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Genome-wide association studies in apple reveal
loci of large effect controlling apple polyphenols
Kendra A. McClure1,2, YuiHui Gong3, Jun Song2, Melinda Vinqvist-Tymchuk2, Leslie Campbell Palmer2, Lihua Fan2,
Karen Burgher-MacLellan2, ZhaoQi Zhang3, Jean-Marc Celton4, Charles F. Forney2, Zoë Migicovsky 1 and Sean Myles1

Abstract
Apples are a nutritious food source with significant amounts of polyphenols that contribute to human health and
wellbeing, primarily as dietary antioxidants. Although numerous pre- and post-harvest factors can affect the
composition of polyphenols in apples, genetics is presumed to play a major role because polyphenol concentration
varies dramatically among apple cultivars. Here we investigated the genetic architecture of apple polyphenols by
combining high performance liquid chromatography (HPLC) data with ~100,000 single nucleotide polymorphisms
(SNPs) from two diverse apple populations. We found that polyphenols can vary in concentration by up to two orders
of magnitude across cultivars, and that this dramatic variation was often predictable using genetic markers and
frequently controlled by a small number of large effect genetic loci. Using GWAS, we identified candidate genes for
the production of quercitrin, epicatechin, catechin, chlorogenic acid, 4-O-caffeoylquinic acid and procyanidins B1, B2,
and C1. Our observation that a relatively simple genetic architecture underlies the dramatic variation of key
polyphenols in apples suggests that breeders may be able to improve the nutritional value of apples through marker-
assisted breeding or gene editing.

Introduction
Apples are one of the most produced and consumed

fruits in the world with worldwide production reported at
90 million tonnes in 20161. Widely recognized as a nutri-
tious food source, apples contain significant amounts of
polyphenols and other bioactive compounds that con-
tribute to human health and wellbeing. Many polyphenols
(e.g., epicatechin, catechin, phloridzin, chlorogenic acid,
and proanthocyanins) are strong antioxidants associated
with reduced incidence of disease, including cardiovascular
disease, metabolic syndrome, and certain cancers2. In the
US, 22% of the polyphenols in the human diet originate
from apples, which makes apples a primary dietary source
of these antioxidant compounds3. Several epidemiological

studies have reported that the consumption of apples can
reduce the risk of chronic diseases, including cardiovas-
cular diseases, asthma, various cancers, and type II dia-
betes2,4–6. Thus, apples represent a key source of
polyphenols in the human diet that may contribute sig-
nificantly to disease prevention and overall health.
The concentration of polyphenols in apples varies

during ripening and can be influenced by growing con-
ditions7,8. For example, phenolic acids and flavonoids in
the epicarp and endocarp tissues decrease during ripen-
ing9. However, it is genetic variability that likely plays the
primary role in determining polyphenol concentration
because most of the variation in polyphenol concentration
is captured by variation among apple cultivars8,10. Thus, a
major determinant of an apple’s nutritional value is likely
determined by its genome, which makes the genetic
mapping of polyphenols a promising avenue of scientific
inquiry.
The biosynthesis of polyphenols in plants occurs via the

secondary metabolism of the phenylpropanoid pathway.
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This pathway leads to the production of flavonols, flavo-
noids, anthocyanins, and proanthocyanidins11. Biochem-
ical analyses have identified numerous compounds
belonging to these polyphenolic groups in apples12,13 and
genetic mapping studies have revealed genes and enzymes
controlling their biosynthesis14–18. However, the genetic
mapping of apple polyphenols to date has relied exclu-
sively on relatively small (N < 170) bi-parental popula-
tions15–17, which lack the ability to reveal the genetic
architecture of polyphenol production across diverse
apple germplasm. It therefore remains unknown whether
previously identified polyphenol QTL account for varia-
tion in diverse apple breeding material, and whether
polyphenols are predictable with genome-wide markers
using genomic prediction. The nutritional value of crops
is increasingly being targeted using genomics-assisted
breeding19,20, and polyphenol concentration in apple
represents a possible target for apple breeders. Thus, to
quantify the genetic architecture of apple polyphenols and
advance genomics-assisted breeding of apple nutritional
content, we conducted genome-wide association studies
(GWAS) and genomic prediction using high performance
liquid chromatography (HPLC) data of apple extracts in
two diverse apple populations.

