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Abstract  47 

Texture plays a major role in the determination of fruit quality in apple. Due to its 48 

physiological and economic relevance, this trait has been largely investigated, leading to the 49 

fixation of the major gene PG1 controlling firmness in elite cultivars. To further improve fruit 50 

texture, the targeting of an undisclosed reservoir of loci with minor effects is compelling. In 51 

this work, we aimed to unlock this potential with a genomic selection approach by predicting 52 

fruit acoustic and mechanical features as obtained with a TA.XTplus texture analyzer in 537 53 

individuals genotyped with 8,294 SNP markers. The best prediction accuracies following 54 

cross-validations within the training set (TRS) of 259 individuals were obtained for the 55 

acoustic linear distance (0.64). Prediction accuracy was further improved through the 56 

optimization of TRS size and composition according to the test set. With this strategy, a 57 

maximal accuracy of 0.81 was obtained when predicting the synthetic trait PC1 in the family 58 

‘Gala � Pink Lady’. We discuss the impact of genetic relatedness and clustering on trait 59 

variability and predictability. Moreover, we demonstrated the need for a comprehensive 60 

dissection of the complex texture phenotype and the potentiality of using genomic selection to 61 

improve fruit quality in apple. 62 

 63 

Introduction 64 

Fruits, during maturation and ripening, undergo a complex series of genetically 65 

programmed events contributing to their attractiveness and suitability for human 66 

consumption. Amongst the various physiological and physical changes, fruit texture is 67 

certainly the most important and investigated traits, especially in apple. A favorable texture is 68 

in fact highly appreciated by consumers, enabling, moreover, a long-term storage.  69 

Texture can nowadays be dissected into two groups of sub-traits, mechanical and 70 

acoustic, contributing to distinguish between firm (based on mechanical sub-traits) and crispy 71 

(based on acoustic sub-traits) types of apples. These texture parameters have been already 72 

described and validated in apple (Costa et al., 2011, 2012), and were implemented in QTL-73 

mapping studies carried out with bi-parental populations (Longhi et al., 2012) as well as more 74 

structured approaches, such as Pedigreed Based Analysis (PBA) and Genome-Wide 75 

Association Studies (GWAS, Kumar et al., 2013; Migicovsky et al., 2016; Amyotte et al., 76 

2017; Di Guardo et al., 2017; McClure et al., 2019). These works elucidated the complex 77 

genetic control of the fruit texture in apple, identifying a large number of QTLs distributed 78 

over the apple genome, with the most relevant regions located on chromosome 3, 10 and 16. 79 

This genetic complexity is moreover reflected in the regulation of the cell-wall and middle 80 
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lamella disassembling, a physiological process orchestrated by a myriad of cell-wall 81 

modifying enzymes (Giovannoni, 2001; Costa et al., 2010a). This highly polygenic control 82 

can hamper the selection assisted by molecular markers in breeding activities programmed to 83 

ameliorate fruit texture performance (Iwata et al. 2016). In the QTL mapping studies carried 84 

out to date, a major region was located on chromosome 10, close to the polygalacturonase 85 

locus (Costa et al., 2010b; Longhi et al., 2013). This QTL explains a high (about 40%) yet 86 

incomplete part of the texture variance, leaving room for better harnessing this trait. As 87 

introduced by Di Guardo et al. (2017), in modern breeding programs this locus has been fixed 88 

through successive rounds of ad-hoc crossing and selection. In turn, the phenotypic variance 89 

of modern families, obtained by crossing valuable parents for texture performance, might now 90 

be under the control of other loci with minor-effect. Selection based on QTLs associated to 91 

this trait can therefore be limited by the fact that QTL-based approaches ignore small effect 92 

QTLs possibly underlying the control of such traits (Desta & Ortiz, 2014). To face this 93 

limitation, an alternative approach for genome-assisted breeding known as genomic selection 94 

(GS) has been introduced by the seminal work of Meuwissen et al. (2001). In contrast to 95 

marker assisted selection, GS defines the estimation of the genetic merit of an individual 96 

taking into account all genome-wide distributed genetic markers, making it especially relevant 97 

for complex traits (Heffner et al., 2009). GS considers two sets of individuals: the training set 98 

(TRS), genotyped and phenotyped to train a prediction model, and the test set (TS, also called 99 

validation set), represented by individuals only genotyped on which the genomic estimated 100 

breeding value (GEBVs) is estimated (Heffner et al., 2009; Crossa et al., 2017). In principle, 101 

the most favorable scenario for GS is to predict highly heritable traits in a TS highly related to 102 

the TRS. While trait heritability can be increased (to a certain extent) by more precise and 103 

more repeated phenotyping, relatedness between TS and TRS can be optimized with different 104 

strategies. Dedicated approaches and tools have been proposed to address this issue based on 105 

optimization parameters (Laloë, 1993; Rincent et al., 2012; Isidro et al., 2015) and algorithms 106 

(Akdemir et al., 2015). In theory, it could thus be feasible to acquire phenotypic and 107 

genotypic data for a highly diverse TRS in the first place and, in the second place, to retain 108 

individuals of the optimal TRS for a given TS in silico.  109 

GS has been largely applied in major crops for primary traits such as yield (Crossa et 110 

al., 2017). In perennial species, GS would have a great potential in improving the breeding 111 

efficiency due to their long generation time (McClure et al., 2014). It has been pioneered in 112 

forest trees (reviewed in Grattapaglia, 2017) and more recently in fruit trees such as crops 113 

from the Malus, Citrus and Pyrus genera (Muranty et al. 2015; Minamikawa et al., 2017, 114 
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2018). GS has also been recently employed to investigate fruit quality in tomato (Duangjit et 115 

al., 2016), while in apple standard fruit pomological traits were predicted using 8 to 20 full-116 

sib families as training populations (Kumar et al., 2012, 2015; Muranty et al., 2015). In apple, 117 

low to high prediction accuracies were obtained depending on the cross-validation design and 118 

on trait heritability. Among these studies, fruit texture was only partially addressed via 119 

