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A B S T R A C T

Monitoring animal location can be a valuable tool in research and for practical applications, such as health or
pasture management. Although GPS is commonly used, other solutions are available, such as RFID or image
analysis. Image analysis is a non-invasive technique that has been proved to be useful to monitor animal lo-
cation, as well as animal behaviour. Most, if not all, applications of image analysis for the continuous monitoring
of farm animals have been developed with top-view cameras in indoor conditions. In this article, we develop a
framework that combines low cost time lapse cameras, machine learning, and image registration, in order to
monitor the location of animals in a pasture. We tested our framework by monitoring two flocks of goats under
farm-like conditions. One time lapse camera was able to monitor an area of approximately 20 m by 20 m, and
several cameras were combined to monitor the entire pasture. The precision and sensitivity of this method for
automatic animal detection was estimated to be 90% and 84.5%, but the results can vary with the layout of the
pasture. For example, goats were hardly detectable in front of a natural hedge, which appears dark in the image.
In addition, any unwanted elements in the pasture can increase the false positive detection rate. Small animals,
such as kids, were also difficult to detect in some cases, as they can be smaller than the weeds. With all the tested
layouts, the sensitivity varies from 70.7% to 94.8% and the precision varies from 83.8% to 95.6%. The spatial
accurracy of the method was also estimated. At a distance of 10 m, the maximal accuracy is approximately
56 cm, whereas the maximal accuracy is equal to 116 cm when the animals are at a distance of 20 m from the
camera. This study shows that image analysis can be an interesting alternative to GPS with comparable accuracy
and significantly lower cost.

1. Introduction

Affordable sensors are now widely available and offer great op-
portunities to farmers and researchers. For animal management, sensors
could be the basis of efficient decision tools at the individual scale. One
of the most exciting perspectives is to be able to monitor animal health
in real time and eventually allow the early detection of disease, which
could reduce the spread of the disease and limit the use of chemical
treatments (González et al., 2008). From a research perspective, sensors
offer the possibility of collecting a large amount of quantitative data in
terms of animal physiology, health, or behaviour (Nasirahmadi et al.,
2017). In this article, we will be interested in monitoring animals to
record their positions over time.

To record an animal’s position, several tools are available, such as
RFID (Adrion et al., 2018), GPS (Turner et al., 2000), acoustic tags
(Kolarevic et al., 2016), and computer vision (Brünger et al., 2018).
With RFID, the animals are set up with a transponder, and antennas are

distributed over the study area. When the animal is in a particular area,
its transponder is detected by one of the antennas and the animal is
known to be at a certain distance from the antenna. In practice, this
affords poor spatial accuracy and it is generally better suited to mon-
itoring the visits of animals to a particular zone, such as a watering hole
or feeding point (Adrion et al., 2018). To monitor larger areas, GPS is
obviously one of the most common choices, although the sampling
frequency and spatial accuracy can be highly variable (Buerkert and
Schlecht, 2009; Swain et al., 2011). Enhancements of GPS include dif-
ferential GPS, which uses ground-based reference stations in addition to
satellites to increase the spatial accuracy. Acoustic tags are mostly used
in fisheries and also rely on triangulation between the tags and the
receivers. For all these methods, the animals must be set up with a tag,
which is not always desirable, as it can be time consuming to manage
and set up the tags, as well as painful for the animal. More generally,
the labour and cost increase with the number of studied animals. In
contrast, computer vision offers a non-invasive and cost-effective
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method to record the positions of animals.
Monitoring using computer vision means that images are captured

and then automatically analysed to extract the desired information.
Images can be captured via a simple RGB camera (Kashiha et al., 2014),
a CCVT camera (Nasirahmadi et al., 2017), an infrared camera (Zhou
et al., 2017), a 3D camera (Kongsro, 2014; Mortensen et al., 2016), or a
depth camera (Leonard et al., 2019).

