M. K. Aradhya, D. Potter, and C. J. Simon, Cladistic Biogeography of Juglans (Juglandaceae) Based on Chloroplast DNA Intergenic Spacer Sequences, Darwins Harvest New Approaches Orig Evol Conserv Crops, pp.143-70, 2006.

R. H. Woodworth, Meiosis of micro-sporogenesis within the Juglandaceae, Am J Bot, vol.17, pp.863-872, 1930.

G. Mcgranahan and C. Leslie, Breeding Plantation Tree Crops: Temperate Species, pp.249-73, 2009.

A. Bernard, F. Lheureux, and E. Dirlewanger, Walnut: past and future of genetic improvement, Tree Genet Genomes, vol.14, p.1, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02625189

K. Vahdati, M. M. Arab, S. Sarikhani, M. Sadat-hosseini, C. A. Leslie et al., Advances in Persian Walnut (Juglans regia L.) Breeding Strategies

J. Khayri, S. M. Jain, and D. V. Johnson, Advances in Plant Breeding Strategies: Nut and Beverage Crops, pp.401-72, 2019.

G. Mcgranahan and C. Leslie, Genetic resources of temperate fruit and nut crops, part 2. Wageningen: International Society of Horticultural Sciences, pp.907-51, 1991.

J. Cook, N. Oreskes, and P. T. Doran, Consensus on consensus: a synthesis of consensus estimates on human-caused global warming, Environ Res Lett, vol.11, pp.1-8, 2016.

J. Cooke, M. E. Eriksson, and O. Juntilla, The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms, Plant Cell Environ, vol.35, pp.1707-1735, 2012.

J. A. Campoy, D. Ruiz, and J. Egea, Dormancy in temperate fruit trees in a global warming context: a review, Sci Hort, vol.130, pp.357-72, 2011.

A. Hassankhah, K. Vahdati, M. Rahemi, and S. Sarikhani, Persian walnut phenology: effect of chilling and heat requirements on Budbreak and flowering date, Int J Hort Sci Tech, vol.4, pp.259-71, 2017.

A. A. Aslamarz, K. Vahdati, M. Rahemi, and D. Hasani, Estimation of chilling and heat requirements of some Persian walnut cultivars and genotypes, HortScience, vol.44, issue.3, pp.697-701, 2009.

G. Charrier, J. Ngao, M. Saudreau, and T. Améglio, Effects of environmental factors and management practices on microclimate, winter physiology and frost resistance in trees, Front Plant Sci, vol.6, p.259, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01149371

G. Charrier, I. Chuine, M. Bonhomme, and T. Améglio, Assessing frost damages using dynamic models in walnut trees: exposure rather than vulnerability controls frost risks, Plant Cell Environ, vol.41, pp.1008-1029, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01608833

F. M. Chmielewski and T. Rötzer, Response of tree phenology to climate change across, Europe. Agric For Meteorol, vol.108, pp.101-113, 2001.

A. Menzel, T. H. Sparks, and N. Estrella, European phenological response to climate change matches the warming pattern, Glob Change Biol, vol.12, pp.1969-76, 2006.

V. P. Khanduri, C. M. Sharma, and S. P. Singh, The effects of climate change on plant phenology, Environmentalist, vol.28, pp.143-150, 2008.

Y. Vitasse, C. François, and N. Delpierre, Assessing the effects of climate change on the phenology of European temperate trees, Agric For Meteorol, vol.151, pp.969-80, 2011.

E. Luedeling and A. Gassner, Partial Least Squares Regression for analyzing walnut phenology in California, Agric For Meteorol, vol.158, pp.43-52, 2012.

Z. ?repin?ek, M. Solar, F. ?tampar, and A. Solar, Shifts in walnut (Juglans regia L.) phenology due to increasing temperatures in Slovenia, J Hortic Sci Biotechnol, vol.84, pp.59-64, 2009.

S. Cosmulescu and M. B. Ionescu, Phenological calendar in some walnut genotypes grown in Romania and its correlation with air temperature, Int J Biometeorol, vol.62, pp.2007-2020, 2018.

A. Bernard, T. Barreneche, M. Delmas, S. Durand, and C. Pommier, The walnut genetic resources of INRA: chronological phenotypic data and ontology, BMC Res Notes, pp.12-662, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02626113

K. Vahdati, M. Bavani, A. R. Khosh-khui, M. Fakour, P. Sarikhani et al., Applying the AOGCM-AR5 models to the assessments of land suitability for walnut cultivation in response to climate change: a case study of Iran, PLoS One, vol.14, issue.6, p.218725, 2019.

E. Dirlewanger, J. Quero-garcía, L. Dantec, and L. , Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry, Heredity, vol.109, pp.280-92, 2012.

B. A. Olukolu, T. Trainin, and S. Fan, Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.), Genome, vol.52, pp.819-847, 2009.

