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Abstract

African swine fever (ASF) is a lethal hemorrhagic disease in domestic pigs and wild suids

caused by African swine fever virus (ASFV), which threatens the swine industry globally. In

its native African enzootic foci, ASFV is naturally circulating between soft ticks of the genus

Ornithodoros, especially in the O. moubata group, and wild reservoir suids, such as wart-

hogs (Phacochoerus spp.) that are bitten by infected soft ticks inhabiting their burrows.

While the ability of some Afrotropical soft ticks to transmit and maintain ASFV is well estab-

lished, the vector status of Palearctic soft tick species for ASFV strains currently circulating

in Eurasia remains largely unknown. For example, the Iberian soft tick O. erraticus is a

known vector and reservoir of ASFV, but its ability to transmit different ASFV strains has not

been assessed since ASF re-emerged in Europe in 2007. Little is known about vector com-

petence for ASFV in other species, such as O. verrucosus, which occurs in southern parts

of Eastern Europe, including Ukraine and parts of Russia, and in the Caucasus. Therefore,

we conducted transmission trials with two Palearctic soft tick species, O. erraticus and O.

verrucosus, and the Afrotropical species O. moubata. We tested the ability of ticks to trans-

mit virulent ASFV strains, including one of direct African origin (Liv13/33), and three from

Eurasia that had been involved in previous (OurT88/1), and the current epizooties (Geor-

gia2007/1 and Ukr12/Zapo). Our experimental results showed that O. moubata was able to

transmit the African and Eurasian ASFV strains, whereas O. erraticus and O. verrucosus

failed to transmit the Eurasian ASFV strains. However, naïve pigs showed clinical signs of

ASF when inoculated with homogenates of crushed O. erraticus and O. verrucosus ticks
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that fed on viraemic pigs, which proved the infectiousness of ASFV contained in the ticks.

These results documented that O. erraticus and O. verrucosus are unlikely to be capable

vectors of ASFV strains currently circulating in Eurasia. Additionally, the persistence of

infection in soft ticks for several months reaffirms that the infectious status of a given tick

species is only part of the data required to assess its vector competence for ASFV.

Introduction

African Swine Fever (ASF) is a lethal disease of domestic pigs (Sus scrofa domesticus) and wild

boar (Sus scrofa scrofa) caused by African swine fever virus (ASFV), which is enzootic in many

countries of Sub-Saharan Africa. In the late 1950’s, due to increasing international trade, ASF

spread out of the African continent, where ASFV is tick-borne in its natural cycle, and for the

first time made inroads into Western Europe, South America and the Caribbean until the

1970’s. ASF was successfully eradicated from those regions through intense zoosanitary efforts,

in some cases taking decades for completion, with the exception of the island of Sardinia [1].

However, ASF re-emerged during the 1990’s in the Iberian Peninsula where the native soft tick

O. erraticus was identified as a natural reservoir of ASFV, allowing its long-term persistence

and occasional re-emergence; several years were necessary to finally eradicate ASF from this

region [2]. In 2007 ASF emerged in Eurasia, first in Georgia [3] and then spread through the

Russian Federation to Eastern and Central Europe westwards eventually affecting pigs in

country members of the European Union in 2014 [4]. By 2018, ASFV was detected in Belgium

[5], meanwhile ASF affected pigs in farther parts of Asia for the first time, including China, to

then spread further in this continent [6]. There is no vaccine neither treatment available to

control ASF in domestic pigs and wild boar [7, 8]. Quarantine, herd depopulation, and zoning

are practiced for the eradication of ASF outbreaks and to prevent the spread of ASF [9].

ASFV is an enveloped double-stranded DNA and soft tick-borne virus, and the only mem-

ber of the Asfarviridae family. There are 24 ASFV genotypes currently known, some of which

exhibit high diversity in Eastern and Southern Africa that may be the result of the existence of

complex sylvatic and domestic transmission cycles in those regions involving wild and domes-

tic Suidae as well as soft tick species of the Ornithodoros genus [10]. Transmission of ASFV to

susceptible swine can occur via multiple routes including direct contact with infected suids,

contact with contaminated carcasses or fomites, ingestion of contaminated food, and through

the bite of infected soft tick vectors [11].