classical fruit firmness measurements (Kumar et al., 2012, 2015; McClure et al., 2018) and 120 

sensorial evaluation (Kumar et al., 2015).  121 

In this work, we attempted to predict fruit texture in 6 full-sib families with a diverse 122 

training set considering several acoustic and mechanical traits dissecting fruit texture. Further, 123 

we explored the methodological improvements that can be made to optimize the TRS 124 

according to the TS, which contributed to improve prediction accuracies. In this context, we 125 

discussed the feasibility of genomic selection for ameliorating fruit quality through molecular 126 

assisted breeding programs.  127 

 128 

Materials and methods 129 

 130 

Plant Material 131 

The plant material and phenotyping strategies used in this work have been detailed in 132 

previous works (Costa et al., 2011; Longhi et al., 2012; Di Guardo et al., 2017). Briefly, two 133 

types of plant materials have been used in this survey. The first was an apple collection 134 

represented by 259 accessions planted in three replicates at the experimental orchards of the 135 

Fondazione Edmund Mach (Trento) in the Northern part of Italy. The second type of plant 136 

material consisted of 6 full-sib biparental families, for a total of 278 offsprings. Two (‘FjDe’: 137 

‘Fuji’ x ‘Delearly’ and ‘FjPL’: ‘Fuji’ x ‘Pink Lady’) were located at the Fondazione Edmund 138 

Mach (same orchard as the collection), while the other four (‘GaPL’: ‘Royal Gala’ x ‘Pink 139 

Lady’, ‘GaPi’: ‘Royal Gala’ x ‘Pinova’, ‘FjPi’: ‘Fuji’ x ‘Pinova’ and ‘GDFj’: ‘Golden 140 

Delicious’ x ‘Fuji’) were planted at the experimental orchard of the Laimburg Research 141 

Center (Bolzano), located in the same area with near-identical climatic and pedological 142 

conditions. At the time of the analysis, all plants (from both collection and families, together 143 

named as ‘population’ here) were in a productive and adult phase. Fruit texture was 144 

phenotyped in 2012, 2013 and 2015 for the collection, and in 2012 and 2013 for ‘FjDe’ and 145 

‘FjPL’ and in 2012 and 2014 for the four remaining families (Table 1). Unlike the collection, 146 

each offspring belonging to the six families was represented by a single tree (no replicates). 147 

All plants, from both collection and bi-parental families, were grafted on ‘M9’ rootstock and 148 
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grown according to conventional horticultural management for plant training, pruning and 149 

pest-disease control. 150 

Fruits were harvested from each plant at the time of the physiological ripening stage, 151 

established according to standard horticultural fruit quality parameters, such as the change in 152 

color of the skin, seeds and flesh, fruit firmness value and the iodine coloration index 153 

indicating the internal starch degradation. After harvest, fruits were stored for two months at 154 

2°C with 95% of relative humidity.  155 

 156 

Texture phenotyping 157 

The texture performance of the apple fruit was phenotypically dissected into 158 

mechanical and acoustic sub-traits with the use of a texture analyzer TA.XTplus (Stable 159 

MicroSystems Ltd., Godalming, UK) equipped with an acoustic envelop device AED (Stable 160 

MicroSystems Ltd., Godalming, UK), as described in Costa et al. (2011). For each genotype 161 

included in the population, a homogeneous set of five apples was collected. Four identical 162 

discs were isolated per fruit, avoiding seeds, seed cavity tissues or skin, for a total of 20 163 

measurements per genotype (5 biological replicates and 4 technological replicates). Each 164 

texture profile was then digitally elaborated identifying 12 texture measurements (i. e. ‘sub-165 

traits’), four related to the acoustic performance and eight to the mechanical force-166 

displacement. In brief, the mechanical sub-traits were coded as: initial, final, maximum and 167 

mean force (related to the different force values associated to the different parts of the force-168 

displacement profile), area, force linear distance (derived length of the profile), Young’s 169 

module (also known as elasticity module) and number of force peaks. The acoustic sub-traits 170 

were maximum and mean acoustic pressure, acoustic linear distance and number of acoustic 171 

peaks. A more exhaustive and complete description of the texture sub-traits is reported in 172 

Costa et al. 2011. 173 

 174 

SNP genotyping 175 

The DNA employed for the genotyping of each individual considered in this survey 176 

was isolated from young leaves collected at the beginning of the vegetative phase with the 177 

Qiagen DNeasy Plant Kit and further quantified with a Nanodrop ND-8000 178 

(ThermoScientific, USA). SNP markers were genotyped through the HiScan (Illumina, USA) 179 

and the apple 20K SNP chip Infinium array (Illumina, USA) assembled within the framework 180 

of the European project FruitBreedomics (Bianco et al., 2014). The SNP pattern was initially 181 

analyzed with the software GenomeStudio and further re-edited with ASSiST (Di Guardo et 182 
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al., 2015). SNPs with minor allele frequencies lower than 0.05 and call rate below 0.2 were 183 

filtered out with the package ‘snpStats’ (Clayton, 2019). The final set of markers successfully 184 

recovered in the population consisted in 8,294 biallelic SNPs.  185 

Analysis of the fruit texture sub-traits 186 

We used a mixed linear model to get the best linear unbiased predictors (BLUPs) of 187 

each individual's genotypic value. For each apple measured, we first calculated the mean over 188 

the four technical replicates to retain only the biological replication level in the model. Each 189 

of the twelve mechanical or acoustic sub-traits, considered as ‘Y’, was explained by the 190 

genotype as random effect, the trial (location by year) as fixed effect and the random effect of 191 

the error as: ��,�,� �  � � ��	
���� � ������ � ��,�,� (1), with each phenotypic datapoint 192 

��,�,� explained by the mean �, the genotype i, the trial j and the error for each combination of 193 

genotype, trial and replicate (k, i.e. a single apple). This model was fitted separately for all 194 

traits with the ‘lme4’ R-package (Bates et al., 2015). Broad-sense heritability was calculated 195 

as �� �  
���

������� ����	
 (2), where �
�is the genotypic variance, ��� is the error variance and 	�� 196 

the mean number of repetitions. 197 

Principal component analysis (PCA) was performed on BLUPs with the ‘FactorMiner’ 198 