Results
HPLC analyses
The concentrations of six major polyphenolic groups

(total phenolics, total hydroxycinnamic acids (HCA), total
flavonols, total fluorescence, total anthocyanins, and total

phloretin-like compounds) and 14 individual phenolic
compounds in two different years are presented in Tables
S1 and S2. Out of 19 phenotypes, 17 were significantly
correlated between years (Fig. S1). Between-year correla-
tions ranged widely, with the highest between-year cor-
relation for phloridzin (r= 0.94, P= 4.17 × 10−34) and the
lowest for total flavonols (r= 0.078, P= 0.52). In the main
text, we report the results from the 2014 data set, while
results from 2016 are found in the supplementary
material.
Polyphenols showed substantial variation among culti-

vars (Figs. 1 and S2). Major groups of compounds differed
by one to two orders of magnitude among cultivars. For
example, total phenolic concentration differed by ~10-
fold between the cultivar with the lowest (‘Vanda’,
76.88 µg/g) and highest (‘Reinette Russet’, 734.19 µg/g)
concentration of total phenolics.
The strength of the correlations among all pairs of

phenotypes are depicted in Fig. 2 and S3. Noteworthy
relationships included a strong positive correlation
between total phenolics and total fluorescence (r= 0.747,
P= 2.48 × 10−24) and significant correlations among epi-
catechin, catechin, and the three procyanidins (Figs. 2 and
S4). Although several pairs of compounds were negatively
correlated, none of these were significant after correcting
for multiple comparisons. In addition, fruit skin color was
positively correlated with total anthocyanin concentration
(R2= 0.673, P < 1 × 10−15; Fig. S5) and the degree of fruit
browning was positively correlated with total phenolic
concentration in fruit (R2= 0.299, P= 5.91 × 10−12;

Fig. 1 Range and distribution of the concentrations of polyphenols across 136 apple cultivars. The upper and lower hinges of the boxplots
correspond to the first and third quartiles, respectively
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Fig. S6). Finally, scab resistant cultivars had higher con-
centrations of quercitrin compared to scab susceptible
cultivars (W= 3614, P= 2.95 × 10−7; Fig. S7).

Genetic mapping and genomic prediction
Significant GWAS results that were replicated in both

years are highlighted here in the main text, with figures in
the main text showing the results from 2014 because its
sample size was larger. All remaining Manhattan plots are
found in the supplementary material (Figs. S8 and S9).
The position, effect size and list of genes within 100 kb of
each significant SNP for both the 2014 and 2016 datasets
are found in the supplementary material (Tables S3 and
S4).
We found a single, strong association signal on chro-

mosome 16 for the concentrations of catechin,

epicatechin, and procyanidins B1, B2 and C1 (Fig. 3). In
each case, we found no evidence of allelic heterogeneity,
which means the GWAS signal we detected is likely dri-
ven by a single variant at this locus. However, the position
of the most significant SNP differed slightly between some
phenotypes (Fig. 3; Tables S3 and S4). A single candidate
gene was identified within this genomic region: leu-
coanthocyanidin reductase (LAR1). The same locus on
chromosome 16 was also detected in the GWAS for total
fluorescence, which largely captured the sum of the
concentrations of these five compounds together with
unidentified compounds of similar chemical structure
(Figs. S8 and S9).
Significant genotype-phenotype associations were also

detected for quercitrin, chlorogenic acid, 4-O-caffeoyl-
quinic acid, and cyanidin-3-galactoside (Fig. 4). The

Fig. 2 Correlation heat map showing correlations among all pairs of polyphenols measured across 136 apple cultivars. The correlation
coefficients (r) are shown above the diagonal. The Bonferonni-corrected P values are shown below the diagonal
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GWAS hit on chromosome 1 for quercitrin
(chr1:25697685) occured 94 kb upstream of a UDP-
glycosyltransferase gene (UGT; Fig. 4a). Two significant
associations were detected for chlorogenic acid. The first
(chr5:20581727) was within 3Mb of two candidate genes:
a caffeoyl-CoA O-methyltransferase gene (CCOAOMT)
and a cinnamyl alcohol dehydrogenase gene (CAD). The

other SNP significantly associated with chlorogenic acid
(chr15:20077193) was found just slightly more than
100 kb downstream of a 3-dehydroquinate synthase gene
(DHQS; Fig. 4b). GWAS for 4-O-caffeoylquinic acid also
produced two significant associations. The first
(chr3:16206938) was found 5 Mbp from a phenylalanine
ammonia-lyase gene (PAL). The second GWAS hit for