In native African areas where sylvatic transmission of ASFV occurs, soft ticks of the

Ornithodoros moubata group are considered the main vectors and reservoirs for ASFV [12–

14]. Previous experimental studies showed that some of these species can be orally infected,

maintain and transmit the virus vertically (transstadially and transovarially) among ticks, and

horizontally to naïve pigs. However, the success of transmission in the laboratory was shown

to differ from one tick/virus combination to the other and to be influenced by the experimen-

tal design applied to infect the ticks [15–21]. In Western Europe, O. erraticus was shown to

transmit some ASFV strains under field conditions [22, 23] and in laboratory experiments

[24]. Furthermore, ASFV was isolated from O. erraticus that were collected at field sites where

outbreaks had occurred more than five years prior, and successful experimental transmission

to pigs was achieved with tick batches tested up to 380 days after an outbreak, which confirmed

the importance of this soft tick species as an ASFV reservoir [2]. Experiments also demon-

strated the susceptibility of O. erraticus to infection using ASFV strains classified in genotype I
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(Tomar/87, OurT88/1, ASFV/P99, NH/P68) [25–27]. This soft tick species was shown to

remain infected with Georgia2007/1 from genotype II for a few weeks but its ability to transmit

the virus has not been yet explored [28].

The current spread of ASF across Europe and Asia raises the critical question of how ASFV

persists in the environment. ASFV transmission to naïve pigs can occur in a contaminated

environment through exposure to excretions from infected pigs [29]. Pigs may become

infected by ingesting biting flies like the stable fly, Stomoxys calcitrans, carrying ASFV [30].

Studies on the soft tick fauna in the Paleartic region identified species that could be ASFV vec-

tors [31–33]. However, limited information exists on the vector competence of Palearctic soft

tick species for ASFV strains currently circulating in Eurasia [34, 35]. The potential involve-

ment of Palearctic soft ticks as ASFV vectors is further complicated by the fact that Geor-

gia2007/1, which is the ASFV strain introduced from Eastern Africa into the Caucasus region

in 2007 [3], seems to have evolved into genetically divergent and/or less virulent strains

depending on the Eurasian area under consideration [36–39].

Here, we report the results of comparative experiments that tested the vector competence of

the Palearctic soft tick species O. erraticus and O. verrucosus, and the Afrotropical species O.

moubata sensu stricto (s.s.) for ASFV strains isolated in Eurasia, some of which are causing

outbreaks in this region. All the soft tick species tested were susceptible to infection, but only

O. moubata transmitted ASFV to pigs under our experimental conditions. Naïve pigs showed

clinical signs of ASF when inoculated with homogenates of crushed O. erraticus and O. verru-
cosus ticks that fed on viraemic pigs, which proved the infectiousness of ASFV contained in

the ticks. These results are discussed in the context of the epidemiology of ASF in Eurasia and

other data on vector competence of Palearctic soft tick species for ASFV.

Materials and methods

ASFV strains and cells

Four different highly virulent ASFV strains were used for this study. Two of them belong to

genotype II: Georgia 2007/1 ASFV strain, initially isolated in 2007 from a domestic pig origi-

nating in Georgia [3] that was kindly provided by Dr. Linda Dixon (OIE reference laboratory,

Pirbright Institute, UK); and Ukr12/Zapo strain [40], isolated in 2012 from a domestic pig in

Ukraine that was kindly provided by Dr Carmina Gallardo (ASF European Union Reference

Laboratory,CISA-INIA, Valdeolmos, Spain). Both strains are circulating in Eurasia [39, 40].

The two other strains kindly provided by Dr. Linda Dixon (OIE reference laboratory, Pirbright

Institute, UK) belong to genotype I: Liv13/33 isolated in Zambia in 1983 from O. moubata
[41], and OurT88/1 isolated in Portugal in 1988 from O. erraticus [42].

The four ASFV strains were cultured on porcine alveolar macrophages once (Liv13/33;

Ukr12/Zapo) or twice (Georgia2007/1; OurT88/1) before being intramuscularly inoculated in

pigs [43]. Viruses were diluted in RPMI medium to adjust the inoculation dose to 104 hemad-

sorbing dose 50% (HAD50) per pig. Virus titration was performed by hemadsorption assay

[44].