R-package (Lê et al., 2008). Only values from the collection were used to create the principal 199 

components, while the families were plotted as supplementary individuals with principal 200 

components (PC) coordinates calculated on the base of the PCs initially built with the 201 

collection. Coordinates of individuals on the first and the second PCs (‘PC1’ and ‘PC2’) were 202 

used for prediction and subsequently named ‘synthetic’ traits.  203 

 204 

Kinship and clustering analyses 205 

The realized additive relationship was calculated with the ‘A.mat’ function of the 206 

‘rrBLUP’ package (Endelman, 2011) and depicted in a heatmap plot obtained with the R-207 

function ‘heatmap.2’ (package ‘gplots’, Warnes et al., 2016). Genetic clustering was further 208 

assessed in the collection with a discriminant analysis of principal components (DAPC, 209 

Jombart et al., 2010), carried out with the R-package ‘adegenet’ (Jombart, 2008) using the 210 

entire set of 8,294 markers. In the first step, six significant clusters were retained with the 211 

function ‘find.clusters’ using 300 principal components and selecting the number of clusters 212 

with the highest likelihood (based on the Bayesian information criterion value-BIC, Fig. S1). 213 

Out of these variables, 150 were retained and employed in the clustering computed with the 214 
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‘dapc’ function, which created five principal components that maximized the inter-cluster 215 

distance while minimizing the inter-individual distance within each cluster. The assignment of 216 

offsprings to clusters was obtained with the function ‘predict_dapc’. Pairwise Fst values 217 

between clusters were then computed with the entire SNP set with the function 218 

‘pairwise.WCfst’ from R-package ‘hierfstat’ (Yang, 1998, Goudet 2005). 219 

 220 

Prediction models 221 

 Genomic predictions were computed through two models implemented in the rrBLUP 222 

framework, as reported in Endelman et al. 2011 (and ‘rrBLUP R’-package): 223 

 224 

� �  � � �� � �    (3), model A 225 

� �  � � �� � �� �  �   (4), model B 226 

 227 

where Y is the vector of BLUPs of the genotypic values (	 �  1), � is the mean of the 228 

phenotype, W is the 	 �   incidence matrix linking the genotypes to observations of Y, G 229 

contains the allelic states of the marker loci (additive coding -1,0,1), � the  �  1 vector of 230 

random marker effects with � ~ ��0, ��� � �, and  � is a 	 �  1 vector of random errors. Model 231 

(B), contains also �, the 	 �    incidence matrix for cluster assignment of each individual, 232 

where c is the number of clusters and � is the   �  1 vector of the cluster fixed effects. 233 

A 5-fold cross-validation was applied within the collection with both model (A) and 234 

(B) respectively and repeated 100 times. For predicting each family (considered then as TS), 235 

three different TRS composition rules, named as “scenarios”, were tested using the two 236 

models without a priori genetic information on individuals. In scenario 1, each family was 237 

predicted using the collection only. In scenario 2, 30% of individuals of the predicted family 238 

were instead added to the collection in the TRS while the remaining 70% formed the TS. In 239 

scenario 3, a single half-sib family (e.g. ‘GaPL’ is half-sib with ‘FjPL’ and ‘GaPi’) was added 240 

to the collection to form the TRS, leading to two to four TRS possibilities (and accuracy 241 

values). To illustrate the scenarios taking ‘GaPi’ as an example, scenario 1 corresponded to 242 

[TRS = COLL // TS = ‘GaPi’] (one accuracy estimation only), scenario 2 corresponded to 243 

[TRS = 30% ‘GaPi’ offsprings + COLL // TS = 70 % remaining offsprings of ‘GaPi’] 244 

(sampling of the 30% repeated 100 times, giving 100 estimations of the accuracy), and 245 

scenario 3 corresponded to [TRS = ‘GaPL’ or ‘FjPi’ + COLL // TS = ‘GaPi’] (resulting here 246 

in the estimation of two accuracy values). 247 
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TRS optimization was then performed with a priori genetic information on individuals 248 

by varying TRS size with different optimization methods relying on the prediction model A. 249 

To this end, a relatedness-driven and a principal component-driven approaches were adopted. 250 

The relatedness-driven approach was tested in three different manners: (i) by starting with the 251 

10 most-related individuals and adding single individuals with decreasing mean relationship 252 

to the family, or (ii) with decreasing maximum relationship to the family (N=10 to N=259), or 253 

(iii) by starting with a TRS composed of the most related cluster and adding less and less 254 

related clusters successively (final TRS size N=259). In the principal component-driven 255 

approach, TRS individuals were selected with increasing TRS size using a protocol by 256 

Akdemir (R-package ‘STPGA’, 2019). The optimal TRS with increasing size from 10 257 

individuals to 259 with increments of 20 individuals was chosen based on the five principal 258 

components obtained with DAPC analysis and using the ‘CDmean’ design criteria and the 259 

function ‘GenAlgForSubsetSelection’. Here, individuals were chosen independently for each 260 

TRS size, meaning that we did not proceed to a gradual enrichment of the TRS. 261 

All accuracy values were based on Pearson correlation calculated between observed 262 

values (i.e. BLUPs of genotypic values) and predicted values of the TS individuals. When 263 

standard deviations were not available, we calculated an approximate 95% confidence interval 264 

of the correlation coefficient with a Fisher’s Z-transformation (‘cor.test’ function in base R). 265 

Calculations were performed in R (R Core Team, 2014) and graphs were created with the R-266 

package ‘ggplot2’ (Wickham, 2016). 267 

Results 268 

 269 
Fruit texture phenotypic dissection 270 

The fruit texture phenotypic data used in this survey were represented by the analysis 271 

of multi-trait features accurately dissected into 4 acoustic and 8 mechanical sub-traits (Table 272 

2, Table S1). A mixed linear model was used to obtain BLUPs of genotypic values used in the 273 

further analyses. The texture sub-traits showed an overall high heritability, spanning from 274 