There are mainly two types of methods to detect animals in a pic-
ture. The first one consists of combining image enhancement techniques
(Mahajan and Dogra, 2015) with segmentation techniques (Pal and Pal,
1993), to move from the original image to a black and white image
where the animals and the background are differentiated. Then, so that
the body of each animal is localized, an ellipse-fitting algorithm is
generally applied. The parameters of the ellipse can then be used to
derive interesting information. For example, the centroids of the el-
lipses can be used to determine the positions of the animals, and the
lengths of the major and minor axes and the orientations of the ellipses
can be used to detect individual activity, locomotion, or behaviour
(Kashiha et al., 2014; Nasirahmadi et al., 2017; Vayssade et al., 2019).
The second method consists of using a neural network that has been
trained to identify and label the objects in the image. Neural networks,
and more generally deep learning, have been used in numerous vegetal
applications (Kamilaris and Prenafeta-Boldú, 2018), and animal appli-
cations (Kashiha et al., 2014; Fukunaga et al., 2015; Villa et al., 2017).

Most of the studies on animal monitoring using computer vision
have been conducted for pigs, in inside conditions with top-view
cameras. Although dirt and insects can obstruct the camera, this set-up
is generally convenient, as it limits occlusions between animals, and
also because the environmental and lighting conditions do not change
drastically. Electricity and networks are also generally available to re-
cord the images at a high frequency (e.g. 25 fps) for several hours or
days. Studies on monitoring an entire flock in a pasture using computer
vision in a continuous or semi-continuous way have not yet been re-
ported, although Benvenutti et al. (2015) showed that images can be
used to manually count and locate cattle at a watering point. In con-
trast, monitoring from remotely sensed imagery (Hollings et al., 2018)
has been used several times. But it is more suited for monitoring animal
populations at a large scale, as, for example, counting the population of
an endangered species (Fretwell et al., 2014). At the farm scale, mon-
itoring from ground cameras appears to be more practical.

To be able to record pictures of the flock under outside conditions,
we propose using time-lapse construction cameras that can run for

several weeks in outside conditions with classical batteries. Since the
background is constantly changing, classical segmentation techniques
are hard to apply, and we chose using a state of the art convolutional
neural network, named Yolo (Redmon et al., 2016). We used Yolo to
detect any object in the images, not only the animals. Then all the
detected objects are filtered in order to keep only the studied animals.
Finally, we set up a framework to be able to estimate the positions of
the animals, in meters, in the pasture, from the positions of the animals’
centroids in the image, in pixels.

2. Materials & methods

2.1. Animal monitoring framework

2.1.1. Image acquisition
We used construction time-lapse cameras (TLC2000 pro, year 2018,

brand Brinno) equipped with waterproof plastic protection. These
cameras record at 1.3 Mpx with a resolution of 1208 × 720 using jpeg
compression. The cameras run on four classical AA batteries and can
handle a 32 Go SD card that can store up to 240,000 pictures. The
camera can be set up with different picture frequencies, from one
second to 24 h. The main advantage of these cameras is their battery
life, which reduces the need for human intervention. Examples from the
user manual report that during daylight, with one picture every 30 s,
the batteries are supposed to last for 29 days, and 17 days for a fre-
quency of 1 image every 10 s.

2.1.2. Object detection
For object detection, we used a pre-trained convolutional neural

network named Yolo (Redmon et al., 2016). More precisely, we used
the network tinyYoloV3, which had been trained on the Pascal VOC
data-set. We choose Yolo for its rapidity, but other available networks
with higher precision can be used. For each image, Yolo was run to
detect every object in the image. The output is then a set of bounding
boxes (bboxes) around the detected objects. Multiple bboxes can be
associated to the same object. For example, one can be around the head
of the animal while another can be associated to other body parts. To
merge the overlapping bboxes for the same object, we used a common
non-max suppression technique. An example is presented in Fig. 1.

With a NVidia Tesla C2075 gpu, the animal detection took on
average 0.28 s per image.

Fig. 1. (a) The original outputs from Yolo,
i.e., a bounding box (bbox) around each
detected object. The same goat can be as-
sociated with several bboxes and a non-
max suppression technique is used to
merge the overlapping bboxes, resulting in
(b). The red points are the projections of
the goat’s centroids on the ground of the
pasture. (For interpretation of the refer-
ences to colour in this figure legend, the
reader is referred to the web version of this
article.)
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2.1.3. Object classification
Yolo is trained to classify common objects such as bikes, dogs, etc.,

but was not specifically trained to classify farm animals. As a result, the
Yolo output contains false positive detections, such as birds, fences or
any objects that can be found in the pasture. We thus faced an image
classification problem, with the two classes goat and other. In order to
be able to distinguish between goats and non-goats, we used bag of
visual words to extract image features from the two classes, and then an
SVM classifier. Note that any type of feature and classifier can be used
to filter the detections made by Yolo. One can also use the transfer
learning method to train any available CNN for image classification.