Soft ticks

The Ornithodoros soft tick species used in this study were: (i) O. moubata sensu stricto from

Southern Africa, “Neuchâtel” strain maintained in Neuchâtel University insectary for at least

twenty years and reared in CIRAD Montpellier since 2008), (ii) O. erraticus from Alentejo in

Portugal (“Alentejo” strain, collected from the field in 2013 and 2016 and reared in CIRAD

Montpellier with 1–5 generations completed since 2016), and (iii) O. verrucosus from Ukraine

(collected from the field in 2014–2015 and reared in NSC IECVM, Kharkiv, with only 1

Comparative vector competence of soft tick Ornithodoros for African swine fever virus circulating in Eurasia

PLOS ONE | https://doi.org/10.1371/journal.pone.0225657 November 27, 2019 3 / 16

https://doi.org/10.1371/journal.pone.0225657


generation completed). Soft ticks were maintained in the laboratory at 26˚C with 80 to 90%

relative humidity as recommended for these species [45]. Only late instar of nymphs, females

and males were used for the study to assure maximum ingestion of blood and associated ASFV

particles for tick infection.

Pigs

Sixty-eight Specific Pathogen-Free (SPF) Large White pigs, 7–10 weeks-old, were used in the

experiments described below. They were identified individually and randomly housed in the

air-filtered biosafety level 3 animal facilities at Anses-Ploufragan.

All pigs were monitored daily for rectal temperature and clinical signs of ASFV infection

(recumbency, skin hemorrhage, diarrhea, vomiting, joint edema, blood in urine, laborious

breathing, ocular discharge, and lack of appetite assessed by weighing unconsumed food).

Each clinical sign was scored on a scale from 0 to 5, as previously described [43]. At the end of

the experiment, or at earlier stages for animal welfare reasons (clinical score� 15/40), pigs

were humanely euthanized by anesthetic (Zoletil1 100) overdose at 5 mL per 50 kilograms of

weight administered via the vena cava and then exsanguinated. Days of euthanasia are detailed

in Tables 2, 3, 4 and 5.

Once per week and just before euthanasia, pigs were weighed. Blood samples were collected

before the first exposure to ASFV-infected ticks, on the first day of hyperthermia, and then

twice a week. Blood was collected in tubes with lithium heparin for viral titration, EDTA for

ASFV genome detection by real-time Polymerase Chain Reaction (PCR), and dry tubes to

obtain serum.

Ethics statement

Animal experiments were authorized by the French Ministry for Research (project N˚

2017062615498464) and approved by the national ethics committee (authorization N˚ 11/07/

17-3).

Tick infection and ASFV transmission experiments

Fig 1 depicts the series of experiments conducted to assess soft tick vector competence for

ASFV. Briefly, pigs became viremic 3–4 days after intramuscular inoculation of the respective

ASFV strain dose of 104HAD50/pig. Ticks were fed on the pigs and then tested 2 to 8 months

later for their ability to transmit ASFV to naïve pigs.

Table 1 summarizes the permutations tested in two trials attempting to infect ticks with

ASFV feeding on viremic pigs. In the first trial, each of four groups of pigs was infected with

one of the four ASFV strains listed above. When viremic, the pigs were used to blood feed

cohorts of O. moubata s.s., O. erraticus, and O. verrucosus, which subsequently were used in

vector competence tests. In the second infection trial, two groups of 3 pigs inoculated respec-

tively with OurT88/1 or Georgia2007/1 were used to try to infect O. erraticus only. For both

trials, a group of two healthy pigs was kept as control. The trials were conducted six months

apart.

Ticks were fed on infected pigs during the first day of hyperthermia as previously described

[46]. At this time, viremia in the pigs ranged from 107,5HAD50/mL to 108,25HAD50/mL. When

ticks did not engorge during the initial blood meal, they were exposed again to the infected

pigs the day after to attempt maximal tick infection. Thus, the five possible combinations of

soft tick-ASFV infection included: O. moubata-Liv13/33 (OmL), O. moubata-Georgia2007/1

(OmG), O. erraticus-OurT88/1 (OeO), O. erraticus-Georgia2007/1 (OeG) and O. verrucosus-
Ukr12/Zapo (OvZ).
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ASFV transmission by ticks feeding on naïve pigs.