0.90-0.96 for the entire population (collection and families) to 0.88-0.94 for the apple 275 

accessions included in the collection (Table 2). In order to visualize the diversity and 276 

inheritance of fruit texture profiles, a principal component analysis (PCA) was performed 277 

using the twelve textural sub-traits measured in the collection, while individuals from families 278 

were considered as supplementary individuals (see also Di Guardo et al. 2017, Fig. 1). In this 279 

analysis, the first PC axis (PC1), explaining 80.5% of phenotypic variability, comprehensively 280 

summarizing the general variability of the twelve phenotypic variables. The second axis 281 
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(PC2), instead, mainly differentiated the acoustic from mechanical sub-traits, explaining a 282 

smaller, yet substantial, portion of the phenotypic variability (12.7%, Fig. 1A).  283 

In the distinction between the two types of texture sub-traits (mechanical and acoustic) 284 

by PC2, it is worth noting that one mechanical variable (FNP) was oriented together with the 285 

acoustic group. FNP was in fact more correlated with acoustic sub-traits (mean correlation 286 

0.77) than with the rest of the mechanical ones (mean correlation 0.69, Fig. 1A). Individuals 287 

of the population were present in the four quadrants of the PCA 2D-plot, identifying different 288 

types of texture: mealy (negative PC1), predominantly firm (positive PC1 and negative PC2) 289 

and predominantly crispy (positive PC1 and positive PC2, Fig. 1B). With this regard, the 290 

distribution of texture profiles indicated that the collection is mainly composed of individuals 291 

with low to moderate crispiness and firmness at the exception of few outliers. It is also 292 

important to note that variation on the PC2 axis is much lower for accessions having a 293 

negative PC1 value, illustrating that mealy apples cannot be crispy (Fig. 1B).  294 

The six parental cultivars, known to have different texture profiles after two months of 295 

storage, were, as expected, plotted over the different quadrants of the PCA 2D-plot (Fig. 1C). 296 

‘Delearly’ and ‘Golden Delicious’ were plotted in the area corresponding to the mealy type of 297 

apple, while ‘Royal Gala’ was instead grouped with moderately firm apples. ‘Fuji’, ‘Pink 298 

Lady’ and ‘Pinova’ were instead positioned in the positive quadrant for both PC1 and PC2, 299 

corresponding to the crispy type of apple. The populations originated by the controlled cross 300 

of these varieties were also distributed over the PCA plot with specific orientations (Fig. 1B-301 

C). In particular, ‘FjPL’ offsprings were mostly projected towards the ‘firm quadrant’, while 302 

‘GDFj’ was more oriented in the ‘crispy quadrant’ (Fig. 1B). Moreover, the segregation of the 303 

families was very variable with regard to their corresponding parental profiles (Fig. 1C). 304 

While ‘GDFj’ was the only family showing a classic type of segregation (intermediate 305 

between the parents), the distributions of the other families were more similar to one of the 306 

two parents (‘FjDe’ and ‘GaPi’), with a varying number of offsprings being of transgressive 307 

type (‘FjDe’ ,‘GaPL’, ‘FjPi’ and ‘FjPL’). In particular, while ‘Fuji’ and ‘Pink Lady’ showed a 308 

very similar texture profile on PC1 (2.99 and 3.14 respectively), major differences were 309 

observed on the PC2 (1.6 and 0.51 respectively, Fig. 1C, Table S1). Variation in the texture 310 

performance of  ‘FjPL’ offsprings was also observed on the PC2 axis, although with a much 311 

broader variation with regards to ‘Fuji’ and ‘Pink Lady’. Accordingly, apples of this family 312 

were overall firm to very firm while having a very low to very high crispiness (Fig. 1C, Table 313 

S1, Fig. S2).  314 

 315 
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Additive relationship and genetic clustering in the population 316 

The accuracy of genomic prediction is highly correlated to the level of relatedness 317 

between the training and the test sets (TRS and TS). To identify the overall patterns of 318 

relatedness between families and the collection, a clustering analysis of all the individuals 319 

based on their pairwise additive relationship was performed (Fig. 2). The parental cultivar 320 

‘Royal Gala’ was found to be the most related to the rest of the collection (mean additive 321 

relatedness -6.32E-4), while ‘Fuji’ was the most distantly related (mean additive relatedness -322 

0.102, Table S2). Accordingly, ‘Royal Gala’–related families were more closely related to the 323 

collection respect to the four ‘Fuji’-related families, plotted together on the top-right panel of 324 

the heatmap (Fig. 2). Mean additive relationship values for each family reflected the patterns 325 

observed on the heatmap, namely higher values for ‘GaPi’ and ‘GaPL’ (-0.021 to -0.020) and 326 

lower for ‘Fuji’-related families (-0.056 to -0.078, Table 1, Table S2).  327 

  To investigate the genetic structure of the collection and its impact on the prediction 328 

accuracy, a discriminant analysis of principal component with the entire SNP set (8,294 329 

SNPs) was performed. Through the BIC criteria, six clusters, described with five principal 330 

components, were defined as the most probable (see Methods, Fig. S1). All parental cultivars 331 

were assigned to cluster 5, except ‘Fuji’ that was grouped in cluster 2 (Fig. 3A, Table S3). Of 332 

these clusters, cluster 5 resulted to be the largest (N=66), while the smallest was cluster 6 333 

(n=25, Table 1, Table S3). The cluster assignment in families was predicted using the 334 

principal components derived by the DAPC analysis carried out on the collection. Most of the 335 

individuals were assigned to the parental clusters 2 and 5, while 8 individuals of ‘FjDe’ and 336 

one of ‘FjPi’ were assigned to cluster 1 (Table 1, Fig. 3B-C). Overall, clusters 2 and 5 337 

contained the largest part of the whole population, while clusters 1, 3, 4 and 6 were the lowest 338 

represented (Fig. 3C, Table S3). However, while the DAPC analysis suggested this genetic 339 

clustering as the most realistic in the diversity panel represented by the collection, the 340 

pairwise Fst-values between clusters indicated a low genetic differentiation (values comprised 341 

between 0.002 and 0.018, Table S4). The Fst value between clusters 2 and 5, containing the 342 

parents and most of their offsprings, was for instance 0.013. As our design allowed the 343 

comparison of families obtained from crosses within cluster 5 (‘Royal Gala’-related) and 344 

between clusters 2 and 5 (‘Fuji’-related), the information on genetic clustering was further 345 

used to control the genetic background in the subsequent prediction models (‘model B’, see 346 