2.1.4. Locations of animals in the pasture
At this stage, all the animals are theoretically detected: (i) objects

are detected by Yolo and (ii) are then filtered with a category classifier
to keep only the studied animals. Each detected animal is associated to
a bbox with pixel coordinates of the top left corner px py( , ), width w
and height h.

We defined the animal’s location as the projection of the centroid on
the pasture ground. Depending on the animal’s orientation, it is hard to
define mathematically the pixel coordinates of the projection, and we
proposed using the following approximation:

= + = + ∗ppx px w ppy py h
2

and 0.9 , (1)

where ppx ppy( , ) are the pixel coordinates of the projection. Note that in
our case, the top left corner of the image has pixel coordinates (0, 0) and
the bottom right corner (1280, 720). See Fig. 1(b) for an example.

When monitoring animals in outdoor conditions, it is much easier to
use side-view cameras than top-view ones. In this case, the distances
between the objects in the image appear different from reality, due, for
example, to lens distortion and perspective effects. To be able to locate
the animal in the field, it is necessary to use a geometric transformation
f, also called a mapping function, such that =x y f ppx ppy( , ) ( , ) would
be the spatial coordinates of the animal in the pasture. This can be
framed as an image registration problem, where a moving image has to
be aligned with a fixed image that has known spatial coordinates. In our
case, we distributed nm marks on the pasture ground with known spatial
coordinates, denoted by = …mx my{( , )}i i i n1, , m. Then each mark is identi-
fied from one image from a time-lapse camera and the mark’s pixel
coordinates, denoted by = …mpx mpy{( , )}i i i n1, , m, are recorded as follows:

= = …mx my f mpx mpy i n( , ) ( , ), for 1, , .i i i i m (2)

Now, one possibility is to fix a given form for the mapping function f
and estimate its parameters using the set of equations defined in (2).
For the type of the mapping function f, we used a projective transfor-
mation, which provides satisfactory results, but other choices are pos-
sible (Goshtasby, 1988; Zitova and Flusser, 2003).

The value of f depends on the type of camera as well as its position.
In practice, we always used the same cameras at the same positions.
Thus, the marks’ pixel coordinates and f have to be computed only once,
at the beginning of the monitoring period, and f can be used to de-
termine the animals’ spatial coordinates based on the positions of their
images ppx ppy( , ).

A schematic representation of the entire workflow for the animal
monitoring is presented in Fig. 2.

2.2. Experimental evaluation

2.2.1. Animal detection
We tested our monitoring framework in several situations. All the

experiments were conducted at the INRA-PTEA farm located in
Guadeloupe.

2.2.1.1. Long term monitoring of nursing goats D1. We selected a flock of
approximately 18 goats and 22 kids, managed under rotational grazing.

The flock is grazing across 5 different pastures, spending one week per
pasture. We set up the cameras and marks on one pasture from
February 2019 to April 2019 and we thus monitored the flock for
three weeks in all. The pasture was approximately 1300 square meters
and was selected for its regular rectangular shape. We used three time-
lapse cameras to monitor the flock, distributed on one side of the
pasture. For the estimation of the animal location, =n 30m marks were
distributed on the ground of the pasture. The pasture was virtually
divided into three sub-pastures of approximately 20 m by 20 m, and
each camera was responsible for monitoring one sub-pasture. The
pasture was relatively flat, with no trees, but there was a concrete
post in front of the second camera.

This data set will be referred to as D1. A schematic representation of
the pasture is presented in Fig. 2c. The marks and camera positions are
also available in Supplementary Material S1.