Ticks representing the five possible infection pairs listed above were tested for their ability to

transmit ASFV to naïve pigs (Fig 1). In each trial, the control group was not exposed to unin-

fected ticks because previous experiments did not show interference of the tick saliva with the

ASFV transmission, pig infection and outcome of the disease in domestic pig [46].

1) Transmission by O. moubata. At two months post infection (PI), OmL and OmG

were allowed to feed on naïve pigs in a single tick challenge with 30 ticks per pig to compare

the ability of this tick species to transmit two different ASFV strains. For both tick-virus pairs,

two naïve pigs were exposed to tick feeding. To evaluate the reservoir abilities of both tick-

virus pairs, one naïve pig was challenged with 36 OmL at 8 months PI, and two naïve pigs were

challenged with 40 OmG at 6 months PI. In a subsequent experiment, two naïve pigs were

challenged with 60 descendants of OmL per animal based on previous findings [19]. Nymphal

ticks in the first stage (N1) obtained from eggs laid by ASFV infected females during the sec-

ond gonotrophic cycle were used as the first cycle is apparently too close to the infective blood

meal to allow transovarial passage of the virus. These experiments included one contact pig,

which received no treatment but remained in close contact with the challenged pigs except the

OmL at 8 months PI that had two contact pigs.

Table 2. ASFV transmission by O. moubata ticks. Experiments involved ticks previously exposed to ASFV strains OmL, OmG, and the descendants of OmL ticks.

F = female, M = male, N = nymph, OmL = O. moubata-Liv13/33, OmG = O. moubata-Georgia2007/1.

Pig

identification

Tick-virus pair Time post tick

infection

Ticks fed: engorged/total (%

engorgement)

Sex of engorged

tick

First day of

hyperthermia

Day of

euthanasia

ASFV

diagnosis

SwineML1 OmL 2 months 29/30 (96.6) 11F/18M 2 3 +

SwineML2 27/30 (90) 9F/18M 2 3 +

SwineML3 8 months 27/36 (75) 17F/10M 2 4 +

SwineMG1 OmG 2 months 28/30 (93.3) 12F/15M/1N 3 4 +

SwineMG2 29/30 (96.6) 16F/12M/1N 4 4 +

SwineMG3 6 months 39/40 (97.5) 22F/17M 3 5 +

SwineMG4 39/40 (97.5) 21F/18M 3 5 +

SwineDML1 OmL

descendants

3 months 47/60 (78.3) 47N 3 5 +

SwineDML2 42/61 (68.8) 42N 2 5 +

https://doi.org/10.1371/journal.pone.0225657.t002

Table 3. Lack of ASFV transmission by O. erraticus and O. verrucosus ticks. Experiments involved ticks previously exposed to ASFV strains. F = female, M = male,

N = Nymph, OeO = O. erraticus-OurT88/1, OeG = O. erraticus-Georgia2007/1, OvZ = O. verrucosus-Zapo.

Pig identification Tick-virus pair Time post tick infection Ticks fed: engorged/total

(% engorgement)

Sex of engorged tick Day of euthanasia ASFV diagnosis

SwineEO1 OeO 2 months 29/30 (96.6) 23F/4M/2N 28 -

SwineEO2 27/30 (90) 20F/6M/1N 28 -

SwineEO3 140/143 (97.9) 51F/48M/41N 20 -

SwineEO4 132/143 (92.3) 50F/44M/38N 20 -

SwineEG1 OeG 2 months 29/30 (96.6) 20F/8M/1N 27 -

SwineEG2 25/30 (83.3) 21F/4M 27 -

SwineEG3 138/147 (93.4) 42F/42M/44N 20 -

SwineEG4 133/142 (93.6) 43F/51M/39N 20 -

SwineEG5 8 months 107/116 (92.2) 86F/18M/3N 16 -

SwineVZ1 OvZ 2 months 24/30 (80) 6F/10M/8N 29 -

SwineVZ2 27/30 (90) 9F/1M/17N 29 -

https://doi.org/10.1371/journal.pone.0225657.t003
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2) Transmission by O. erraticus and O. verrucosus. For OeO, OeG, and OvZ at 2 months

post infection, two naïve pigs were challenged once with 30 ticks per animal. Additionally, to

test for a dose effect in ASFV transmission, two naïve pigs were challenged with: 1) 142 and

147 OeG at 2 months PI; and 2) 143 OeO at 2 months PI. Each of these experiments included

one contact pig. To test the effect of time post- tick infection in O. erraticus, one naïve pig was

challenged with 116 OeG at 8 months PI. This experiment included two contact pigs.