Methods). The phenotypic distributions across clusters reveal that clusters 2 and 5 have, for 347 

all traits except PC2, elevated values compared to other clusters, with values of cluster 2 348 
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individuals surpassing those of cluster 5 (Fig. S3), indicating a possible correlation existing 349 

between genetic clustering and texture. 350 

 351 

Cross-validations within collection 352 

 A hundred 5-fold cross-validations within the collection were run with the additive 353 

rrBLUP model on BLUPs with and without considering the genetic clustering as a fixed effect 354 

(models A and B, respectively). In this context, PC1 and PC2 were also considered as traits, 355 

leading in the end to 14 predicted traits (Fig. S4). Instead of improving predictions, the 356 

inclusion of the clustering effect degraded accuracies for all traits, with a maximum accuracy 357 

decrease of 0.02 for the mean force (FMean). The highest mean prediction was obtained for 358 

the acoustic linear distance (ALD, !��	  
� � 0.64, Fig. S4) whereas the number of force 359 

peaks yielded the second highest accuracy (FNP, !��	  
� � 0.63, Fig. S4, Table S5). 360 

Moreover, while FNP yielded a relatively high accuracy as inferred from heritability (0.93, 361 

Table 2), the overall mean accuracies among traits did not follow the ranking of heritability 362 

obtained within the collection phenotypes (Wilcoxon signed-rank-test, p-value � 4.88E-4, 363 

model A).  364 

 365 

Genomic prediction of families without training population optimization 366 

In practice, families can be predicted with any available related genetic material that 367 

has been genotyped and phenotyped. For this reason, three different scenarios of training 368 

population design were tested, including or not individuals from the predicted family or from 369 

a half-sib family (see Methods, “Prediction models”). The predictions in each of these 370 

scenarios were calculated with the two prediction models (A and B, respectively depicted in 371 

Fig. 4, Fig. S5). Without clustering, overall three families (‘FjPi’, ‘GaPi’ and ‘GaPL’) could 372 

be predicted with moderate to high accuracies (accuracies ranging from 0.08 for PC2 in 373 

‘GaPi’ to 0.73 for PC1 in ‘GaPL’, respectively), with PC1 being the best predicted trait 374 

among these families (mean for scenario 1, model A: 0.50, Fig. 4). The three remaining 375 

families yielded near-zero (‘FjPL’) or negative accuracies (‘FjDe’ and ‘GDFj’, mean 376 

accuracies between -0.29 and 0.30, Fig. 4). The correlations between predicted and observed 377 

values for each individual and for all traits and families obtained are depicted in Fig. S6 378 

(model A and scenario 1). Out of 252 combinations of trait, scenario and family predictions, 379 

only 74 gave better accuracies (considering an increase in accuracy larger than 0.01). When 380 

considering accuracies above 0.20, this number dropped to 40 out of 103 family-trait-scenario 381 
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combinations (maximum gain: 0.04, Table S6, Fig 4, Fig. S5). Thus, the implementation of 382 

clustering did not clearly improve the predictions of families. 383 

It is also important to underline that the addition of related individuals to the collection 384 

did not systematically improve the predictions. For instance, in ‘GaPL’ the prediction was 385 

more accurate with scenario 1 with regards to scenario 2 and 3 (mean prediction accuracies of 386 

0.60, 0.56 and 0.53 respectively for scenario 1, 2, 3, respectively, model A). Scenario 2 387 

particularly improved the accuracies in ‘FjPi’ (mean accuracies of 0.32, model A) as it better 388 

predicted 12 out of 14 traits. Scenario 3 instead was the lowest performing, although it 389 

increased the prediction accuracy of 7 traits (8 with clustering) in ‘GaPi’ (mean accuracy of 390 

0.38, all values across trait in model A, Fig 4, Table S6).  391 

 392 

Genomic prediction of families with training population optimization 393 

To test the hypothesis that retaining only the most related individuals or clusters in the 394 

TRS might allow to maximize prediction accuracies, we compared the predictive abilities 395 

obtained for each family and trait using training sets with different sizes. This process started 396 

with a small TRS having the highest relatedness to which individuals were added in the order 397 

of decreasing relatedness to reach the size of the entire collection using three different 398 

enrichment procedures (see Methods). TRS optimization was also carried out with a more 399 

sophisticated approach based on the optimization algorithm presented by Akdemir et al. 400 

(Akdemir et al., 2015; Akdemir & Isidro-Sánchez, 2019), using DAPC-defined principal 401 

components and the ‘CD-Mean’ value as decision criterion. The results obtained using these 402 

different methods are illustrated in Table 3, Fig. 5 and Fig. S7 for four traits selected for their 403 

practical relevance (ALD, FNP, PC1 and PC2) while results for the remaining traits are 404 

reported in Table S7. Regarding the four selected traits, the best accuracy for each of the 405 

6 � 4 family-trait combinations was in most cases obtained with the addition of single 406 

individuals based on their relationship to the family (in 10 cases using the maximum 407 

relationship and in 10 cases using the mean relationship, Fig. 5A and B, Table 3, Table S7). 408 

