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Social insects maximize resource acquisition and allocation through division of labor

and associations with microbial symbionts. Colonies divide labor among castes and

subcastes, where the plasticity of caste roles decreases in clades with higher social

grades. Recent studies indicate that specific castes may also foster distinct gut

microbiomes, suggesting synergies between division of labor and symbiosis. The social

organization of a colony potentially partitions evolutionary persistent microbial partners

to optimize symbioses and complement division of labor. However, research in this area

has received limited attention. To elucidate if a structured microbiota is adaptive, we

present three testable predictions to address consistent community structure, beneficial

functions, and selection for microbiota that support caste roles. First, we posit that social

insect groups spanning lower to higher social grades exhibit increasingly distinct caste

microbiomes, suggesting that structured microbiomes may have evolved in parallel to

social complexity. Second, we contend that the development of these microbiomes

during colony maturation may clarify the extent to which they support division of labor.

Third, we predict that mature social insect colonies with the most extreme division of

labor demonstrate the strongest distinctions between caste microbiomes, carrying the

greatest promise of insight into microbiome composition and function. Ultimately, we

hypothesize that caste-specific microbiomes may enhance symbiotic benefits and the

efficiency of division of labor, consequently maximizing fitness.

Keywords: symbiosis, division of labor, gut microbiome, major evolutionary transition, superorganism

INTRODUCTION

Organisms are selected to optimize resource use through their own actions and interactions, in
turn maximizing reproductive success. Ants, termites, and the social bees and wasps compose
more than half of the biomass of land-dwelling insects (Hölldobler and Wilson, 2009) and have
comprehensive ecological impacts as pollinators, predators, herbivores, and decomposers (Bignell
and Eggleton, 2000; Richter, 2000; Aizen et al., 2008; Del Toro et al., 2012). Their success has, in
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part, been attributed to their division of labor (Oster andWilson,
1978), where castes within the colony optimally divide tasks and
thus improve the efficiency by which resources are amassed,
distributed, and utilized (Anderson and Ratnieks, 1999; Duarte
et al., 2011).

Microbial gut symbionts augment social insect metabolism
and defense, further allowing the colonies to monopolize
various resources. Termites digest recalcitrant plant substrates
with obligate gut symbionts that degrade lignocellulose and
upgrade dietary nitrogen (Cleveland, 1923; Brune, 2014). Social
corbiculate bees host bacterial communities that aid in nutrient
acquisition from pollen (Kwong and Moran, 2016; Kesnerova
et al., 2017; Zheng et al., 2017). Herbivorous ants maintain gut
bacteria that offset host dietary andmetabolic limitations through
amino acid supplementation, nitrogen recycling, and catabolism
of glucose and citrate (Russell et al., 2009; Hu et al., 2018;
Sapountzis et al., 2018). Gut microbes also contribute to disease
defense in bees and termites by imparting pathogen colonization
resistance (Koch and Schmid-Hempel, 2011; Peterson and
Scharf, 2016; Raymann et al., 2017; Inagaki and Matsuura,
2018), further enabling host persistence and resource acquisition
across environments.

The colony gut microbiota may be organized and optimized
to complement division of labor, with castes partitioning
the gut microbiota to support specialized roles. This could
potentially enhance symbiont productivity to meet host needs
and increase the efficiency of division of labor. A partitioned
microbiota may incur a selective benefit if it improves resource
acquisition and allocation. To begin to assess this hypothesis,
we review division of labor in the social insects, known
gut microbiota compositional differences between castes and
subcastes, and the role of social interactions in influencing
persistent gut microbiota. We then discuss three future avenues
of research that may allow insights into putative interfaces
between social organization and microbiomes: (1) structure
and function of colony microbiomes across social insects
that vary in social complexity, (2) development of caste
microbiomes during colony maturation, and (3) caste-specific
gut microbiomes within colonies with the most extreme division
of labor.

DIVISION OF LABOR IS A CORNERSTONE
IN SOCIAL INSECT BIOLOGY

Colony-level social complexity of social insect species is dictated
by division of labor between worker and reproductive castes.
Workers perform non-reproductive tasks such as brood care,
defense, and foraging while the reproductive caste comprises
one or a few individuals that secure colony fecundity. Variation
in the degree of this division of labor can be interpreted along
an evolutionary gradient of increasing social complexity and
decreasing individual-level reproductive plasticity (Taylor et al.,
2019) (Figure 1). In the most derived social insects, workers
are morphologically precluded from attaining a reproductive
role, resulting in strong suppression of inter-caste reproductive
conflict (Boomsma and Gawne, 2018).