Fig. 3 Significant GWAS results for flavan-3-ols and pro-anthocyanidins. Manhattan plots showing the results of GWAS for epicatechin a,
catechin b, Procyanidin B1 c, Procyanidin B2 d, and Procyanidin C1 e. Within each row, the first and second panels show the results of GWAS
performed as a series of single-locus tests at the genome-wide and chromosomal scales, respectively. The third and fourth panels show the results of
the MLMM GWAS at the genome-wide and chromosomal scales, respectively. A vertical line indicates the location of the LAR1 gene. The red dots are
the most significant SNPs identified using MLMM
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4-O-caffeoylquinic acid (chr14:2530628) was ~2.3Mbp
upstream of a 4-coumarate-CoA ligase-like gene (4 CLL;
Fig. 4c). Finally, the hit for cyanidin-3-galactoside on
chromosome 9 (chr9:33717323) was 1.8Mb from the
MYB1 transcription factor (MD09G1278600) that reg-
ulates apple skin color21,22 (Fig. 4d).
When performing GWAS for each of the six major

polyphenolic groups, we often discovered the same

association as we did for the individual compounds within
the group. For example, SNPs significantly associated with
total HCA, total fluorescence, and total anthocyanins
were the same as those for chlorogenic acid, epicatechin/
catechin/procyanidins, and cyanidin-3-galactoside,
respectively (Figs. S8 and S9).
Finally, the genomic prediction accuracies (r) varied

widely from −0.18 for total flavonols to 0.49 for 4-O-

Fig. 4 Significant GWAS results for several polyphenols. Manhattan plots showing the results of GWAS for quercitrin a, chlorogenic acid b, 4-O-
caffeoylquinic acid c, and cyanidin-3-galactoside d. Within each row, the first panel shows the results of GWAS performed as a series of single-locus
tests. The subsequent panels show the results of the MLMM GWAS at the genome-wide and chromosomal scales. A vertical line indicates the
location of candidate genes. The red dots are the most significant SNPs identified using MLMM
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caffeoylquinic acid (Figs. 5 and S10) and were positively
correlated between years (R2= 0.373, P= 0.007; Fig. S11).

Discussion
The concentrations of polyphenols observed in the

present study were in line with previous values measured
across <20 cultivars8,23,24, however our larger sample size
of 136 cultivars resulted in a far greater range of values
with up to a 10-fold difference in concentration of some
polyphenols across cultivars (Fig. 1). For example,
chlorogenic acid is a primary source of antioxidants in
apples and concentrations in the present study varied
from 4.25 to 413.6 µg/g. The observed wide variation in
polyphenol concentration suggests that eating apples may
provide varying health benefits depending on which cul-
tivar is consumed.
Two russetted accessions, ‘Reinette Russet’ and

‘SJCXN362′, were outliers with respect to phloridzin and
phloretin xyloglucoside concentration. Most cultivars had
very low concentrations of these compounds, but these
two accessions contained approximately twice the con-
centration of phloretin xyloglucoside and three times the
concentration of phloridzin compared to the accession
with the next highest values (Tables S1 and S2). Phlor-
idzin is the most prominent dihydrochalcone in apples25

and has anti-diabetic, anti-cancer and anti-inflammatory
effects26–28. These observations suggest that selection
against russetting in an apple breeding program may
result in a reduction in nutritional quality.

The strong positive correlations among catechin, epi-
catechin, and the procyanidins B1, B2, and C1 support the
notion that the molecular control of all these compounds
is regulated by a common mechanism17 (Figs. 2 and S4).
Although we observed no significant negative correlations
among phenotypes, the negative relationship between
rutin and catechin suggests they may compete for the
same precursor.
The strong correlation between red coloration of apple

skin anthocyanin concentration (Fig. S5) is consistent
with the well-known relationship between color and
anthocyanins in apples29. Previous work has shown that
about half of the polyphenols in apples are in the skin,
while the other half are found in the flesh8. In another
study, the skin showed a 2–9 times higher phenolic
concentration than the pulp30. This suggests that selec-
tion for apple skin characteristics may result in a larger
effect on the nutritional value of an apple than selection
for features of the pulp.
Previous work has shown that the degree of enzymatic

browning is correlated with polyphenol concentration in
apples31. Our observed correlation between browning and
total phenolic concentration supports the notion that
polyphenol concentration is a useful proxy for enzymatic
browning potential (Fig. S6). Because enzymatic browning
is a major problem for the fruit processing industry,
apples with low polyphenol concentration, and thus
potentially lower nutritional value, will likely continue to
be most attractive for this industry32.
Scab resistant cultivars had higher concentrations of

quercitrin compared to scab susceptible cultivars (Fig. S7).
The natural defensive reactions of apples against various
diseases, especially apple scab (Venturia inaequalis),
include the production of polyphenols. Numerous poly-
phenols have been found at higher concentrations in scab
resistant cultivars when compared to scab susceptible
cultivars30. In particular, total flavanol concentration in
the skin of scab resistant cultivars was found to be 3-fold
higher than in susceptible cultivars33. Thus, breeders
focussing on scab resistance as a breeding target may
simultaneously be enhancing the nutritional value of
breeding material by selecting for higher concentrations
of polyphenols.
The collection of phenotype data in two separate years

from replicated trees across two orchards in the present
study provided insight into potential sources of variation
in polyphenolic concentration. Although most pheno-
types showed strong and significant correlations between
years, 4 of the 19 phenotypes had r < 0.5 and were thus
strongly affected by either differences in location, year or
sources of phenotyping noise (Fig. S1). Similarly, we found
that some phenotypes had highly variable prediction
accuracies between years, and thus appeared more highly
heritable in one year than in the other. For example, total