3) Repeated exposure to O. moubata and O. erraticus infected with Georgia2007/1. A

test for the effect of repeated exposure of pigs to bites by infected ticks was conducted. To

achieve this, triple-challenge transmission trials were done using the OmG and OeG ticks at 2

months PI. The three challenges were spaced by 3–4 days each using a new batch of 15 ticks/

pig/challenge. A contact pig was included for each of the two tick-virus pairs.

ASFV transmission to naïve pigs by intramuscular inoculation of crushed-

tick homogenates

This experiment was conducted following the lack of transmission observed after exposure of

naïve pigs to infected ticks, namely OvZ at 2 months PI, OeO at 2 months PI, and OeG at 2

and 8 months PI. Ten ticks per tick-virus pair were crushed individually in 200μL of sterile

phosphate buffered saline solution (PBS) using a Star-Beater (VWR) with one bead of 3 mm

and one bead of 4 mm at 25 Hz during 3 mins. To each tube, 800μL of RPMI medium was

added and the content was centrifuged at 2000g during 2 mins. For OeO and OeG at 2 months

PI, 100μL of the supernatant from each individual tick was pooled into 1 mL of RPMI to a

final volume of 2 mL and then inoculated to one naïve pig intramuscularly. For OvZ at 2

months PI and OeG at 8 months PI, 500μL of the supernatant from individual ticks was pooled

Table 4. Clinical outcome in pigs inoculated with homogenate supernatant of O. erraticus and O. verrucosus previously exposed to selected ASFV strains. Experi-

ments involved ticks previously exposed to ASFV strains. OeO = O. erraticus-OurT88/1, OeG = O. erraticus-Georgia2007/1, OvZ = O. verrucosus-Zapo.

Pig identification Tick-virus pair Time post tick infection Volume of supernatant First day of hyperthermia Day of euthanasia ASFV diagnosis

SwineIEO1 OeO 2 months 1 mL 3 5 +

SwineIEG1 OeG 1 mL 4 6 +

SwineIVZ1 OvZ 5 mL 5 6 +

SwineIEG2 OeG 8 months 5 mL 3 5 +

https://doi.org/10.1371/journal.pone.0225657.t004

Table 5. Failure of ASFV transmission after repeated blood feeding by O. erraticus and O. moubata ticks previously exposed to selected ASFV strains. Proportions

of soft ticks fed and their life stage and sex per experiment are shown. F = Female, M = male, N = Nymph. OeG = O. erraticus-Georgia2007/1, OmG = O. moubata-Geor-

gia2007/1.

Pig

identification

Tick-virus

pair

Time post tick

infection

Ticks fed:

engorged/total, (%

engorgement)

Life stage and sex of engorged

ticks

ASFV

diagnosis

Day of

euthanasia

SwineEG6 OeG 2 months 14/15 (93.3),

15/15 (100),

15/15 (100)

9F/3M/2N, 9F/5M/1N, 12F/1M/

2N

- 30

SwineEG7 15/15 (100)

15/15 (100),

15/15 (100)

7F/7M/1N, 12F/2M/1N, 10F/4M/

1N

- 30

SwineMG5 OmG 13/15 (86,67),

15/15 (100),

15/15 (100)

8F/5M,

7F/7M/1N,

7F/8M

- 30

SwineMG6 15/15 (100),

15/15 (100),

15/15 (100)

10F/5M,

7F/8M,

7F/8M

- 30

https://doi.org/10.1371/journal.pone.0225657.t005
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to a final volume of 5 mL and then inoculated to one naïve pig. For the last two groups, 5 mL

was inoculated because the ASFV DNA load, measured by real-time PCR and expressed by

cycle threshold (Ct), was lower (26.04–39.83 Ct) than the other groups (20–29.86 Ct).