The mean optimal population size was 92 individuals with a minimum size of 10 and a 409 

maximum size of 202 individuals (Table 3, Table S7), meaning that the entire collection was 410 

never considered as the optimal TRS for predicting texture. The maximal accuracies observed 411 

ranged from 0.01 to 0.81, which corresponded to a mean increase in accuracy of 0.17 when 412 

compared to predictions of families with the entire collection (minimum increase: 0.02; 413 

maximum increase: 0.40 – compared to scenario 1, model A). The highest accuracy was 0.81, 414 
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and was obtained for the “multi-trait” PC1 in ‘GaPL’ family with only 129 individuals, i.e. 415 

nearly half of the collection size. The distribution of accuracies with increasing TRS size in 416 

each family for the four focal traits was also investigated (Fig. 5). Overall, traits tended to 417 

follow the same trend within a family. In families ‘GaPL’ and ‘GaPi’, which had the highest 418 

relatedness to the collection among all families (Table 1), the accuracy was moderate to high 419 

from as few as 100 individuals for ALD, FNP and PC1, and remained relatively stable while 420 

increasing TRS size (Fig. 5A-D). ‘FjPi’ was the only family for which increasing TRS up to 421 

200 individuals resulted in a clear accuracy improvement, with any of the approaches 422 

implemented here (Fig. 5A-D). In families with overall low accuracies, such as ‘FjDe’, ‘FjPL’ 423 

and ‘GDFj’, the highest accuracy was in most cases obtained with 10 to 70 individuals, and 424 

declined or remained stable with larger TRS size (Fig. 5A-D). In ‘GDFj’, for instance, 425 

accuracies above 0.2 were found only with a TRS of 10 to 66 individuals (Fig. 5A-C, Table 426 

S7). Moreover, while FNP was not predictable in ‘GDFj’ with the entire collection (��� �427 

0.08 for � � 259), an improved accuracy of 0.32 was observed with as few as 15 individuals 428 

(based on maximum relationship, Fig. 5B). 429 

Discussion 430 

In this work we assessed the feasibility of genomic selection (GS) for apple texture by 431 

performing an in-depth analysis of this complex phenotype together with the genetic 432 

correlates influencing its genomic predictions. The results presented here on genomic 433 

prediction for apple texture evidenced a large potential for GS for this trait, providing 434 

important key elements and tools to set-up a prediction experiment given the available genetic 435 

information in any apple population. 436 

 437 

Family-dependent fruit texture profiles and fruit texture prediction 438 

The texture dissected “sub-traits” were highly heritable, although variability within 439 

families was very contrasted, showing, in specific cases, a transgressive segregation, such as 440 

‘FjPL’. Although the traits were predictable with moderate to high accuracy within the 441 

collection (accuracies between 0.41 and 0.64), this was not easily achievable in all biparental 442 

families. Without TRS optimization, texture could be accurately predicted for ‘GaPL’ (mean 443 

accuracy of 0.57), while ‘GaPi’ and in ‘FjPi’ showed a moderate prediction accuracy (mean 444 

accuracy of 0.30). In contrast, near-zero or negative accuracies were instead obtained for 445 

‘FjDe’, ‘FjPL’ and ‘GDFj’ across traits (mean accuracy of -0.05). Surprisingly, large negative 446 

accuracy values were repeatedly obtained in ‘FjDe’ and ‘GDFj’, which could be potentially 447 

explained by the strong epistatic effect possibly present in these families (Lehner, 2011) or by 448 
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a systematic bias due to the calculation of the Pearson correlation coefficient (Zhou et al., 449 

2016), indicating that fruit texture cannot be predicted in these families using the entire 450 

collection as TRS. In contrast, previous works on firmness and crispiness yielded mostly low 451 

accuracies when predicting unobserved genotypes in a set of families or in a collection 452 

(between 0.15 and 0.35, Kumar et al. 2015, McClure et al. 2018). A much higher accuracy of 453 

0.83 was found for firmness by Kumar et al. (2012), which can be mainly explained by their 454 

crossing design and validation procedure. In the present study, the analysis of PCA allowed to 455 

better understand the relation between firmness and crispiness, both positively correlated and 456 

summarized by PC1 and PC2, with PC2 specifically dissecting the difference between these 457 

two texture sub-traits. When used as synthetic trait in the computation, PC1 was among the 458 

best predictable traits (accuracy of 0.59 in collection and highest accuracy among traits and 459 

family: 0.73 in GaPL), justified by the 80.5% of total phenotypic variation explained by PC1, 460 

while PC2 accounted only for 12.7%. Despite the lower variability of  PC2, this trait could be 461 

predicted with a reasonable accuracy of 0.42 in the collection, while in most of the families 462 

the accuracy level was above 0.2 (with, and in some cases without TRS optimization). PC2 463 

was not predictable in ‘GDFj’ and ‘FjPL’, two families with moderate and high transgression 464 

on the PC2 axis. The results showed that using PC1 and PC2 as a first tentative to perform a 465 

multi-trait prediction was a relevant method to predict fruit texture profiles through an 466 

integrative approach.  467 

 468 

Impact of genetic clustering and relatedness on prediction accuracy 469 

Having highly related individuals between the TRS and the TS is necessary but not 470 

always sufficient for an optimal TRS design; in fact enlarging the TRS with scarcely related 471 

individuals can diminish prediction accuracies (Lorenz & Smith, 2015). Moreover, trait 472 

variation can be coupled with genetic structure. Several studies have for instance showed the 473 

impact of genetic structure on genomic prediction, demonstrating that taking genetic structure 474 

into account can improve GS efficiency (Guo et al., 2014; Isidro et al., 2015; Rio et al., 475 

2019). Although in apple the genetic structure is known to be weak, with substantial levels of 476 

admixture in apple cultivars (Urrestarazu et al., 2016; Vanderzande et al., 2017; Cornille et 477 

al., 2019), it could still have a relevant effect on predictions, depending on the population 478 

composition and the trait under investigation. Significant genetic structure has been identified, 479 

for instance, between dessert and cider apples, which could potentially be correlated with fruit 480 

quality traits (Lassois et al., 2016). Through the implementation of the DAPC method, six 481 

significant although lowly differentiated genetic clusters were obtained, with families 482 
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belonging to one or two specific clusters, depending mostly to the assignment of their parental 483 

cultivars. While some degree of correlation was apparent between the genetic clustering of 484 

individuals and their phenotypic distribution (Fig. S3), the addition of the clustering effect 485 

into the prediction model almost systematically degraded the prediction accuracies. Moreover, 486 

the TRS optimization based on clustering was the lowest performing among the four methods 487 

tested. This could indicate that additive relationship alone already captured the genetic 488 

clustering present in our population. One important information given by the clustering 489 

patterns was that the ‘GaPL’ and ‘GaPi’ families, for which both parents were in the same 490 

genetic cluster or in the best represented cluster in the collection (Cluster 5), yielded the best 491 

predictions.  492 

The genetic parameter having the largest impact on predictions was genetic 493 

relatedness, with the two families most related to the collection (‘GaPL’ and ‘GaPi’) yielding 494 

by far the highest accuracies compared to the remaining Fuji-related families. This 495 

observation finds consistency to the fact that genetic relationship is a fundamental parameter 496 

in genomic prediction (see e.g. Habier et al., 2010; Clark et al., 2012; Daetwyler et al., 2014). 497 

