic biomass pro-
duction from crop residues by Member State for the main 
crop groups. The top nine producers are France, Germany, 
Poland, Romania, Spain, UK, Hungary, Italy and Bulgaria, 
altogether summing to a total residue production of 339 Mt, 
and representing 80% of total EU28 production. Only the top 
four countries would sum up to more than a half of the total 
EU28 residues production estimates.

The feedstocks vary substantially among the main produc-
ing countries, as shown in Figure 6. Large areas dedicated 
to winter cereals, and especially their high biomass yield, 
make them the most important source of lignocellulosic bio-
mass from agricultural residues in countries from the north 
of the EU. Regionally, production is located in northeastern 
France, East Anglia (UK), central Germany and western 
Poland (Figure 7). The contribution of rapeseed to the total 
production is also quantitatively relevant for these northern 
countries, thanks to the low HI of that crop, which leads to 
a higher residue yield (Table 3), compared to winter cereals.

In Romania, Hungary and Italy, maize constitutes the main 
source of agricultural residues (Figure 6), and the production is 
highly concentrated across the Po valley and the Danube basin 
(Figure 7). According to our results, maize produces, on aver-
age, more lignocellulosic biomass per unit area than any other of 
the studied crops. The model computed for maize (see Figure 1) 
indicates that it is possible to obtain a high residue yield (8–9 t/
ha) even when grain yields are moderate or low (4–5 t/ha). This 
is especially relevant for Hungary and Romania, where maize is 
rainfed. Other countries like Croatia and Slovenia, where maize 
has also a major share of the production, are among those with 
the highest residue yields in the EU (Figure 6). By contrast, 
Spain presents the lowest residue yield (<4 t/ha) among the 
main producers due to the important contribution of barley – 
which has a high HI – to total residues production.

The different composition of total agricultural residues 
production also influences the uncertainty of the country es-
timates (Figure 6). In relative terms, those countries where 
maize is highly relevant for the total residue production pres-
ent the largest uncertainties (e.g. Romania, Bulgaria, Hungary 
or Croatia) given the large error variance of the maize model 
(Figure 1). Similarly, in France, where production of ligno-
cellulosic biomass from maize residues is significant, relative 
uncertainties are higher than in Germany, where the residues 
from maize are minor. Conversely, in the Netherlands or 

T A B L E   4   Estimated lignocellulosic biomass production per year 
in the period 2011–2015 from crop residues per Member State for the 
main crop groups, cereals (wheat, rye, barley, oats, grain maize, 
triticale, sorghum, rice), oilseeds (rapeseed, sunflower, soya) and sugar 
and starch crops (sugar beet, potato). Member States are ranked by 
decreasing production. All values in million tonnes (dry weight)

Country Cereals Sugar-crops Oil-crops Total

FR 63.7 2.4 17.2 83.3

DE 42.4 2.6 13.6 58.6

PL 33.7 1.9 6.7 42.3

RO 32.5 0.6 6.1 39.2

ES 24.7 0.3 2.0 27.0

UK 18.9 0.9 6.4 26.3

HU 18.5 0.1 4.5 23.1

IT 20.7 0.4 2.0 23.1

BG 11.4 0.0 4.5 16.0

CZ 8.6 0.4 3.6 12.6

DK 8.4 0.3 1.7 10.4

LT 5.9 0.2 1.5 7.6

SE 5.4 0.2 0.9 6.5

SK 4.8 0.1 1.4 6.4

AT 5.2 0.3 0.8 6.3

GR 5.1 0.1 0.6 5.7

FI 4.5 0.1 0.3 4.9

HR 3.9 0.1 0.6 4.6

LV 2.7 0.0 0.7 3.5

BE 2.5 0.5 0.1 3.2

NL 1.5 0.7 0.0 2.2

IE 1.8 0.0 0.1 2.0

EE 1.4 0.0 0.5 1.9

PT 1.5 0.1 0.0 1.6

SI 0.7 0.0 0.0 0.7

LU 0.2 0.0 0.0 0.2

CY 0.083 0.010 0.000 0.1

MT 0.011 0.001 0.001 0.01

EU28 330.6 12.6 76.0 419.2
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Belgium, where the contribution of sugar and starch crops 
to the total residue production is highly relevant, the relative 
uncertainties are the lowest (30% and 50%, respectively).

The estimated interannual variability of total lignocellu-
losic biomass production from crop residues in most of the 
EU 28 countries would be primarily driven by variations 

F I G U R E   6   Estimation of current (2011–2015) residue production (in Mt of dry) at Member State level. The coloured areas denoting crops 
correspond to their contribution in the residue production in each country. The green points represent the total residue yield (tonnes per hectare) by 
country while the dashed line indicates the total EU 28 residue yield. The thin grey line corresponds to 95% confidence intervals of the estimates 
for each country. Countries are ranked in decreasing order of their residue production

F I G U R E   7   Spatial distribution of crop residues estimates, in kt of dry matter, per 25 km across EU28 for the average period (2011–2015). 
Biomass production correspond from the major crops, wheat, maize and rapeseed, along with the distribution of total feedstock coming from the 
crop groups cereals (wheat, rye, barley, oats, grain maize, triticale, sorghum and rice), oilseeds (rapeseed, sunflower and soya) and sugar and starch 
crops (sugar beet and potato)
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in residue yield, rather than changes in area (Figure 8, top 
panes). Among the top producers, only in Italy the relevance 
of crop area changes is higher than the residue yield, as crop 
residues are mainly coming from maize, grown under irriga-
tion in the north of the country.