Morphological reproductive-worker differentiation and
repression of conflict between interdependent castes represent
a major evolutionary transition to higher complexity (Maynard
Smith and Szathmáry, 1995; West et al., 2015). This transition
aligns the fitness interests of all colony members, with selection
acting more on the colony than on individual colony members.
The developmentally irreversible distinction between worker and
reproductive castes makes their division of labor comparable to
that of the germline and soma, and they consequently have come
to be regarded as superorganisms (Wheeler, 1911; Boomsma and
Gawne, 2018).

The division of non-reproductive labor among workers
also becomes more specialized along the sociality gradient
(Figure 1). A variety of temporal, physical, and spatial factors
may direct division of non-reproductive labor (Duarte et al.,
2011). Temporal subcastes, with workers transitioning from
tasks within to outside the nest as they age (e.g., nurse
bees transitioning to foragers), and physical subcastes with
morphological distinctions exhibiting task specialization (e.g.,
minor and major workers and soldiers), are commonly
identified across social insects (Oster and Wilson, 1978)
(Figure 1). Superorganismal clades exhibit the highest degree
of specialization among workers, where their cohesive actions
constitute colony-level adaptations for resource acquisition,
comparable to the specialized functions of somatic tissues in a
multicellular organism (Wheeler, 1911; Boomsma and Gawne,
2018).

CURRENT KNOWLEDGE ON
CASTE-DISTINCT GUT MICROBIOMES

Microbial symbioses and division of labor are well-known to
enhance resource acquisition, but few studies have compared
gut microbiomes of castes and subcastes (Figure 1). In some
social insect clades, the reproductive caste microbiome is distinct
and drastically simplified compared to that of the worker caste.
Foraging lower termite reproductives generally lack symbiotic
protists that dominate the worker guts (Shimada et al., 2013;
Inagaki and Matsuura, 2016), and the reproductive caste of
Termitidae termites shows reduced diversity and disparate
bacterial community composition (Otani et al., 2019) compared
to the worker caste (Dietrich et al., 2014; Otani et al.,
2014, 2016, 2019). Honey bee queens also host a simplified
bacterial community that is significantly reduced compared to
workers (Kapheim et al., 2015; Tarpy et al., 2015; Anderson
et al., 2018). Albeit limited, data on the gut microbiomes
of ants suggest some differences between reproductive and
workers (Johansson et al., 2013; Brown and Wernegreen, 2016).
The gut microbiomes of social wasps remain understudied,
although some clades appear to retain consistent gut microbes
(Stefanini et al., 2012, 2016; Gruber et al., 2019; Suenami et al.,
2019).

Differences between worker subcastes have almost exclusively
been explored in termites and bees. Studies suggest that the
gut microbiome composition of worker bees varies with age
and could be task-dependent, although patterns inferred are
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FIGURE 1 | The sociality gradient and gut microbial symbionts of social insects. The sociality gradient is illustrated by the greyscale changes in the insects, indicative

of reductions in individual reproductive plasticity. The gradient begins with colonies where totipotent workers help reproductives through adulthood, to which subsocial

family life is a critical evolutionary precursor and culminates in superorganismal colonies with morphologically distinct castes. The position of clades along the gradient

is adapted from Boomsma and Gawne (2018). Clades for which the gut microbiota has been explored are marked with a star, while evidence or lack thereof on

distinct (sub)caste microbiomes is represented by light and dark blue squares, respectively. The first column of boxes illustrates that all clades divide reproductive

labor between the reproductive and worker caste. The second and third columns signify if members of the clade have specialized division of non-reproductive labor

among temporal and physical worker subcastes (temporal: bees, Seeley, 1982; Wille, 1983; termites, Watson and Sewell, 1985; ants, Hölldobler and Wilson, 1990;

physical: bees, Goulson et al., 2002; Spaethe and Weidenmüller, 2002; Evans, 2006; wasps, Jandt and Toth, 2015; Li et al., 2015; Du et al., 2017; Grüter et al., 2017;

termites, Korb and Thorne, 2017).