G. Charrier, M. Bonhomme, A. Lacointe, and T. Améglio, Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control?, Int J Biometeorol, vol.55, pp.763-74, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00964851

S. Eskandari, D. Hassani, and A. Abdi, Investigation on genetic diversity of Persian walnut and evaluation of promising genotypes, Acta Hortic, vol.705, pp.159-66, 2005.

P. E. Hansche, V. Beres, and H. I. Forde, Estimates of quantitative genetic properties of walnut and their implications for cultivar improvement, J Am Soc Hortic Sci, vol.97, pp.279-85, 1972.

E. Germain, Inheritance of late leafing and lateral bud fruitfulness in walnut (Juglans regia L.). phenotypic correlations among some traits of the trees, Acta Hortic, vol.284, pp.125-159, 1990.

J. Dvorak, M. Aradhya, C. Leslie, and M. C. Luo, Discovery of the causative mutation of the lateral bearing phenotype in walnut. California Walnut Board: Walnut Research Reports, 2015.

P. J. Martínez-garcía, M. W. Crepeau, and D. Puiu, The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols, Plant J, vol.87, pp.507-539, 2016.

A. Marrano, P. J. Martínez-garcía, L. Bianco, G. M. Sideli, D. Pierro et al., A new genomic tool for walnut (Juglans regia L.): development and validation of the high-density axiom? J. regia 700K SNP genotyping array, Plant Biotechnol J, vol.17, pp.1027-1063, 2019.

M. M. Arab, A. Marrano, and R. Abdollahi-arpanahi, Genome-wide patterns of population structure and association mapping of nut-related traits in Persian walnut populations from Iran using the Axiom J. regia 700K SNP array, Sci Rep, vol.9, p.6376, 2019.

R. A. Famula, J. H. Richards, T. R. Famula, and N. Db, Association genetics of carbon isotope discrimination in the founding individuals of a breeding population of Juglans regia L, Tree Genet Genomes, vol.15, p.6, 2019.

M. M. Arab, A. Marrano, R. Abdollahi-arpanahi, C. A. Leslie, and H. Cheng, Combining phenotype, genotype and environment to uncover genetic components underlying water use efficiency in Persian walnut, J Exp Bot, vol.71, pp.1107-1127, 2020.

A. Marrano, G. M. Sideli, C. A. Leslie, H. Cheng, and N. Db, Deciphering of the genetic control of phenology, yield and pellicle color in Persian walnut, Juglans regia L.). front. Plant Sci, vol.10, p.1140, 2019.

A. Marrano, M. Britton, P. A. Zaini, A. V. Zimin, and R. E. Workman, Highquality chromosome-scale assembly of the walnut (Juglans regia L) reference genome

A. Bernard, T. Barreneche, F. Lheureux, and E. Dirlewanger, Analysis of genetic diversity and structure in a worldwide walnut (Juglans regia L.) germplasm using SSR markers, PLoS ONE, vol.13, issue.11, p.208021, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02627085

W. Astle and D. J. Balding, Population structure and cryptic relatedness in genetic association studies, Stat Sci, vol.24, pp.451-71, 2009.

A. H. Paterson and W. D. Beavis, QTL analyses: power, precision, and accuracy, pp.145-62, 1998.

S. B. Wang, J. Y. Feng, W. L. Ren, B. Huang, and L. Zhou, Improving power and accuracy of genome-wide association studies via multi-locus mixed linear model methodology, Sci Rep, vol.6, 2016.

Y. M. Zhang, Z. Jia, and J. M. Dunwell, Editorial: the applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits, Front Plant Sci, vol.10, p.100, 2019.

R. Amiri, K. Vahdati, and S. Mohsenipoor, Correlations between some horticultural traits in walnut, HortScience, vol.45, pp.1690-1694, 2010.

M. K. Aradhya, D. Velasco, J. R. Wang, R. Ramasamy, and F. M. You, A finescale genetic linkage map reveals genomic regions associated with economic traits in walnut (Juglans regia), Plant Breed, vol.00, pp.1-12, 2019.

P. Bolaños-villegas, Y. X. Wang, H. J. Juan, C. T. Chuang, and M. H. , Arabidopsis CHROMOSOME TRANSMISSION FIDELITY 7 (AtCTF7/ECO1) is required for DNA repair, mitosis and meiosis, Plant J, vol.75, pp.927-967, 2013.

H. D. Behnke, Plant trichomes -structure and ultrastructure: general terminology, taxonomic applications, and aspects of trichome-bacteria interaction in leaf tips of Dioscorea, Biology and chemistry of plant trichomes, pp.1-21, 1984.

R. Z. Lin, R. Q. Li, A. M. Lu, J. Y. Zhu, and Z. D. Chen, Comparative flower development of Juglans regia, Cyclocarya paliurus and Engelhardia spicata: homology of floral envelopes in Juglandaceae, Bot J Linn Soc, vol.181, pp.279-93, 2016.