The addition of closely-related individuals from the same family (scenario 2) or from a 498 

complete half-sib family (scenario 3) to the collection did not improve the prediction 499 

accuracy, except for ‘FjPi’, for which scenario 2 was the most accurate. This result might 500 

indicate that either the collection retains already ‘enough’ diversity to predict families, or that 501 

the excess of unrelated individuals in the collection cannot be corrected by adding related 502 

individuals. Thus, scenario 2 and 3 do not seem to effectively improve the TRS.  503 

To this end, the gradual increase of the TRS size using a priori information of genetic 504 

parameters was used as an alternative optimization strategy. TRS optimization was tested in 505 

four different ways, based on a priori information on similarities between individuals. These 506 

were represented either by additive relationship or by genetically derived principal 507 

components coordinates (Fig. 5, Fig. S7, Table 3, Table S7). The results allowed in all cases 508 

to improve predictions tested beforehand with TRS scenarios 1 to 3 with a minimal increase 509 

of 0.2 and maximal increase of 0.4, reaching a maximum accuracy of 0.81 (‘GaPL’, PC1, 510 

Table 3). This means that the maximum accuracies were also never reached by employing the 511 

entire collection, especially for families with the lowest genetic relatedness to the TRS (i.e. to 512 

the collection here). The best prediction accuracy for fruit texture in apple was obtained with 513 

the implementation of 50 individuals in the TRS for families less related to the entire TRS and 514 

at least 100 accessions for families with a higher genetic relationship (or clustering within the 515 

major genetic cluster of the TRS, such as ‘GaPL’ and ‘GaPi’ here). These results are 516 
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consistent with previous findings in barley from Lorenz and Smith (2015), that showed the 517 

detrimental effects of adding unrelated individuals to the TS into the TRS, partially 518 

contradicting the idea that having at least one related individual in the TRS is sufficient to 519 

increase accuracies (Daetwyler et al., 2014). 520 

Our results thus provided useful information for the TRS composition, illustrating the 521 

complex roles of structure and relatedness in shaping texture variability in apple. 522 

 523 

Towards a simplified assessment of fruit texture for genomic selection 524 

The improvement of fruit texture is still limited by the time-consuming and expensive 525 

assessment needed for its dissection and the low variation observed in modern elite apple 526 

accessions due to the fixation of PG1 (Atkinson et al., 2012; Di Guardo et al., 2017). Thus, 527 

even though we demonstrate the feasibility of GS for apple texture, its application will be 528 

considered only if predictions are precise enough to perform the costly phenotyping of the 529 

TRS. The characterization of texture is a challenging task, as this trait is composed of 530 

mechanical and acoustic sub-traits. The analysis of PC1 and PC2 relied on the texture 531 

dissection and the measurements of these 12 traits. In particular, FNP, which is the number of 532 

mechanical peaks observed in the mechanical profile generated by fruit compression on the 533 

texture analyzer, was highly correlated with the group of the acoustic traits related to 534 

crispiness. As mechanical traits are easier to measure than acoustic ones, FNP would be in 535 

practice the best measurement to choose for assessing crispiness. Since we also obtained high 536 

prediction accuracy for FNP (0.63 in collection and maximum of 0.78 in “optimized” family 537 

prediction), we propose this sub-trait as the most valuable descriptor for fruit texture, 538 

minimizing the effort needed to phenotype such as complex phenotype. Moreover, the 539 

predictions presented in this study have been performed with a set of 8,294 SNPs, which is 540 

still not dense enough considering the rapid decay of the linkage disequilibrium in apple 541 

(Laurens et al. 2018). Although we reached already satisfying accuracies with this amount of 542 

SNP, it would be useful to increase the number of markers with the available apple 480K 543 

(Bianco et al., 2016) or by using genotyping-by-sequencing methods (Gardner et al., 2014) to 544 

further improve predictions.  545 

The use of principal component as synthetic traits resulted to be a valuable multi-trait 546 

approach to better predict and understand the texture variability. Here, we investigated in 547 

details that fruit crispiness (PC2) in particular is less variable than fruit firmness (PC1). While 548 

crispy apples are necessarily firm, the opposite relationship is in fact not validated. Our 549 

predictions indicated that fruit firmness in apple can be accurately selected (along PC1), but it 550 
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needs to be taken into account that an excessive value for this trait can lead to unpleasant 551 

quality perception for the consumer. On the other side, crispiness was better predicted with 552 

the PC2. Despite the lower variation for crispiness in our population, the selection for this trait 553 

resulted to be feasible, although with lower accuracy. To improve the predictions for 554 

crispiness we might need to increase the variability for this trait within the TRS. More 555 

generally, while the selection on fruit traits has shaped apple domestication, the current 556 

cultivated pool relies on a few founders, hence having a narrow genetic basis. Thus, a better 557 

targeting of apple texture might necessitate a pre-breeding step incorporating or generating 558 

genetic diversity for this trait with the use of mealy cultivars and of wild relatives of Malus 559 

domestica (Khan et al., 2014; Peace et al., 2019).  560 

  561 
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TABLES 
 
Table 1. Description of the whole population and experimental design used for genomic 
prediction of texture. Maternal and paternal cultivars are given for full-sib biparental families. 
FEM, Foundation Edmund Mach; RCL, Research Center Laimburg. Cluster assignments as 
given by the discriminant analysis of principal components on 8,294 markers. Relationship to 
collection, mean additive relationship of progenies relative to collection. 
 