The interannual variability of residue yield estimations 
differs substantially among countries. Central and northern 
countries –e.g. France, Germany and the UK– are character-
ized by a prevalence of winter crops and temperate, humid 
agro-climatic conditions, which would lead to high and stable 
residue yields over the years (CV < 10%). In north-eastern EU 
countries (e.g. Poland, the Czech Republic, Slovakia, Latvia, 

Lithuania, Estonia) the residue yield variability would be higher 
and mostly linked to technical and agro-management factors 
(Peltonen-Sainio, Salo, Jauhiainen, Lehtonen, & Sieviläinen, 
2015) resulting in a positive trend in total crop biomass yield 
during the last 15 years. In southern countries (e.g. Romania, 
Hungary, Spain and Bulgaria) the residue yield interannual 
variability is also high –can reach 20%– but mostly driven by 
weather conditions, as there crop production is heavily deter-
mined by rainfall regimes (López-Lozano et al., 2015).

Differences do exist among crops. In most of the main 
producers, maize residues would be driven by inter-annual 
changes in sown area (Figure 8) rather than in yield. Actually, 

F I G U R E   8   Inter-annual variability – expressed as coefficient of variation in percentage, CV% – of the residue production and residue 
yield at Member State level from 1998 to 2015, calculated for the crops in this study (cereals, oil-seed, sugar and starch crops) and the crops with 
the highest production in EU: wheat, maize and rapeseed. Member states are ranked in decreasing order of their residue production with arrows 
marking the group of countries covering >80% of EU total production
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the inter-annual variability of residue yield is very low when 
compared with wheat or rapeseed. This is partially due to the 
empirical model computed for maize, which tends to predict 
almost constant residue yields (Figure 1) when grain yield is 
above 2.5 t/ha. Among the top producers, only in Romania 
and Hungary the variability would be primarily explained by 
residue yield, and only in these countries the variability of 
residue yield would be higher than 10%, as they are exposed 
to severe summer droughts that reduce drastically crop yields.

Regarding rapeseed, with the exception of France and 
Germany, the top two producers, the inter-annual variability 
of lignocellulosic biomass from residues would be higher 
than 20%, mostly explained by changes in area. As men-
tioned before, oilseeds, and particularly rapeseed area have 
been rapidly increasing until recently due to the increasing 
interest of this crop as feedstock for first-generation bio-
diesel: in Poland, the area in 2015 is double that in 1998, 
in Romania almost multiplied by five. In addition, average 
residue yields have increased in many of these countries 
(Figure 8) as a result of technical improvements increasing 
crop productivity.

4  |   DISCUSSION

The total estimated production of lignocellulosic biomass 
from crop residues in the EU28, according to our models, is 
419 Mt, considering the reference period 2011–2015. Wheat 
is, according to our results, the main residues feedstock (155 
Mt, 37% of total EU production), predominant in central-
northern Europe (mainly UK, France and Germany). Apart 
from wheat, our study identifies as well maize stover (84 
Mt, 20%), mainly grown in southern Europe, as an attrac-
tive feedstock of lignocellulosic biomass, previously stated 
as well by Mitchell et al. (2016). Maize presents the highest 
residue yield of all crops (9 t/ha) and, according to our re-
sults, these high residue yields could be achieved also under 
moderately dry agro-climatic conditions. Rapeseed residues 
are the third feedstock in importance (54.5 Mt, 13% of total 
EU production) thanks to a positive trend in production, con-
sequence from an increase in the area and yield in the last 
15 years. Moreover, rapeseed produces a high proportion of 
total biomass in the vegetative plant organs: the data used to 
constrict our models indicate that the HI of rapeseed ranges 
between 0.2 and 0.3, very low compared to the other field 
crops. This high importance of rapeseed as source of ligno-
cellulosic biomass is, nevertheless, highly dependent on the 
assumptions and data used in our models, as in the previous 
study of Scarlat et al. (2010) the proportion of rapeseed resi-
dues in total EU production is much lower.