Fig. 5 Estimates and standard deviations of genomic prediction (r)
values for all polyphenols measured across 136 apple cultivars
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HCA had a genomic prediction accuracy of 0.35 in 2014,
and a value of 0.059 in 2016 (Fig. S11). We focused on
genetic mapping results that were replicated in both years,
however, several phenotypes that showed significant
genotype-phenotype associations in only a single year
(e.g., total flavonols, rutin, and phloridizin; Figs. S8 and
S9) may be worthy of further investigation.
A clear trend was observed in the GWAS results for the

flavan-3-ols and pro-anthocyanidins, with a large peak on
chromosome 16 for epicatechin, catechin, procyanidin B1,
B2, and C1 (Fig. 3). As flavan-3-ols form the building
blocks of proanthocyanidins, a single GWAS signal was
expected given the strong correlations among all five of
these phenotypes (R= 0.51–0.98; Fig. S4). Among these
correlated phenotypes, the location of the most significant
SNP differed slightly in some cases, accounting for up to
50% of the phenotypic variance. This region on chromo-
some 16 was previously highlighted as a QTL hotspot for
epicatechin, catechin, and proanthocyanidins based on
linkage mapping in bi-parental populations15,17. In the
present study, we found slight differences in the location
of the most significant SNP across phenotypes, but all
were within the boundaries of the QTL hotspot previously
reported. Leucoanthocyanidin reductase (LAR1) has been
identified as a putative candidate gene for this hotspot, as
it is thought to catalyze the conversion of leucocyanidin to
catechin. However, this region also contains several
transcription factors of different classes (e.g.,MYB, bHLH,
bZIP, AP2), which could also be affecting phenolic levels
(Tables S3 and S4). Khan et al.18 examined expression
profiles of several genes within this genomic region during
different stages of fruit development and found that only
LAR1 showed a significant correlation between transcript
abundance and metabolite content. Chagne et al.15 pro-
posed that the causal mutation driving this signal on
chromosome 16 is in the promoter region of LAR1, in a
site recognized by the transcription factors regulating it,
and that it does not result in a complete loss of function of
LAR1. This hypothesis is consistent with our finding of a
large effect locus in or around LAR1, and our intention is
to conduct GWAS with more samples and more markers
in the future in the hope that these provide sufficient
mapping resolution to identify putatively causal variants.
GWAS peaks for several other phenolic compounds

were also observed including for the flavonol, quercitrin,
on chromosome 1 (Fig. 4a). Other studies have found hits
for flavonols on chromosome 1 and suggested that a
uridine diphosphate-dependent glycosyltransferase gene
(UGT) and/or a flavonoid 3′-hydroxylase (F3′H) gene as
potential candidate genes underlying this signal16,17. In
the present study, the most strongly associated SNP with
quercitrin was found approximately 44 kb upstream of a
UGT gene (MD01G1148700). Plants contain large famil-
ies of UGTs, and there are dozens or perhaps even

hundreds of UGT genes in apples34,35. UGTs mediate the
glycosylation of flavonoids, and quercitrin is produced by
the glycosylation of the flavonoid quercetin. The glyco-
sylation of secondary metabolites increases the solubility
and stabilization of flavonoid compounds36, and specific
UGTs have been identified that glycosylate flavonoids into
potent antioxidants like phloridzin34,35. To the best of our
knowledge, however, no specific UGT has been associated
with the formation of quercitrin in apples. We hypothe-
size that the GWAS signal we observed here on chro-
mosome 1 is the result of variation in a specific UGT gene
(MD01G1148700) that regulates the glycosylation of
quercetin and thus the concentration of quercitrin. To
further investigate the function of this UGT gene, we plan
to determine whether it in fact uses quercetin as a sub-
strate, and whether the expression of this gene correlates
with quercitrin concentration across diverse apple culti-
vars. Ultimately, markers at this locus could be leveraged
for marker-assisted breeding, or the antioxidant content
of novel cultivars may be mediated by introducing varia-
tion at this locus via genome editing.
The GWAS for chlorogenic acid produced two sig-