subtle (Guo et al., 2015; Anderson et al., 2018; Jones et al.,
2018). Similarly, the fungus-farming subfamily of the Termitidae
exhibits differences in gut bacterial composition related to food-
processing by temporal subcastes (Hinze et al., 2002; Hongoh
et al., 2006; Li et al., 2015, 2016). Termites also present differences
among physical subcastes, where soldier microbiomes can be

distinct from other subcastes (Hongoh et al., 2006; Shimada et al.,
2013; Inagaki and Matsuura, 2016; Otani et al., 2019, but see
Berlanga et al., 2011), and in highly polymorphic termites, such
as the genusMacrotermes, minor and major workers and soldiers
display variable microbiomes (Hongoh et al., 2006; Schnorr et al.,
2019).
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SOCIALITY SUPPORTS PERSISTENT
SYMBIOTIC GUT MICROBIOTA

For an individual insect, the repeated remodeling of the gut and
shedding of the microbiota throughout development can impede
extracellular gut symbionts from persisting within individuals
and over generations (Engel and Moran, 2013). Group living
overcomes this challenge by providing access to microbiota
through social interactions (Troyer, 1984; Nalepa et al., 2001;
Lombardo, 2008; Engel and Moran, 2013).

Microbiota characteristic of natal social insect colonies
have been suggested to be transmitted by reproductives in
colonies founded independently (Benjamino and Graf, 2016;
Meirelles et al., 2016; Stefanini et al., 2016; Diouf et al.,
2018), or by workers and reproductives (Kwong et al., 2014)
in colonies that are founded dependently, such as honey bees
and army ants. Workers within colonies then stabilize the gut
microbiota through intracolonial transfer of symbionts; newly-
eclosed microbe-free workers typically receive inocula from
mature workers through fecal-oral transmission (Wheeler, 1984;
Ohkuma and Brune, 2010; Powell et al., 2014; Lanan et al.,
2016). Additional oral exchanges, interactions, and the shared
nest environment and resources facilitate continuous microbiota
transmission and homogenization between colony members
(Martinson et al., 2012; Stefanini et al., 2012; Powell et al., 2014;
Zhukova et al., 2017). The reliable transmission of gut microbes
between and within colonies thus allows transgenerational
persistence of microbial communities.

Host transmission of heritable extracellular symbionts has
been hypothesized to result in long-term associations between
some social insects and specialized microbiota. Termites, social
corbiculate bees, and clades of ants consistently host microbial
phylotypes over evolutionary timescales, as indicated by patterns
of phylogenetic congruence of microbial communities with
hosts (Russell et al., 2009; Dietrich et al., 2014; Sanders et al.,
2014; Kwong et al., 2017; Lukasik et al., 2017; Bourguignon
et al., 2018; Sapountzis et al., 2019). Although this indicates
vertical transmission across generations, most symbioses are
characterized by the presence of at least some degree of host
switching, suggesting that horizontal transmission persists across
host clades (Koch et al., 2013; Sanders et al., 2014; Kwong
et al., 2017; Bourguignon et al., 2018). Nevertheless, the extensive
evolutionary histories of hosts and symbionts are presumably
facilitated by social interactions and insect physiological or
morphological characteristics that promote specific microbial
partners (c.f. Kwong and Moran, 2015; Lanan et al., 2016;
Sapountzis et al., 2019).

DISCUSSION

Is the Colony Gut Microbiota Optimized
Through Social Organization?
We hypothesize that hosts may organize and optimize the gut
microbiota among colony members to increase the benefits
of symbioses and social organization. Consistent caste-specific
differences in honey bee and termite microbiomes suggest that

microbial community compositions have been selected over
evolutionary time to align with caste roles. If these caste-
specific microbiomes enhance productivity of symbioses and
efficacy of division of labor, they may be selected for as an
emergent property of the combined effects of division of caste
and microbiome labor.

Hosts are under strong selection to promote a beneficial
microbiota; particularly in semi-closed systems like the gut
(Foster et al., 2017). While microbes may compete within
the gut ecosystem, potentially reducing symbiont expression
of cooperative traits, hosts wrangle microbiota into stable and
productive communities (Frank, 1996; Coyte et al., 2015). Hosts
may shape microbiomes through mechanisms that regulate the
immigration of microbes, support specific microbial community
members through immune, physiological or dietary responses,
and compartmentalize microbial communities (Frank, 1996;
Foster et al., 2017), which in the social insects can occur
both at the level of individuals and the colony. This could
increase the net benefit of symbioses because optimization of
microbiomes within specific castes may promote a simplified
microbiota to meet distinct needs, enhancing the productivity
of individual communities, while the colony-level conglomerate
remains diverse.