ASFV detection and serological assay

Pigs were diagnosed for ASFV infection by real-time PCR as previously described [47] using

DNA extracted from 100μL of EDTA blood samples using the DNeasy Blood and Tissue kit

(Qiagen, Courtaboeuf, France). Pig Beta-actin was used as internal control for DNA extraction

from pig samples. ASFV was also detected in ticks by real time PCR using primers and probes

targeting ASFV VP72 as previously described [47]. To have an internal control, primers to

amplify tick beta-actin [48] and the probe Hex-5’-CGAGAGGAAGTACTCCGTCTGG-3’-

BHQ1 were added to each PCR mixture. Real time PCRs were performed on 200 μL of each

crushed tick supernatant after DNA extraction using High Pure PCR Template Preparation

Kit (Roche Life Science). Additionally, mosquito nets of the tick feeding units used for the

transmission trials to pigs were washed in 5 mL of PBS to extract DNA using High Pure PCR

Template Preparation Kit (Roche Life Science), which was used to perform the ASFV real-

time PCR described above.

Antibodies against ASFV were measured in serum obtained from the last blood sample col-

lected before the pigs were euthanized, which corresponded to less than one week for infected

pigs and more than 16 days for the other pigs to explore possible seroconversion in groups

where transmission by tick bite failed. Serum samples were purified by centrifugation at 3000g

for 5 mins and anti-ASFV antibody detection was done using a competition ELISA kit per the

manufacturer’s instructions (INGENASA PPA3 COMPAC, Spain).

Fig 1. Experimental outline of experiments using viremic pigs to attempt soft tick infection depicting subsequent tests for ASFV transmission to pigs.

Viremia was produced by inoculating naïve pigs intramuscularly with ASFV. Infection of three Ornithodoros soft tick species was attempted by allowing the

ticks to blood feed on the viremic pigs. Two to eight months after feeding on viremic pigs, additional experiments were conducted to test the ability of these

ticks to transmit different ASFV strains while acquiring a blood meal on naïve pigs. OmG: O. moubata-Georgia2007/1, OmL: O. moubata-Liv13/33, OeG: O.

erraticus-Georgia2007/1, OeO: O. erraticus-OurT88/1, OvZ: O. verrucosus-Ukr12/Zapo.

https://doi.org/10.1371/journal.pone.0225657.g001

Table 1. Soft ticks fed on viremic pigs in two trials to attempt infection with four ASFV strains. Counts of engorged ticks for each Ornithodoros species tested are

shown next to the number of pigs in brackets that were infected with the respective ASFV strain per trial.

ASFV strain

Ticks

Georgia2007/1 Ukr12/Zapo Liv13/33 OurT88/1

1st trial O. erraticus 281 (4) 180 (3)

O. moubata 313 (3) 260 (3)

O. verrucosus 145 (3)

2nd trial O. erraticus 300 (3) 293 (3)

https://doi.org/10.1371/journal.pone.0225657.t001
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Statistical analysis

To test the effect of the route of pig infection on the evolution of the disease (clinical score and

onset of hyperthermia), the following treatment groups were established: 1) pigs infected by

intramuscular inoculation of ASFV, 2) pigs infected by tick feeding, and 3) pigs infected by

inoculation of homogenates of crushed ticks.

Statistical analyses were performed using the RStudio software (version 1.1463). All analy-

ses were run using generalized mixed effect models with pigs as random effect (to account for

the non-independence of the data), whereas treatment and time were fitted as fixed effects

(interaction between the two terms was not significant). The speed of hyperthermia onset was

analyzed with a Poisson distribution whereas clinical score required a negative binomial distri-

bution to account for over dispersion of the data.

Results

Confirmation of tick infection and feeding on naïve pigs to test ASFV

transmission

Tick infection was assessed by real-time PCR two months PI and before the transmission trials

started. Fifteen ticks for each of the OmL, OmG, OeO, and OeG virus pairs, and 10 ticks for

the OvZ pair were tested. All the ticks tested were PCR-positive for ASFV (Fig 2).