2.2.1.2. Monitoring goats during pregnancy D2. In this experiment the
set-up was similar, but no kids were present, as the goats were still
pregnant and only one camera was used, for two consecutive days. The
camera was set to take pictures from 6 a.m. to 6 p.m. but the image
quality was insufficient during the afternoon because the sun was facing
the camera. We only used the pictures from 6 a.m. to 2 p.m. for the
analysis. No marks were distributed on the pasture as this data set was
used to estimate animal detection efficacy only. The pasture is
relatively flat, with one plastic tray in front of the camera and several
patches of weeds on the opposite side of the pasture. As in the previous
experiment, the monitored area is approximatively 20 m by 20 m. An
example of a picture is available in Supplementary Material S2.

2.2.1.3. Analysis procedure. To estimate the efficacy of the animal
detection workflow, i.e., the combination of Yolo detection and image
classification, we designed a graphical user interface that selects
randomly one image and shows the bbox around the detected objects.
Then the user was asked to click on the False Positive detections (FP),
i.e. the detected objects that were not the studied animals, and on the
False Negative detections (FN), i.e. the studied animals that were not
detected. The True Positive (TP) detections were then automatically
deduced. We proposed to quantify the detection workflow efficacy
using the following criterions:

=

=

+

+

Sensitivity .

Precision .

TP
TP FN

TP
TP FP

The sensitivity is the percentage of detected animals and the precision is
the percentage of correct detections. A sensitivity of 100% means that
all the animals are always detected. A precision of 100% means that
there are no false positive detections.

2.2.2. Spatial accuracy
In this section we present the determination of the accuracy of the

animal location workflow, i.e. the combination of the projections of the
centroids of the animals and the geometric transformation f, to estimate
the spatial coordinates of the animals. The accuracy is the closeness of
the estimated coordinates to the true locations.

We distinguished three different types of error: (i) the transforma-
tion error, (ii) the resolution error and (iii) the projection error. The
transformation error is due to the use of the mapping function f. The
accuracy of the mapping function varies with the number of marks that
are used and with their spatial distribution. The form of the mapping
function (e.g. polynomial, affine …) can also affect the accuracy. To
estimate the value of the transformation error, we used one camera
indoor to take a picture of a tile floor. In that the tile dimensions were
known, it was easy to compute the spatial coordinates of each inter-
section of tiles, which can be used as a mark to build the set of Eq. (2).
The floor was approximately 12 m by 7 m and we were able to
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distinguish 285 marks. Some intersections were not used as they were
not easily visible in the picture. An image of the experimental set-up is
available in Supplementary Material S3.

We first studied the influence of the number of marks on the
transformation error. We selected randomly a given number of marks to
be used to estimate the mapping function (training data). Then, the true
spatial coordinates of the unselected marks were compared to their
estimated coordinates using the mapping function (test data). The op-
eration was repeated 1,000 times in order to estimate the error dis-
tribution for a given number of marks, which we varied from 6 to 50.
The true spatial coordinates of the marks were obtained by summing
the number of tiles, adding an offset for the joints between the tiles.
Finally, we used these results to select the optimal number of marks in
order to estimate a model of the transformation error as a function of
the distance to the camera.

The resolution error is related to the total number of pixels of the
camera. Objects that are close to the camera appear bigger in the image
and are thus described with a higher number of pixels than an object
located far from the camera. If dxy is the real world distance between
two neighbouring pixels, then <d dxy xy

1 2 if the first neighbouring pixels
are closer to the camera than are the second neighbouring pixels. Then
for the resolution error, the maximal accuracy is the maximal value of
dxy over all pairs of neighbouring pixels located in the study area. To
estimate this accuracy, we used the same experimental set-up as for the
transformation error. The mapping function was estimated using the
285 available marks and the function was then used to estimate the
spatial coordinates of each pixel, which would be an approximation of
their true spatial coordinates. We finally computed the distance be-
tween all the pairs of neighbouring pixels to find the maximal distance.
We used these results to estimate a model of the resolution error as a
function of the position of the object.

The projection error is related to the projection of the animal’s
centroid onto the ground of the pasture. Depending on the orientation
and position of the animal, the projection of the centroid can be far
from the true centroid, which produces an error in the animal’s

location. To quantify this error, we used the data set D1 to select ran-
domly 200 detected animals for which we manually defined the pro-
jection of the animal’s centroid onto the ground of the pasture. We then
used the mapping function to compare the distance between the esti-
mated projection point using Eq. (1) and the manually defined pro-
jection point.