Conclusions about optimization of symbiotic communities
require elucidation of their compositions, functions, and impacts
on host reproductive success. Since some microbes within
a community could be driven by diet, gut morphology and
physiochemistry, social interactions, or environmental exposure
without further implications to the host, we propose three
necessary levels of evidence to elucidate symbiotic benefit: (a)
identification of consistent microbial communities within clades
and castes, (b) characterization of conserved functions and
benefits to hosts, and (c) determination of how hosts select
for microbial community compositions and functions. With
these needs in mind, we propose three focal areas that we
believe can provide insight into the implications of structured
colony microbiomes.

Caste Microbiomes Along the Sociality
Gradient
The distinctiveness of caste microbiomes should predictably
increase along the sociality gradient. In lower social grades,
all colony members remain totipotent and typically undergo
physical remodeling when transitioning to a different caste
(Roisin, 1990; Sumner et al., 2010), which may prevent
strong specialization of their gut microbiota. In contrast, early
developmental determination of committed castes may fine-tune
the composition of microbial communities over their lifetime to
meet divergent needs, resulting in distinct microbiota structure,
and function. Termites and wasps are promising models to test
this prediction as they have representative clades across the
sociality gradient (Figure 1).

Social structure constrains the level of adaptation and thus
the potential disparity in caste and subcaste microbiota. In
social grades that have not undergone the major transition
to superorganismality, the distinct microbiomes may represent
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individual-level adaptations, and host interests in direct fitness
benefits may limit specialization (Boomsma and Gawne, 2018;
Cooper and West, 2018). After the major transition, however,
workers can only improve their reproductive success through
indirect fitness benefits gained at the colony level; thus, the
colony acts as a fitness maximizing agent that can develop group-
level adaptations (Gardner and Grafen, 2009), such as distinct
caste and subcaste microbiota that optimize resource use and
maximize colony fitness.

Colony and Microbiota Development
The microbiomes of organisms are characterized by shifts
associated with changing physiology and needs over the lifetime
of the individual, and social insect colonies likely undergo
comparable processes, from founding (possibly excluding taxa
with dependent founding) through growth and development
to maturity (left part of Figure 2). If caste specificities in
microbiomes play important roles for colony reproductive
success, the characterization of their development over colony
maturation, during which caste roles are established and
maintained, may allow us to corroborate functional predictions
aligned with the division of labor.

As colonies grow, workers liberate reproductives from non-
reproductive tasks, and both worker and reproductive castes
become increasingly specialized (Wheeler, 1911; Oster and
Wilson, 1978). Similarly, we predict that the structure and

function of worker and reproductive gut microbiomes diverge
during colony growth (Figure 2). The gut microbiomes of
termite reproductives indicate a transition from diverse to
simplified communities from founding to maturity (Shimada
et al., 2013; Benjamino and Graf, 2016; Inagaki and Matsuura,
2016; Diouf et al., 2018; Otani et al., 2019) (Figure 2), which
has been suggested to be a consequence of specialization
on reproduction and dependence on workers (Chouvenc
and Su, 2017). Similarly, the gut microbiome of honey
bee queens exhibits slight changes with age (Tarpy et al.,
2015; Anderson et al., 2018), suggesting that physiological
and dietary changes related to reproductive specialization
and duration may influence gradual shifts the reproductive
microbiota. Additionally, as the number of workers increases,
temporal and physical subcastes may develop unique microbiota,
where age-dependent tasks, environments, and diets could
influence microbial community composition. Exploration of
changes in host characteristics and microbiota during colony
development could thus clarify mechanisms of selection
and caste complementarity, while examining changes in the
functional microbiome and its influence on colony growth
may elucidate how a divided microbiome supports colony
maturation and the accretion of fitness benefits. Secondarily,
the significance of independent or dependent colony founding
should explored, as it independent founding may cause a
microbial bottleneck that reduces both the stability and diversity

FIGURE 2 | Caste-specific microbiomes during growth and maturity of the superorganism. The left panel illustrates how gut microbiomes (spectrum of blue to green)

of the reproductive (black) and worker caste (white) may structurally and functionally differentiate during the development of an independently founded colony. Such

colonies undergo ergonomic growth before reaching maturity, during which caste roles establish and gut microbiota may similarly diverge. Reproductive gut

microbiota (green) likely simplifies in structure and function while worker microbiota (blue) remains relatively diverse and may be partitioned among subcastes. The

right panel proposes that the general structure and function of the superorganism microbiota could be analogous to that of multicellular organisms, in this case

microbiota of human tissues. The major transition to superorganismality causes selection to act on the colony as a unit, similar to an individual organism, and the

binary distinction between the worker and reproductive caste is comparable to the soma and germ line. Greater understanding of the cohesive actions carried out by

the divisible units of superorganisms and their microbial partners may allow us to derive novel insights into higher-level emergent characteristics typically associated

with and observed in organisms.
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of the colony gut microbiome (Kwong et al., 2017; Lukasik
et al., 2017). Consistent with our previous inferences, we expect
that insights into these processes can be achieved through
comparative analyses of social insects across the spectrum of
social organization.