nificant hits on chromosomes 5 and 15, suggesting that
variation at two independent loci affect this trait (Fig. 4b).
We identified three promising candidate genes at these
loci including caffeoyl-CoA O-methyltransferase
(CCOAMT; MD05G1083900), cinnamyl alcohol dehy-
drogenase (CAD; MD05G1089900), and 3-dehydroquinate
synthase (DHQS; MD15G1242600). Both CCOAMT and
CAD are enzymes associated with the biosynthesis of
hydroxycinnamic acids through the phenylpropanoid
pathway, which also supplies intermediates for the synth-
esis of phytoalexins, flavonoids and tannins37. Although
not directly involved in the final step of chlorogenic acid
biosynthesis, CCOAMT is active upstream of its produc-
tion through the conversion of caffeoyl-CoA to feruloyl-
CoA38 and has been associated with chlorogenic acid
accumulation in coffee39. CAD converts cinnamyl alcohol
to cinnamaldehyde. A CAD gene was found to be strongly
expressed in ripening receptacle tissue in strawberries40,
but, to our knowledge, no CAD gene has yet been char-
acterized in apples. Finally, DHQS is involved in the shi-
kimate pathway by catalyzing key substrates for
chlorogenic acid biosynthesis41. All three of these genes
represent candidates worthy of future investigation given
their previously established relationships to chlorogenic
acid production.
Previous linkage mapping studies in bi-parental apple

populations found strong associations with chlorogenic
acid on chromosome 1715,17, and have suggested shiki-
mate/quinate O-hydroxycinnamoyl transferase (HCT/
HQT) genes as potential candidates. While there are no
SNPs on chromosome 17 significantly associated with
chlorogenic acid in the present study, there was a
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suggestive GWAS signal on chromosome 17 for chloro-
genic acid (Fig. 4b). Indeed, a HCT/HQT gene
(MD17G122510) is located directly within the suggestive
peak on chromosome 17 (Fig. S12). Thus, we conclude
that the peak on chromosome 17 likely represents a true
signal of association driven by variation in or around
HCT/HQT, and that this signal was not significant in the
current study due to the low SNP density, noisy pheno-
type data, and/or other factors that reduced the power of
our GWAS. Our failure to detect this association leads us
to conclude that other suggestive but non-significant
GWAS signals we observed for other traits may also
represent true genotype-phenotype associations.
Another hydroxycinnamic compound, 4-O-caffeoylqui-

nic acid, produced significant GWAS hits on chromo-
somes 3 and 14 (Fig. 4c). The first panel of Fig. 4c shows a
Manhattan plot that does not account for multiple loci,
and a reasonable interpretation of this plot would suggest
two independent loci controlling this phenotype on
chromosomes 8 and 14. However, the subsequent panels
reveal that the signal on chromosome 8 disappeared when
conditioning on the top hit on chromosome 14. We
reason that this is most likely due to genome mis-
assembly: the SNPs significantly associated with this
phenotype on chromosomes 8 and 14 are in fact physi-
cally close and in strong LD with each other despite
appearing as independent genomic regions in the genome
assembly. Thus, the use of the MLMM is not only helpful
in determining the genetic architecture of a trait (i.e., the
number of independent loci involved), but can also help
clarify genome assembly issues.
A stable signal of association for 4-O-caffeoylquinic acid

and its precursor, 4-p-coumaroylquinic acid, has been
detected by three previous genetic mapping studies15–17.
Verdu et al.16 proposed flavonoid 3′-hydroxylase (F3′H)
or flavonoid 3′,5′-hydroxylase (F3′5′H) as potential can-
didate genes for the signal they discovered on chromo-
some 14 for hydroxycinnamic acids, but neither F3′H nor
F3′5′H genes were found within the interval we identified
on chromosome 14. Although nearly 2.5Mb from the
most significant SNP, our candidate gene for the signal on
chromosome 14 was 4-coumarate-CoA ligase-like (4CLL),
which converts 4-courmarate into 4-courmaroyl CoA.
Interestingly, 4-courmaroyl CoA is a precursor of p-cou-
maroylquinic acid, which shares QTL intervals with 4-O-
caffeoylquinic acid according to previous work15,16.
The conversion of phenylalanine to p-coumaroyl-CoA,

with cinnamic acid and p-coumaric acid acting as inter-
mediates, is catalyzed sequentially by phenylalanine
ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H)
and 4-cinnamoyl-CoA ligase (4CL). Although nearly 5Mb
from our association signal for 4-O-caffeoylquinic acid on
chromosome 3 (Fig. 4c), phenylalanine ammonia-lyase
(PAL; MD03G1121500) may be a candidate gene for the

signal we observed here. PAL is an enzyme that catalyzes
the production of cinnamic acid, a precursor to the
hydroxycinnamic compounds. Because PAL is the starting
enzyme of the phenylpropanoid pathway, it plays a crucial
role in controlling the biosynthesis of acyl-quinic acids38.
The rapid decay of LD we observed in apple GWAS
populations highly similar to the one studied here42–44