3. Results

3.1. Efficacy of the automatic animal detection method

3.1.1. Data set D1
About 6,200 pictures were analysed and an average sensitivity and

precision of 79.5% and 90.5% were found. The results for each camera
are presented in Table 1.

As is shown in Fig. 3, the detection errors are mainly concentrated
in two particular zones (coloured in red in Fig. 3(a)). The first zone is
behind a concrete post present in the pasture (see Fig. 2(a) and (b)).
Around this post, the image category classifier barely discriminates the
animals, which brings about a detection error. In the second zone, at the
end of the pasture, there is a natural hedge that appears dark in the
images. As a consequence, animals can be missed by Yolo, even more
when the goats are black. 46% of the false positive errors and 53% of
the false negative errors are inside these two zones. If they are removed
from the analysis, the sensitivity and precision increase to 87.3% and
93.6%.

Detecting kids in pictures can be particularly challenging as they are
generally very small. In some cases, they can be smaller than a weed,
making them difficult to detect even though their heads are visible. As a
result, 55% ([52%, 58.3%] 95% C.I. estimated on 1,000 images) of the
false negative errors were due to missed kids.

3.1.2. Data set D2
In all, 500 random pictures were analysed and a sensitivity and

precision of 94.8% and 92.5% were found. Compared to the previous

Fig. 2. Workflow of the goat monitoring. This is an example using data set D1 and camera 2. (a) Original image with yellow bounding boxes (bboxes) around the
objects detected by the neural network Yolo. (b) Detected objects after employing the non-max suppression algorithm to merge overlapping bboxes, and after image
classification, to remove false positives (represented in green). The red points are the projected centroids of the detected objects (see Eq. (1)). The black line near the
top of the image is the end of the monitoring area for the selected camera (here, camera 2). (c) Schematic representation of the monitored pasture with the estimated
coordinates of the detected goats (red points). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 1
Animal detection efficacy. N is the number of pictures used to estimate the precision (Prec.) and sensitivity (Sens.). Columns All are the results for the combined data
sets.

Dataset D1 Dataset D2 All

Cameras N Prec. Sens. N Prec. Sens. N Prec. Sens.

1 1,813 90.8% 84.3% 500 92.5% 94.8% 6,550 90.75% 84.6%
2 2,252 83.8% 88.6%
3 1,985 95.6% 70.7%
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data set, there is a smaller FN error rate, which increases the sensitivity.
This is probably due to the fact that no objects were hiding the animals
and that no kids were present in the pasture. Many, if not all, of the FP
errors were due to the different patches of weeds and to the plastic tray.

3.2. Efficacy of the animal location estimation method

3.2.1. Transformation error
3.2.1.1. Number of marks. The distribution of the transformation error
as a function of the number of marks is presented in Fig. 4(a). There is a
high error variance, so that the average error and median are
significantly different when fewer than 16 marks are used. This
means that the transformation error can be greatly affected by the
spatial distribution of the marks (selected randomly in our case). One
can see that the transformation error decreases as the number of marks
increases, although the error becomes approximately stable when more
than 22 marks are used. With 22 marks, the average error is equal to
12.8 cm.

3.2.1.2. Transformation error model. Based on the previous results, we
used the transformation error when 25 marks were used. We then fitted
a polynomial model of the transformation error of the form

= × + × +T p d p d p ,e 1
2

2 3

where d is the real-world distance between the object and the camera
and = −

−p p p e( , , ) (2.873 , 0.0301, 13.67)1 2 3
5 . We used a robust bi-square

linear least-squares fitting method to estimate the parameters of the
model ( =R 0.722 ).

3.2.2. Resolution error
The resolution error is equal to 0.7 cm, 1.1 cm, 2 cm and 4.1 cm

when the object is at a real-world distance of 5 m, 10 m, 15 m and 20 m.
We fitted the following model for the resolution error:

= + + + + +T α β x β y β xy β x β y ,r 1 2 12 11
2

22
2

where x y( , ) are the spatial coordinates of the object and

= − − −
− − − − −

α β β β β β

e e e e e

( , , , , , )

(0.63, 5.93 , 1.42 , 5.17 , 1.64 , 7.57 ).
1 2 12 11 22

4 3 7 7 7

We used a robust bi-square linear least-squares fitting method to esti-
mate the parameters of the model ( =R 12 ).