 

      Cluster assignments  
(# IDs) 

  

Name Mother Father Location Evaluated 
years 

# 
IDs 

1 2 3 4 5 6 Relationship to 
collection 

FjDe Fuji Delearly FEM 2012-13 50 8 20 0 0 22 0 -0.056 

FjPi Fuji Pinova RCL 2012-14 70 1 30 0 0 39 0 -0.078 

FjPL Fuji 
Pink 
Lady 

FEM 2012-13 80 0 50 0 0 30 0 -0.071 

GaPi Royal Gala Pinova RCL 2012-14 36 0 0 0 0 36 0 -0.021 

GaPL Royal Gala Pink 
Lady 

RCL 2012-14 15 0 0 0 0 15 0 -0.020 

GDFj 
Golden 

Delicious 
Fuji RCL 2012-14 27 0 6 0 0 21 0 -0.057 

Collection - - FEM 2012-13-15 259 45 37 31 55 66 25 - 
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TABLES 
 
 
Table 2. Summary of texture traits assessed in the whole population. h2, broad sense 
heritability. For comparison, h2 are also given considering measurements of the collection 
only. 
 

Trait Mean SD h2 
h2  

(COLL only) 
ALD 5094 2049 0.938 0.928 

ANP 50.4 39.1 0.924 0.909 

APMax 65.2 4.38 0.921 0.880 

APMean 49.6 3.12 0.951 0.915 

Area 813 273 0.951 0.930 

FF 10.1 3.98 0.946 0.929 

FLD 101 5.78 0.955 0.937 

Fmax 11.8 4.02 0.946 0.924 

FMean 9.60 3.31 0.951 0.929 

FNP 17.9 4.16 0.934 0.931 

IF 9.94 3.29 0.933 0.906 

YM 1.19 0.353 0.899 0.890 
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TABLES 
 
 
Table 3. Maximum accuracies obtained among four training set optimization methods in 
predictions made for each combination of trait and family.  
 
 

Family Trait Accuracy TRS size Method 

FjDe ALD 0.23 77 Mean relationship 

FjDe FNP 0.18 21 Max relationship 

FjDe PC1 0.26 77 Mean relationship 

FjDe PC2 0.36 56 Max relationship 

FjPi ALD 0.36 189 Mean relationship 

FjPi FNP 0.59 174 Max relationship 

FjPi PC1 0.36 178 Max relationship 

FjPi PC2 0.26 202 Mean relationship 

FjPL ALD 0.10 130 CDmean-opt 

FjPL FNP 0.16 22 Max relationship 

FjPL PC1 0.20 120 Max relationship 

FjPL PC2 0.22 10 CDmean-opt 

GaPi ALD 0.46 156 Mean relationship 

GaPi FNP 0.40 13 Max relationship 

GaPi PC1 0.54 191 Clusters 

GaPi PC2 0.28 19 Mean relationship 

GaPL ALD 0.72 136 Clusters 

GaPL FNP 0.78 37 Max relationship 

GaPL PC1 0.81 129 Mean relationship 

GaPL PC2 0.40 140 Max relationship 

GDFj ALD 0.21 66 Mean relationship 

GDFj FNP 0.32 15 Max relationship 

GDFj PC1 0.19 31 Mean relationship 

GDFj PC2 0.01 10 Mean relationship 
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FIGURE LEGENDS 

 
 
Figure 1. Principal component analysis (PCA) of 12 texture sub-traits. A, PCA 2D-plot of 

variables, with acoustic traits in blue and mechanical traits in red with 1, ANP; 2, ALD; 3, 

APMAx; 4, APMean; 5, FNP; 6, FLD; 7,FF; 8, YM; 9, Area; 10; Fmean; 11, Fmax; 12, IF. B, 

PCA 2D-plot of individuals with collection individuals represented as dots and families as 

ellipses. C, PCA 2D-plot of individuals showing family offspring and their respective parents. 

Figure 2: Realized additive relationship calculated with 8,294 SNPs. Families indicated in 

black with brackets and parents are indicated in red. 

Figure 3: Discriminant analysis of principal components and cluster assignments of 

individuals based on 8,294 SNPs. A, projection on principal component (PC) 1 and 3 of the 

cluster assignments of individuals in the collection with parents of families indicated with 

their names. Black lines materialize the PCs defining clusters. B, Predicted cluster 

assignments of progenies of the six full-sib families projected on PC1 and PC3 axes and 

represented by dots, with collection individuals in the six genetic clusters represented as 

ellipses (same color legend as in part A). C, Distribution of individuals across the six genetic 

clusters in each population.  

Figure 4: Mean and standard deviation of accuracies obtained in three prediction scenarios. In 

scenario 1, each family was predicted using the collection only. In scenario 2, 30% of 

individuals of the predicted family were added to the collection in the TRS and the remaining 

70% formed the TS. In scenario 3, a single half-sib family was added to the collection to form 

the TRS. The predictions were made with model A, which does not take into account the 

genetic clustering of individuals. 

Figure 5: Optimization of the training population for the prediction of each family using a 

priori information on individuals. A, addition of individuals in the TRS by decreasing mean 

relatedness to the predicted family; B, addition of individuals in the TRS by decreasing 

maximum relatedness to the predicted family; C, addition of clusters by decreasing mean 

relatedness to the predicted family; D, selection of individuals for TRS of different sizes 

based on the five principal components obtained with discriminant analysis of principal 

components and using the CDmean design criteria. The color legend applies for all parts of 

the figure. 

All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/862193doi: bioRxiv preprint 

https://doi.org/10.1101/862193


A

B C

FIGURE 1

All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/862193doi: bioRxiv preprint 

https://doi.org/10.1101/862193


Figure 2: Realized additive relationship calculated with 8,294 SNPs. Families indicated in black with
brackets and parents are indicated in red.
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