The assessment produced in this study aims at providing a 
baseline scenario of the production of lignocellulosic biomass 
from crop residues in the EU for their use in the production of 

bioenergy and biomaterials. From this scenario a sustainable 
supply of residue biomass for second-bioenergy in the EU 
could be deduced. However, bio-energy is only one pathway 
of the use of crop residues. For instance, there are other farm 
level uses (e.g. bedding), but more importantly, there are uses 
that relate to soil quality requirement and resilience (Blanco-
Canqui, 2013; Lugato, Bampa, Panagos, Montanarella, & 
Jones, 2014; Monforti et al., 2015; project LANDMARK 
http://landmark2020.eu), e.g. nutrient cycling (soil) biodi-
versity that directly cascade through the ago-ecosystem (e.g. 
birds). Therefore, a thorough assessment about the sustain-
able use of crop residues is needed. Additionally, our results 
could contribute to studies on the design and optimization of 
bio-based supply chain (de Wit & Faaij, 2010; Galanopoulos, 
Barletta, & Zondervan, 2018; Cintas, Berndes, Englund, 
Cutz, & Johnsson, 2018; Panoutsou, 2017; project S2BIOM 
www.s2biom.eu), environmental impacts and climate change 
assessments (Cherubini & Ulgiati, 2010; Giuntoli et al., 
2016; Lugato, Leip, & Jones, 2018; Lugato, Bampa, et al., 
2014; Monteleone, Garofalo, Cammerino, & Libutti, 2015), 
and modelling on current and projected supply scenarios 
for bioenergy and bio-based industries (Daioglou, Stehfest, 
Wicke, Faaij, & van Vuuren, 2016; Deng, Koper, Haigh, 
& Dornburg, 2015; De Jong et al., 2018; Searle & Malins, 
2015).

In this study, production estimates have been also dis-
aggregated into a regular grid over the EU to describe the 
spatial distribution of residue production through the EU 
(also addressed in Monforti et al., 2013), and provided as 
Supplemental Material. The economic sustainability of bio-
fuel production systems is largely conditioned by the design 
of the supply chain, where the biomass transportation costs 
(Searcy, Flynn, Ghafoori, & Kumar, 2007) play a central role.

The amount of available biomass, the distance between 
production, processing and consumption hotspots, or the 
timing of biomass supply –e.g. residues from winter and/
or summer crops– are critical factors determining the op-
timal full supply chain: the need of biomass preprocess-
ing, the location, number and capacity of the processing 
plants, or the distance to the biofuel markets (Lin et al., 
2016; Sultana & Kumar, 2011). Moreover, GHG emissions 
in the biomass transportation are accounted for in the life 
cycle assessment of straw-based bioethanol and power sys-
tems (Borrion, McManus, & Hammond, 2012; Martinez-
Hernandez et al., 2013; Morales, Quintero, Conejeros, & 
Aroca, 2015).

The estimations reported in this study, as they are based 
on models constructed from experimental data on crop HI, 
refer to the total biomass produced by the plant which, im-
plicitly, includes a proportion of biomass that cannot be 
actually harvested by combines due to technical limitations 
(Douglas, Rasmussen, & Allmaras, 1989; Kim & Gregory, 
2015). Quantitative studies on the sustainable use of crop 

http://landmark2020.eu
http://www.s2biom.eu
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residues for bioenergy that could use biomass estimations 
computed from this empirical models have to take into ac-
count, among others, this fraction of uncollectable biomass 
that is, necessarily, left in the soil.

In this study we put emphasis on quantifying the uncer-
tainties of the empirical models proposed and the estimations 
produced, an aspect not fully addressed in previous studies 
as Bentsen et al. (2014) or Scarlat et al. (2010). On our view 
these uncertainties are relatively large as a consequence of 
two factors. First, empirical models inferring residues from 
economic yield –either directly or using parameters as the HI 
or the RPR– are oversimplifying, as the influence of genetic 
differences among crop varieties and environmental condi-
tions in biomass partitioning can be rather complex. Second, 
the models are constructed from data produced in experimen-
tal conditions that may not be representative of commercial 
EU agriculture. In our study we have used a much larger 
number of observations to construct our models if compared 
to previous works, but perhaps at the cost of including agro-
management practices (e.g. use of old landraces for some 
crops, fertilizing treatments) that are beyond the range if 
commercial conditions, thus increasing artificially the error 
variance of the models proposed.

More complex biophysical models able to describe 
the actual effects of weather on crop biomass partitioning, 
could reduce model uncertainties. General crop models 
such as WOFOST (de Wit et al., 2018), CropSyst (Stockle, 
Cabelguenne, & Debaeke, 1997), or STICS (Brisson, Launay, 
Mary, & Beaudoin, 2009) can simulate adequately how envi-
ronmental and management factors influence yield formation 
and biomass partitioning in crops. Similarly, canopy models 
driven by Earth Observation data using satellite and weather 
observations would have the potential to quantify the total 
biomass (expressed as net primary production) over crop-
lands (e.g. Lobell et al., 2002; Prince, Haskett, Steininger, 
Strand, & Wright, 2001).

The uncertainties related to varietal differences of biomass 
partitioning are still difficult to tackle in such models, and sys-
tematic, and field observations representative of actual agri-
cultural conditions in the EU would be needed. Nevertheless, 
the large variance observed in the models are indicating the 
range of achievable residue yields in crops like wheat and 
barley, where varietal improvement led to modern cultivars 
with higher HI. The analysis of possible scenarios for ligno-
cellulosic biomass production should take into account those 
cultivars with a lower HI which can increase significantly 
the biomass supply for bioenergy under low abiotic stress 
pressure.
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