3.2.3. Projection error
The average projection error was estimated from 200 random pic-

tures selected randomly. It is equal to 43.39 cm.

3.2.4. Total location error
The total location error is provided in Fig. 4(b). The maximal ac-

curacy of the method is equal to 56 cm, 78.5 cm, 115.9 cm and
167.8 cm when the object is located at a real-world distance of 10 m,
15 m, 20 m and 25 m.

4. Discussion

We have presented a framework for animal tracking at the pasture
scale combining time-lapse cameras, deep learning, and image regis-
tration. This study showed that using computer vision for animal
tracking is also possible in outdoor conditions, and not just indoors with
top view cameras. We estimated the sensitivity of the method to be
nearly 85%, which is lower than indoor studies. For example, in
(Kashiha et al., 2014), 10 pigs were tracked in a 2.25 m × 3.60 m pen
with a sensitivity of nearly 90%. In (Nasirahmadi et al., 2016), 22–23
pigs were tracked in a 6.75 m × 3.10 m pen with a sensitivity of nearly
95%. But one has to take into consideration that in these cases, the
lighting conditions and camera angle are more favorable, while the
study area and the number of animals were smaller. The efficacy of our
framework is improved when no objects other than animals are present
inside the pasture and there is no background with a colour that can be
confused with the colour of an animal. Patches of ungrazed weeds could

Fig. 3. Spatial distribution of the detection error for data set D1. Spatial distribution of the false negative detections (a) and false positive detections (b). The red areas
in (a) are the areas where the detection errors are concentrated. 46% of the false positive errors and 53% of the false negative errors are inside the red areas. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Animal location error. (a) The transformation error as a function of the number of marks. The black line is the average error, the box-plots illustrate the error
distribution. The red line is the median, the top and bottom blue lines are the 75th and 25th percentiles, the black lines are the whiskers, not considered as outliers.
For clarity, we do not show the outliers, as some of them were far from the median. (b) Model of the different types of error as functions of the object’s real-world
distance from the camera. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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also be removed before the monitoring in order to improve the efficacy,
although it can change animal behaviour. The relative size of the ani-
mals compared to the size of the weeds also plays an important role in
the efficacy of the framework. The relative location of the camera
compared to the sun can also influence the efficacy of the framework. In
our case, we were not able to analyse the afternoon images for data set
D2 because the sun was facing the camera. For locating the animals, the
maximal accuracy of the method is around 115 cm for object located at
distances of up to 20 m, which is probably the maximal monitoring
distance with the tested cameras. This accuracy is as good or better than
most GPS (Buerkert and Schlecht, 2009; Benvenutti et al., 2015). When
the object is located less than 10 m from the camera, most of the lo-
cation error is due to the projection error, i.e. the accuracy of the
projection of the goat’s centroid. In our case, we used a simple equation
to define the projection, but a more sophisticated model can be used, as
for example a model that could take into account the position/or-
ientation of the animal and/or the dimensions of the bbox. When the
object is located more than 10 m from the camera, the transformation
error is responsible for more than 22% of the total location error, but
the projection error is still the highest source of error until 17 m, where
the transformation error becomes the highest source of error. At any
distance, the resolution error is nearly negligible.

The animal detection method could be improved in several ways.
First, cameras with higher quality images can be used, although the
resulting gains have to be balanced with the battery life. The object
classification step could also be improved, for example, by using a
larger training set. The object classification could also be done with
more than the two classes Goat and No Goat. For data set D2 for ex-
ample, efficacy might be improved by using a class for the patches of
ungrazed weeds, one class for the plastic tray, and one class for the
goats. Furthermore, a dedicated CNN could be used to detect farm
animals in the images, which could remove the need for the object
classification step. In the future, it could be valuable to collectively
assemble a large training data-set dedicated to farm animals.

5. Conclusions

Image analysis combined with time-lapse cameras can be a valuable
alternative to GPS collars. The efficacy of the technique depends on the
size of the animal, the locations of the cameras, and the set-up of the
pasture.
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