suggests it is unlikely that causal alleles will be found
megabases away from the association signals detected in
the present study. However, we propose these candidates
despite this observation because we were unable to
accurately quantify the physical distance over which
association signals potentially span in this population.
With denser marker data and larger sample sizes, a more
accurate delimiting of the physical intervals will be
achievable in future apple GWAS.
A strong GWAS peak was found for cyanidin-3-

galactoside on chromosome 9 (Fig. 4d), and the most
strongly associated SNP at this locus was also the most
significantly associated SNP with total anthocyanins (Fig.
S8). These associations were expected because cyanidin-
3-galactoside is the most prominent anthocyanin in
apples13 and QTL for apple skin color repeatedly co-
locate to this genomic region21,22,42,45–49. A SNP
(ss475879531; chr9:33001375) used to predict skin color
by apple breeders48 is located 666 kb upstream from the
most significant SNP we identified. However, a recent
study identified a retrotransposon insertion 1 kb upstream
of the MYB1 gene (chr9:35,541,127–35,541,721) that
likely causes the red-skinned phenotype49. Although this
putatively causal allele was 1.8Mb downstream from our
top GWAS hit, it overlapped with the broad GWAS peak
we observed for both cyanidin-3-galactoside and total
anthocyanins (Fig. S13). If apple breeders have been
selecting for red-skinned apples, our broad GWAS signal
in this region may be due to elevated levels of linkage
disequilibrium (LD) caused by the action of positive
selection for the red-skinned phenotype. A more powerful
GWAS with more samples and markers could determine
whether the signal we observed here co-locates with the
recently identified putatively causal retrotransposon at the
MYB1 gene.
Finally, genomic prediction accuracies for polyphenolic

concentrations ranged from below 0 (not predictable) to
0.49 (Fig. 5). Using the same population studied here, we
previously found prediction accuracies ranged from 0.08
for change in firmness during storage to 0.72 for scab
resistance44. The prediction accuracies from our diverse
population are expected to be lower than those observed
in apple breeding populations in which relatedness is
higher between the training population and the popula-
tion in which prediction takes place. For example, a cross-
validation procedure for six fruit quality traits produced
accuracies ranging from 0.67 to 0.89 in a New Zealand
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apple breeding population derived from 4 female and 2
male parents50. In another study, from a training popu-
lation of 20 full-sib families, prediction accuracies reached
a maximum of 0.5 across 10 traits in trees with high
degrees of relatedness to the training population51. If we
assume that prediction accuracies >0.2 indicate that a trait
responds well to improvement via genomic selection51,
then more than half (12/19) of the traits studied here have
potential for improvement via genomic selection.
Overall, our results indicate that the concentrations of

polyphenols vary dramatically in a diverse apple popula-
tion and that much of this variation is heritable and
predictable using genetic markers. In cases where we
discovered significant genotype-phenotype associations
using GWAS, the proportion of the phenotypic variance
(R2) explained by the top SNPs ranged from 0.31 to 0.63
(Table S2). Previous GWAS in apple identified SNPs
accounting for up to 33% of the variance in flowering
time52 and 25% of the variance in fruit quality traits53. Our
relatively high effect size estimates may be partially due to
our small sample sizes. Even taking our sample size into
account, our observations suggest that the expression of
several apple polyphenols is under relatively simple
genetic control, and that the markers we have identified
are in strong LD with causal genetic variation underlying
polyphenol expression. We corroborated several pre-
viously detected associations for epicatechin, catechin,
procyanidin B1, B2, C1, and anthocyanins, and discovered
novel loci and potential candidate genes for chlorogenic
acid, quercitrin and 4-O-caffeoylquinic acid. Several of the
SNPs reported here are strong candidates for use in
marker-assisted breeding. For the polyphenols without
significant GWAS results, we demonstrated that they are
often predictable using genome-wide SNPs and thus may
be amenable to breeding using genomic selection. Despite
their importance in the human diet, polyphenols are not
widely targeted by apple breeders to our knowledge. Our
results suggest that genomics-assisted breeding for
enhanced polyphenols could be fruitful and lead to novel
cultivars with enhanced nutritional properties.

Materials and methods
Apple germplasm
Apple cultivars used for this study originated from the

Nova Scotia Fruit Growers’ Association (NSFGA) Cultivar
Evaluation Trial (CET) based at Agriculture and Agri-
Food Canada’s (AAFC) Kentville Research and Develop-
ment Centre in Nova Scotia, Canada as described pre-
viously44. Phenotype data were collected from fully
mature trees from the CET in 2014, and we refer to this
data set as the “2014 data”. Fruit skin color was scored by
eye as the percentage of red blush covering the fruit
surface, and flesh browning was assessed on fruit cut
longitudinally and exposed to air for 40 min, followed by

scoring on a scale from 1 (no browning) to 6 (severe flesh
browning). Scab resistance/susceptibility was scored as a
binary trait according to information obtained from
breeders upon introduction of cultivars into the orchard.
Following measurements taken at harvest, the remain-

ing fruit were kept at 0.8–1 °C in stacked, perforated
plastic bins covered in plastic sheets. After 1 month of
storage, fruit were removed for phenolic analyses. The
distributions of phenolic phenotypes were visualized
using the “geom_boxplot” function in the ggplot2 R
package54. Next, these phenotypes were correlated with
fruit skin color using Pearson’s product-moment corre-
lation test, flesh browning using Spearman’s rank corre-
lation test, and scab resistance presence using the
Wilcoxon rank sum test. P values are reported after
Bonferonni correction for multiple comparisons for all of
these comparisons. All statistical analyses were performed
in R55.
Of the 136 cultivars evaluated in 2014, 85 were eval-

uated again in 2016. The 2016 phenotype data were col-
lected from 85 cultivars from the CET that were grafted
onto M.9 rootstock in the spring of 2012 and planted in
an adjacent orchard in the spring of 2013. We refer to this
dataset as the “2016 data”. Cultivars were planted in two
different randomized blocks with a single tree in each
block. The orchard was maintained to industry standards
and no supplemental irrigation applied. Trees were hand
thinned in mid-July to adjust crop load to commercial
standards of one fruit per cluster, with 10 to 15 cm
between each fruit. Fruit were harvested based on
maturity assessment using a starch-iodine or starch-to-
sugar conversion test, seed color, background fruit skin
color, and presence of fruit drop. Following harvest, fruit
were kept at 0.8–1 °C in stacked, perforated plastic bins
covered in plastic sheets to retain moisture. After 1 month
of storage, fruit were removed for phenolic analyses.
Apple tissue with peel and flesh was frozen and ground in
liquid nitrogen, and stored at −86 °C until extraction.
There were 70 common cultivars phenotyped in 2014 and
2016, and we calculated the Pearson correlation between
years for each phenotype using the cor.test function in R.

Phenolic analysis using HPLC
High performance liquid chromatography (HPLC) was

used to analyze the phenolic compounds in apple tissue
that included both peel and flesh56. Briefly, 0.5 g of ground
tissue was extracted twice with 0.7 mL of extraction sol-
vent (80:20 methanol: water, V/V, 0.1% formic acid) in
micro-centrifuge tubes. The samples were mixed for 10 s,
sonicated for 20min before mixing for another 10 s, fol-
lowed with centrifugation at 10,000 × g for 10 min at room
temperature to pellet suspended tissue (Thermal ICE
Microlite). The supernatants from the two extractions
were pooled and transferred to weighed microcentrifuge

McClure et al. Horticulture Research           (2019) 6:107 Page 9 of 12



tubes and dried in a vacuum centrifuge (Thermo Fisher)
for 16 h, to determine extract yield. The dried extracts
were re-dissolved in 1mL 10% methanol, 0.1% formic acid
and mixed via sonicating for 10–15 s then vortexing for
10 s. Extracts were centrifuged at 10,000 × g for 10 min at
room temperature and supernatants were transferred to
HPLC vials for injection. Meanwhile, the percent dry
weight of the tissue samples was also determined at the
same time that extractions were conducted, on separate
duplicate ~1 g aliquots of the ground tissue, using a
vacuum drying oven heated to 100 °C for 24 h.
A HPLC system with photo diode array detector (PDA)

and fluorescence detector (Waters, Milford, MA) was
used to quantify polyphenols and anthocyanins in the
apple extracts (flesh with peel) with a few modifications.
Liquid chromatographic separation was achieved using an
Agilent Poroshell 120 SB C18 2.7 µ 3.0 × 75mm column
(Agilent, Palo Alto, CA) at room temperature with a flow
rate of 0.5 mL/min. The mobile phase consisted of 0.8%
trifluoroacetic acid in water (solvent A) and 0.68 % tri-
fluoroacetic acid in acetonitrile (solvent B) with a solvent
elution gradient as follows: 0 min: 2% B, 2 min: 2% B,
22 min: 6% B, 30 min: 12% B, 60min: 35% B, 62min: 100%
B, 64 min: 100% B, 65min: 2% B, re-equilibrating 10 min
before next injection. Injection volume was 30 µL, and
detection was 200–600 nm on PDA, extracting chroma-
tograms at 280 nm (total phenolics), 320 nm (total
hydroxycinnamates (HCA)), 360 nm (total flavonols) and
520 nm (total anthocyanins). We also quantified total
fluorescence with 228 nm as excitation and 324 nm as
emission, which individually detects catechin, epicatechin,
procyanidin B1, procyanidin B2 and procyanidin C1. For
phloretin-like compounds, we detected and extracted
from the UV profiles at 280 nm for the 2014 data because
numerous cultivars showed extra phloretin-like peaks not
fully captured by the specific compounds quantified using
standards listed below. For the 2016 data, however, only
three cultivars (‘Coop29′ (11.79 µg/g), ‘Reinette Russet’
(46.16 µg/g) and ‘Britegold’ (4.66 µg/g)) showed other
phloretin-related peaks and therefore no results for “total
phloretin-like” are shown in Fig. S1 for the 2016 data.
Retention times and UV/Vis profiles were compared to
pure standards to identify peaks and quantify specific
compounds. Catechin, epicatechin, chlorogenic acid (5-O-
caffeoylquinic acid), 4-O-caffeoylquinic acid, phloridzin,
quercetin, quercitrin, rutin, isoquercetin, cyanidin-3-
glucoside were purchased from Sigma-Aldrich Canada
Co. (Oakville, Ontario) and used as standards. For
phloretin xyloglucoside, the phloridzin standard was used.
Standards for procyanidin B1, procyanidin B2, procyani-
din C1 and avicularin were purchased from the Indofine
Chemical Co. (Hillsborough, NJ). Standards were used to
calibrate the HPLC under the same conditions (10%
methanol, 30 µL injection) to quantify the respective

phenolic compounds in the extracts. Two individual
extractions were conducted and results were averaged
from the replicates.

Genotype Calling
Genotype data for the CET were generated via

genotyping-by-sequencing (GBS)57 as described pre-
viously44 except that reads were aligned to the most
recent reference genome version GDDH13 Whole Gen-
ome v1.158. Raw VCF files were filtered using VCFtools59

to include only bi-allelic SNPs with a minor allele fre-
quency (MAF) >1%. The two VCF files were merged using
a custom perl script that preferentially kept SNPs gener-
ated from the PstI-EcoT22I file because these SNPs ten-
ded to have higher coverage. SNPs were imputed using
LinkImputeR60, allowing for PositionMiss(0.7), Sample-
Miss(0.7), and Depth(6), which resulted in 154,153 SNPs
with an imputation accuracy of 0.956. Finally, two final
genotype tables were produced, one for the samples
phenotyped in 2014 (i.e., the 2014 data), and one for the
samples phenotyped in 2016 (i.e., the 2016 data), by
removing SNPs within each set of samples that had het-
erozygosity >90% and MAF < 5% using PLINK61 sepa-
rately for the 2014 and 2016 data. This resulted in 98,584
SNPs across 136 samples for the 2014 data, and 97,886
SNPs across 85 samples for the 2016 data. The population
genetic structure of these samples was previously descri-
bed in44.

GWAS and genomic prediction
GWAS was conducted using the multi-locus mixed

model (MLMM) R package62 controlling for both popu-
lation structure (Q) using principal components (PCs)
and relatedness using a kinship matrix (K). If the Shapiro-
Wilk test for normality produced a value <0.91 for any
given phenotype, the phenotype data were transformed to
improve normality using either the log or square-root
transformation. The MLMM is a modified mixed linear
model that uses stepwise regression to incorporate sig-
nificant SNP markers as cofactors. For this study, the
optimal MLMM model for each phenotype was selected
using the extended Bayesian information criterion (EBIC).
The percentage of variance explained by the SNPs
included in the selected model was determined from the
partitioning of phenotypic variance for each forward
inclusion and backward elimination of the model. The
significance threshold for MLMM was determined sepa-
rately for the 2014 and 2016 data, using the “simpleM”
package in R63, which calculates the effective number of
independent tests (Meff). The significance threshold was
drawn as -log10(α/Meff) where α was set to 0.05 (dashed
line in GWAS plots). If a SNP crossed the Meff threshold
and was deemed significantly associated with a phenotype,
a 100 kbp window centered on that SNP was explored for
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candidate genes using the Genome Database for Rosaceae
(GDR)64. Keyword searches for genes on chromosomes
with significant GWAS results were also completed using
GDDH13 Whole Genome v1.1 (https://www.rosaceae.
org/search/genes).
Genomic prediction was performed using the “x.val”

function in the R package PopVar65. The rrBLUP model
was selected and 5-fold (nFold= 5) cross-validation was
repeated 3 times (nFold.reps= 3) using the same SNP sets
used for GWAS. All other default parameters were used.
The correlation of the genomic prediction accuracy (r)
between the 2014 and 2016 data sets was calculated using
a Pearson’s correlation.

Data availability
All phenotype data are available in the Supplementary

material. The genotype data are available from the Dryad
Digital Repository: https://doi.org/10.5061/dryad.8fb46m5.
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