The Structured Gut Microbiota of the
Superorganism
We contend that the tightest associations and most distinct
caste-specific microbiomes will be in clades with extreme and
irreversible division of labor, the superorganisms. In particular,
social insects such as honey bees, certain ants and the Termitidae
may provide the greatest insights because the complex division
of non-reproductive labor supports remarkable fecundity of
reproductives (Winston, 1991; Kaib et al., 2001; Hölldobler and
Wilson, 2009). A simple reproductive gut microbiota may be
influenced by traits of the individual, such as their unique diet,
typically consisting of buccal secretions from workers (Noirot,
1969; Haydak, 1979), and limited exposure to environmental
microbes (Cremer et al., 2018; Stroeymeyt et al., 2018), thus,
reducing microbial immigration. The reproductive microbiome
then likely supports specific metabolic demands, critical disease
defense, or increased longevity, while most other colony
functions are outsourced to workers and their microbiomes
(Figure 2).

Complexity in the worker gut microbiota is likely driven
by variable host tasks, diets, and interactions. Immigration of
microbiota into the worker gut is controlled during post-eclosion
microbial inoculation (Ohkuma and Brune, 2010; Powell et al.,
2014; Lanan et al., 2016) and remodeling of gut morphology
(Zhukova et al., 2017). Changes in host diet and physiology,
such as the differential diet and gut enzyme expression of honey
bee workers with age (Crailsheim et al., 1992), may influence
the gut microbiota. Subcaste microbiota could additionally be
influenced by interaction and transmission networks, resulting in
compartmentalization. Notably, since the majority of microbiota
studies utilize 16S rRNA profiling, it is likely that compositional
differences at the bacterial strain level have been overlooked
(Engel et al., 2014; Ellegaard and Engel, 2016), as indicated
by compartmentalization of strains between individual honey
bees and variable functional gene content across age groups
(Ellegaard and Engel, 2019). Compartmentalization among
subcastes would conceivably allow microbes to cater to specific
host roles, create adaptive heterogeneity (Masuda et al., 2015;
Kennedy et al., 2017), and reduce the potential for competition
between symbionts (Frank, 1996). Consequently, the various
roles and interactions of worker (sub)caste(s) should promote
functionally diverse microbiomes that hosts optimally divide to
complement tasks.

A superorganism’s highly structured colony microbiome,
shaped by distinct (sub)caste communities, may be adaptive
to the colony as a unit, similar to the composite of different
microbiomes observed in tissues or body regions of multicellular
organisms such as humans (The Human Microbiome
Consotrium, 2012) (Figure 2). The major evolutionary transition
to superorganismal social complexity shifts selection to act more

strongly at the colony-level, similar to selection on multicellular
organisms, and the coherent actions of morphologically
committed reproductive and non-reproductive (sub)castes is
comparable to the division of cells into germ and soma (Wheeler,
1911; Boomsma and Gawne, 2018). The analogous organization
of the two systems allows comparisons and insights into higher-
level characteristics typically associated with and observed
in organisms (Helanterä, 2016; Kennedy et al., 2017), which
could include the structure and function of the microbiome
(Figure 2). For example, the significance of microbial partners in
the framework of social immunity, another emergent property
enabled by social structure (Cremer et al., 2007, 2018), may
be compared to the interplay between microbiota and the
human immune system (Hooper et al., 2012). We believe that
considering this analogy in future research will help improve
our fundamental understanding of the impact of symbioses on
individuals, (sub)castes and superorganismal division of labor.

CONCLUSION

Current research on social insect symbioses focuses on
microbiome function and the importance of social life in
maintaining a consistent microbiota. However, we have yet
to fully integrate these paradigms. The division of labor,
which directs social roles and interactions, may secondarily
partition the microbiota, shaping caste-specific microbiomes
that dually enhance productivity of symbioses and efficiency of
castes. While individual and colony-level mechanisms may drive
distinctions in gut microbiota, microbial interactions within
these communities should be examined to fully understand
structured microbiota as a potential adaptation. Overall, we
contend that integration of gut symbionts into the framework
of sociality defined by division of labor may elucidate its
potential adaptive value to individual insects and the colony as
a whole.
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