M. L. Zhao, J. Ni, M. S. Chen, and Z. F. Xu, Ectopic expression of Jatropha curcas TREHALOSE-6-PHOSPHATE PHOSPHATASE J causes late-flowering and Heterostylous phenotypes in Arabidopsis but not in Jatropha, Int J Mol Sci, vol.20, p.2165, 2019.

L. H. Cho, R. Pasriga, J. Yoon, J. S. Jeon, and G. An, Roles of sugars in controlling flowering time, J Plant Biol, vol.61, pp.121-151, 2018.

J. Ponnu, V. Wahl, and M. Schmid, Trehalose-6-phosphate: connecting plant metabolism and development, Front Plant Sci, vol.2, p.70, 2011.

D. Horvath, Common mechanisms regulate flowering and dormancy, Plant Sci, vol.177, pp.523-554, 2009.

S. D. Michaels and R. M. Amasino, FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering, Plant Cell, vol.11, pp.949-56, 1999.

S. Castède, J. A. Campoy, L. Dantec, L. Quero-garcía, J. Barreneche et al., Mapping of candidate genes involved in bud dormancy and flowering time in sweet cherry (Prunus avium), PLoS One, vol.10, issue.11, p.143250, 2015.

R. Development-core and . Team, R: A language and environment for statistical computing, 2008.

H. Wickham and . Tidyverse, Easily Install and Load the 'Tidyverse

T. Wei, V. R. Simko, . Package, and . Corrplot, Visualization of a Correlation Matrix, 2017.

D. Bates, M. Maechler, B. Bolker, and S. Walker, Fitting linear mixed-effects models using lme4, J Stat Softw, vol.67, pp.1-48, 2015.

S. Purcell, B. Neale, K. Todd-brown, L. Thomas, and M. Ferreira, PLINK: a toolset for whole-genome association and population-based linkage analysis, Am J hum genet, vol.81, 2008.

D. Grattapaglia and R. Sederoff, Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers, Genetics, vol.137, pp.1121-1158, 1994.

J. W. Van-ooijen, JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations, 2006.

D. Kosambi, The estimation of map distances from recombination values, Ann Eugenics, vol.12, pp.172-177, 1944.

R. E. Voorrips, MapChart: software for the graphical presentation of linkage maps and QTLs, J Hered, vol.93, pp.77-85, 2002.

C. H. Kao, Z. B. Zeng, and R. D. Teasdale, Multiple interval mapping for quantitative trait loci, Genetics, vol.152, pp.1203-1219, 1999.

C. Saintagne, C. Bodénès, T. Barreneche, D. Pot, C. Plomion et al., Distribution of genomic regions differentiating oak species assessed by QTL detection, Heredity, vol.92, pp.20-30, 2004.

X. Zheng, D. Levine, J. Shen, S. Gogarten, C. Laurie et al., A highperformance computing toolset for relatedness and principal component analysis of SNP data, Bioinformatics, vol.28, pp.3326-3334, 2012.

A. Manichaikul, J. C. Mychaleckyj, S. S. Rich, K. Daly, M. Sale et al., Robust relationship inference in genome-wide association studies, Bioinformatics, vol.26, pp.2867-73, 2010.

A. Raj, M. Stephens, and J. K. Pritchard, fastSTRUCTURE: Variational inference of population structure in large SNP data sets, Genetics, vol.197, pp.573-98, 2014.

G. Evanno, S. Regnaut, and J. Goudet, Detecting the number of clusters of individuals using the software structure: a simulation study, Mol Ecol, vol.14, pp.2611-2631, 2005.

M. Jakobsson and N. A. Rosenberg, CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure, Bioinformatics, vol.23, pp.1801-1807, 2007.

N. A. Rosenberg, Distruct: a program for the graphical display of population structure, Mol Ecol Notes, vol.4, pp.137-145, 2004.

A. E. Lipka, F. Tian, Q. Wang, J. Peiffer, and M. Li, GAPIT: genome association and prediction integrated tool, Bioinformatics, vol.28, pp.2397-2406, 2012.

V. Segura, B. J. Vilhjálmsson, A. Platt, A. Korte, Ü. Seren et al., An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations, Nat Genet, vol.44, pp.825-855, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267792

X. Liu, M. Huang, B. Fan, E. S. Buckler, and Z. Zhang, Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies, PLoS Genet, vol.12, p.1005767, 2016.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J R Statist Soc B, vol.57, pp.289-300, 1995.

J. C. Barrett, B. Fry, J. Maller, and M. J. Daly, Haploview: analysis and visualization of LD and haplotype maps, Bioinformatics, vol.21, pp.263-268, 2005.

S. B. Gabriel, S. F. Schaffner, H. Nguyen, J. M. Moore, and J. Roy, The structure of haplotype blocks in the human genome, Science, vol.296, pp.2225-2234, 2002.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations