. Brands-sj-systema-naturae, The Taxonomicon, 2000.

W. Koopman, V. Wissemann, J. Cock-k-de,-van-huylenbroeck, J. Riek, . De et al., AFLP markers as a tool to reconstruct complex relationships: A case study in Rosa (Rosaceae), Am J Bot, vol.95, issue.3, pp.353-366, 2011.

D. Terefe and T. Debener, An SSR from the leucine-rich repeat region of the rose Rdr1 gene family is a useful resistance gene analogue marker for roses and other Rosaceae, Plant Breed, vol.130, issue.2, pp.291-293, 2011.

V. Wissemann and C. M. Ritz, The genus Rosa (Rosoideae, Rosaceae) revisited: Molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy, Bot J Linn Soc, vol.147, issue.3, pp.275-290, 2005.

V. Wissemann, Conventional Taxonomy (Wild Roses), pp.111-117, 2003.

T. Debener and M. Linde, Exploring Complex Ornamental Genomes: The Rose as a Model Plant, CRC Crit Rev Plant Sci, vol.28, issue.4, pp.267-280, 2009.

N. Nakamura, H. Hirakawa, S. Sato, S. Otagaki, S. Matsumoto et al., Genome structure of Rosa multiflora, a wild ancestor of cultivated roses, DNA res, vol.25, issue.2, pp.113-121, 2018.

O. Raymond, J. Gouzy, J. Just, H. Badouin, M. Verdenaud et al., The Rosa genome provides new insights into the domestication of modern roses, Nat genet, vol.50, issue.6, pp.772-777, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01798003

H. Saint-oyant, L. Ruttink, T. Hamama, L. Kirov, I. Lakhwani et al., A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits, Nat plants, vol.4, issue.7, p.29892093, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01873309

D. Terefe-ayana, H. Kaufmann, M. Linde, and T. Debener, Evolution of the Rdr1 TNL-cluster in roses and other Rosaceous species, BMC Genomics, vol.13, p.409, 2012.

Y. Belkhadir, R. Subramaniam, and J. L. Dangl, Plant disease resistance protein signaling: NBS-LRR proteins and their partners, Curr Opin Plant Biol, vol.7, issue.4, pp.391-399, 2004.

D. A. Jones and J. Jones, The Role of Leucine-Rich Repeat Proteins in Plant Defences, Advances in botanical research: Incorporating advances in plant pathology, pp.89-167, 1997.

D. D. Leipe, E. V. Koonin, and L. Aravind, STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: Multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer, J Mol Biol, vol.343, issue.1, pp.1-28, 2004.

L. Mchale, X. Tan, P. Koehl, and R. W. Michelmore, Plant NBS-LRR proteins: Adaptable guards, Genome Biol, vol.7, issue.4, p.212, 2006.

Q. Pan, J. Wendel, and R. Fluhr, Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes, J Mol Evol, vol.50, issue.3, pp.203-213, 2000.

L. Eck and J. M. Bradeen, The NB-LRR Disease Resistance Genes of Fragaria and Rubus, The Genomes of Rosaceous Berries and Their Wild Relatives. Heidelberg, pp.63-75, 2018.

M. K. Sekhwal, P. Li, I. Lam, X. Wang, S. Cloutier et al., Disease Resistance Gene Analogs (RGAs) in Plants, Int J Mol Med Sci, vol.16, issue.8, pp.19248-19290, 2015.

Y. X. Jia, Y. Yuan, Y. Zhang, S. Yang, and X. Zhang, Extreme expansion of NBS-encoding genes in Rosaceae, BMC Genetics, vol.16, p.25935646, 2015.

M. Zhang, Y. Wu, M. Lee, Y. Liu, Y. Rong et al., Numbers of genes in the NBS and RLK families vary by more than four-fold within a plant species and are regulated by multiple factors, Nucleic acids res, vol.38, pp.6513-6525, 2010.

H. Kuang, S. Woo, B. C. Meyers, E. Nevo, and R. W. Michelmore, Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce, Plant Cell, vol.16, issue.11, pp.2870-2894, 2004.

S. Yang, X. Zhang, J. Yue, D. Tian, and J. Chen, Recent duplications dominate NBS-encoding gene expansion in two woody species, Mol Genet Genomics, vol.280, issue.3, pp.187-198, 2008.

C. Ameline-torregrosa, B. Wang, O. Bleness, M. S. Deshpande, S. Zhu et al., Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula, Plant Physio, vol.146, issue.1, pp.5-21, 2008.

F. Ma, M. Wu, Y. Liu, X. Feng, X. Wu et al., Molecular characterization of NBS-LRR genes in the soybean Rsv3 locus reveals several divergent alleles that likely confer resistance to the soybean mosaic virus, Theor Appl Genet, vol.131, issue.2, p.29038948, 2018.

I. Menz, J. Straube, M. Linde, and T. Debener, The TNL gene Rdr1 confers broad-spectrum resistance to Diplocarpon rosae, Mol Plant Pathol, vol.19, issue.5, pp.1104-1113, 2018.

D. Terefe-ayana, Y. A. Le, T. L. Kaufmann, H. Biber, and A. , Mining disease-resistance genes in roses: functional and molecular characterization of the Rdr1 locus, Front Plant Sci, vol.2, p.35, 2011.

Y. Xiang, C. Huang, Y. Hu, J. Wen, S. Li et al., Evolution of Rosaceae Fruit Types Based on Nuclear Phylogeny in the Context of Geological Times and Genome Duplication, Mol Biol Evol, vol.34, issue.2, pp.262-281, 2017.

R. Vanburen, C. M. Wai, M. Colle, J. Wang, S. Sullivan et al., A near complete, chromosomescale assembly of the black raspberry (Rubus occidentalis) genome. Gigascience, vol.7, 2018.

M. Perazzolli, G. Malacarne, A. Baldo, L. Righetti, A. Bailey et al., Characterization of resistance gene analogues (RGAs) in apple (Malus × domestica Borkh.) and their evolutionary history of the Rosaceae family, PloS One, vol.9, issue.2, p.83844, 2014.

D. Nieri, D. Donato, A. Ercolano, and M. R. , Analysis of tomato meiotic recombination profile reveals preferential chromosome positions for NB-LRR genes, Euphytica, vol.213, issue.9, p.1027, 2017.

S. Chavan, J. Gray, and S. M. Smith, Diversity and evolution of Rp1 rust resistance genes in four maize lines, Theor Appl Genet, vol.128, issue.5, p.25805314, 2015.

P. P. Edger, . Vanburen-rt, M. Colle, T. J. Poorten, C. M. Wai et al., Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity, Gigascience, vol.7, issue.2, pp.1-7, 2018.

N. Daccord, J. Celton, G. Linsmith, C. Becker, N. Choisne et al., High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development, Nat Genet, vol.49, issue.7, pp.1099-1106, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602554

I. Verde, A. G. Abbott, S. Scalabrin, S. Jung, S. Shu et al., The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution, Nat Genet, vol.45, issue.5, pp.487-494, 2013.

I. Verde, J. Jenkins, L. Dondini, S. Micali, G. Pagliarani et al., The Peach v2.0 release: Highresolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity, BMC Genomics, vol.18, issue.1, p.28284188, 2017.

M. Buti, M. Moretto, E. Barghini, F. Mascagni, L. Natali et al., The genome sequence and transcriptome of Potentilla micrantha and their comparison to Fragaria vesca (the woodland strawberry), Gigascience, vol.7, issue.4, pp.1-14, 2018.

T. A. Hall, BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp Ser, pp.95-98, 1999.

J. Mistry, A. Bateman, and R. D. Finn, Predicting active site residue annotations in the Pfam database, BMC Bioinformatics, vol.8, p.298, 2007.

R. C. Edgar, MUSCLE: Multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, issue.5, pp.1792-1797, 2004.

S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura et al., Molecular Evolutionary Genetics Analysis across Computing Platforms, Mol Biol Evol, vol.35, issue.6, pp.1547-1549, 2018.

M. Nei and S. Kumar, Molecular evolution and phylogenetics, 2000.

I. Letunic and P. Bork, Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Res, vol.44, issue.W1, pp.242-247, 2016.

M. Nei and T. Gojobori, Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions, Mol Biol Evol, vol.3, issue.5, pp.418-426, 1986.

R. Vanburen, D. Bryant, J. M. Bushakra, K. J. Vining, P. P. Edger et al., The genome of black raspberry (Rubus occidentalis), Plant J, vol.87, issue.6, pp.535-547, 2016.

S. Jung, T. Lee, C. Cheng, K. Buble, P. Zheng et al., 15 years of GDR: New data and functionality in the Genome Database for Rosaceae, Nucleic Acids Res, vol.47, issue.D1, pp.1137-1145, 2019.

Y. Li, M. Pi, Q. Gao, Z. Liu, and C. Kang, Updated annotation of the wild strawberry Fragaria vesca V4 genome, Hortic Res, vol.6, issue.61, p.31069085, 2019.