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ABSTRACT
Gibberellins (GAs) and cytokinins (CKs) are hormones that play antagonistic roles in several developmental
processes in plants. However, there has been little exploration of their reciprocal interactions. Recent work in
Medicago truncatula has revealed that GA signalling can regulate CK levels and response in roots. Here, we
examine the reciprocal interaction, by assessing how CKs and the CRE1 (Cytokinin Response 1) CK receptor
may influence endogenous GA levels. Real-Time RT-PCR analyses revealed that the expression of key GA
biosynthesis genes is regulated in response to a short-term CK treatment and requires the CRE1 receptor.
Similarly, GA quantifications indicated that a short-term CK treatment decreases the GA1 pool in wild-type
plants and that GA levels are increased in the cre1 mutant compared to the wild-type. These data suggest
that the M. truncatula CRE1-dependent CK signaling pathway negatively regulates bioactive GA levels.
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Gibberellin (GA) and cytokinin (CK) hormones are known to play
antagonistic roles in several plant developmental processes, and
some studies have reported development-dependent interactions
between these two hormonal pathways.1 In Arabidopsis thaliana
seedlings, the up-regulation of GA level and/or GA responses was
reported to inhibit CK signaling,2 and similarly, GA signaling neg-
atively regulates CK levels and/or signaling in A. thaliana and
Medicago truncatula roots.3,4 However, the reciprocal regulation
of endogenous GA levels by CKs is less clear. In A. thaliana inflor-
escences, semi-quantitative RNA gel blot analyses suggested that
CKs had no effect on the expression of a GA-responsive gene or a
GA biosynthesis gene.2 However, in the Arabidopsis shoot apical
meristem, a CK-treatment induced the expression of AtGA2oxi-
dase (GA2ox) gene, which encodes an enzyme that deactivates bio-
active GA,5” and a genome-wide expression analysis reported the
downregulation of several GA biosynthesis genes after a short-
term CK treatment in whole Arabidopsis seedlings.6 Similarly,
transcriptomic studies performed in M. truncatula roots revealed
a significant change in the expression of GA biosynthesis and
response genes after short-term CK treatment,7 suggesting that
CKs may suppress endogenous GA levels. However, no study has
examined the actual changes in endogenous GA levels in response
to CKs. Here, we explored whether CKs and the CRE1 (Cytokinin
Response 1) receptor that mediates CK responses8 influenced
endogenous GA levels inM. truncatula.

Based on transcriptomic data gained inM. truncatula roots,7

we selected two genes rapidly regulated by a CK treatment;
GA20ox1 (GA20-oxidase) and GA2ox1 (GA2-oxidase). The

GA20ox1 gene is predicted to encode an enzyme that catalyzes
the formation of the inactive GA precursor GA20, which can
then be converted to bioactive GA1 by a GA3ox enzyme.9 The
GA2ox1 gene encodes a putative enzyme that catalyzes
the deactivation of GA1 into inactive GA8

9. The expression of
these genes was analyzed by real time RT-PCR as previously
described in Fonouni-Farde et al.,4 in wild-type (WT) and
cre1 mutant roots in response to a short-term CK treatment
(BenzylAminoPurine [BAP; Sigma]; 3h; 10¡7M) (Fig. 1A). In
WT, the expression of GA2ox1 was significantly induced by
CKs, whereas the expression of GA20ox1 was conversely
repressed. These CK-dependent regulations were abolished in
the cre1 mutant (Fig. 1A), indicating that a subset of GA meta-
bolic genes requires the CRE1 receptor to be transcriptionally
regulated by CKs.

Based on the expression patterns observed in response to the
BAP treatment (Fig. 1A), we hypothesized that there may be an
increase of bioactive GAs in the cre1 mutant compared to the
WT. We therefore quantified GAs in WT and cre1 mutant
roots following a protocol derived from Boden et al.10 (Supp.
Methods). Like in the closely related legume pea,11 GA1 appears
to be the predominant bioactive form in M. truncatula, as we
could detect GA1 but not GA4. A small increase in GA1 was
detected in the roots of the cre1 mutant compared to the WT,
although this change was not significant (Fig. 1B).

As GA1 levels were near the detection limit in M. truncatula
roots, we also quantified GAs in shoots of WT plants after a
short-term CK treatment (BAP; 3 h; 10¡7M) (Fig. 1C, D) and
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in the cre1 mutant (Fig. 1E, F). In the WT, the level of the bio-
active GA1 was significantly reduced in response to the CK
treatment, whereas a small but not significant increase was
observed for the immediate precursor to GA1, GA20 (Fig. 1C,
D). To determine if the CRE1 receptor was involved in the reg-
ulation of endogenous GAs level, we quantified GA1 and GA20

in WT and cre1 shoots (Fig. 1E, F). While the content of GA1

showed no statistical difference between the WT and the cre1
mutant, the level of GA20 was significantly higher in the cre1

mutant (Fig. 1F). Taken together, these results indicate that
CKs and the CRE1 receptor are able to regulate the level of a
GA endogenous precursor and/or of a biologically active GA in
M. truncatula.

In this study, we show that CKs through the action of the
CRE1 receptor influence the levels of GAs in M. truncatula.
Together with previous results reporting that GAs can regulate
CK levels and response in M. truncatula roots,4,7 this suggests
that there is a bidirectional antagonistic regulation of CK and GA

Figure 1. CKs and CRE1 regulate GA-metabolic genes and endogenous GA levels. (A) Quantification by RT-qPCR of the expression of GA2ox1 and GA20ox1 GA-metabolic
genes, previously shown to be regulated by CKs (Ariel et al., 2012), in wild-type (WT) or in cre1 mutant roots after a BenzylAminoPurine (BAP [Sigma]; 3 h; 10–7 M) treat-
ment. (B) Quantification (in ng/g of Root Fresh Weigh [RFW]) of the bioactive GA1 in WT or cre1 mutant roots. (C-D) Quantification (in ng/g of Shoot Fresh Weigh [SFW])
of the bioactive GA1 (C) or the precursor GA20 (D) in WT shoots treated or not with BAP (3 h; 10–7 M). (E-F) Quantification (in ng/g of SFW) of GA1 (E) or GA20 (F) in WT or
cre1 mutant shoots. In (A), transcript levels are normalized relatively to untreated control roots to show fold changes and the dotted line indicates a ratio of 1. Error bars
represent standard deviations. Asterisks indicate significant differences compared to the untreated control, based on a Mann-Whitney test (a<0.05). Results are the
mean of three biological replicates, each replicate being a pool of 25 plants. In (B-F), error bars represent standard errors of the mean. Letters indicate significant differen-
ces based on a Mann–Whitney test (a<0.05). In (B), the GA1 quantification was based on four biological replicates, each replicate being a pool of at least two plants. In
(C-F), GA quantifications were based on at least five biological replicates, each replicate being a pool of at least two plants.
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levels that likely contribute to a dynamic equilibrium between
these two hormones. As bioactive GAs suppress the accumulation
of DELLA proteins,12 we can speculate that in various develop-
mental contexts the CRE1-dependent CK suppression of GA con-
tent may increase the DELLA protein accumulation and therefore
modulate the expression of target genes.13,14
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