Following blood feeding on naïve pigs for transmission trials, ticks were sorted by life stage

(nymph or adult) and sex of the adults (male or female), and divided according to feeding sta-

tus into “engorged” vs “non-engorged” groups. Engorgement rates in the two trials ranged

from 68.8 to 100% depending on the tick-virus pair tested (Tables 2 and 3). ASFV was detected

by PCR (Ct: 32.86–40.46) in liquid used to wash mosquito nets in the feeding units containing

tick excreta (coxal fluid and feces) for all the tick-virus pairs.

O. moubata transmission of the ASFV Georgia2007/1 and Liv13/33 strains

Two months PI, ticks representing the OmL and OmG associations transmitted ASFV to naïve

pigs (SwineML1/SwineML2 and SwineMG1/SwineMG2, respectively). The two pigs bitten by

OmL ticks were hyperthermic on day 2 after tick feeding while the two other pigs exposed to

OmG ticks were hyperthermic on day 3 and day 4, respectively, after the ticks blood fed on

them (Table 2). Eight and 6 months PI, respectively, OmL and OmG ticks were still able to

transmit ASFV to naïve pigs (SwineML3 and SwineMG3/SwineMG4). The pig bitten by OmL

ticks was hyperthermic on day 2 after the exposure while the two other pigs bitten by OmG

ticks were hyperthermic on day 3 (Table 2). Pigs SwineDML1 and SwineDML2 exposed to

descendants of OmL ticks were hyperthermic on day 2 and 3, respectively, post tick exposure.

All pigs exposed to OmL and OmG ticks were ASFV PCR positive (Table 2). The contact pigs

remained PCR-negative.

Lack of ASFV transmission by O. erraticus and O. verrucosus
Pigs bitten by 30 ticks of the OeO, OeG or OvZ pairs 2 months PI remained alive during a

period of 23 days and without any ASF clinical signs or viraemia (Table 3). No antibodies

against ASFV were detectable by ELISA in these pigs at day 23 after tick feeding.
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ASFV in O. erraticus and O. verrucosus was not transmitted to, but

remained infective for naïve pigs

All naïve pigs inoculated with homogenates obtained from OeO, OeG and OvZ ticks became

hyperthermic between 3 to 5 days post inoculation (Table 4). This outcome confirmed that

ASFV contained in the ticks remained infectious. These pigs were ASFV positive by PCR

(Table 4). The same results were observed when homogenates for the inoculation were

obtained from OeG ticks that had fed on a viremic pig 8 months before their ability to transmit

ASFV was tested.

Lack of ASFV transmission after repeated blood feeding by OeG and OmG

ticks

Pigs exposed to blood feeding three successive times by 15 ticks/pig/exposure with the OeG or

OmG ticks at 2 months PI remained alive without showing clinical signs during the 30 days

post-exposure period (Table 5). These pigs were also negative for ASFV by PCR and ELISA.

Clinical scores of infected pigs

Clinical scores of infected pigs with ASFV are shown in S1 Fig. No statistical difference was

detected between pigs infected either by intra-muscular injection, tick bite, or inoculation of

tick homogenate (Chisq = 3.725; p-value = 0.155). No statistical difference was found for the

onset of hyperthermia between these three groups (Chisq = 1.090; p-value = 0.579). Control

pigs had a clinical score of 0 during all the experiments.

Fig 2. Detection of ASFV VP72 gene in soft ticks by real time PCR. ASFV infection was tested in soft ticks for the following viral strain associations: O.

moubata-Liv13/33 (OmL), O. moubata-Georgia2007/1 (OmG), O. erraticus-OurT88/1 (OeO), O. erraticus-Georgia2007/1 (OeG) and O. verrucosus-Urk12/

Zapo (OvZ). Ct = Cycle Threshold.

https://doi.org/10.1371/journal.pone.0225657.g002
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Discussion

To the best of our knowledge, this is the first study where vector competence for ASFV strains

circulating in Eurasia was compared between Palearctic soft tick species, in this case O. errati-
cus and O. verrucosus, and the known Afrotropical soft tick vector O. moubata. The experi-

mental design followed here closely mimicked natural conditions under which pathogen

acquisition and transmission by biological soft tick vectors take place. Blood feeding on pigs

facilitates engorgement of soft ticks, which is important for ASFV transmission but also for

tick infection; pigs are much attractive than artificial membranes for promoting tick feeding

and host infection with detectable viremia. Pigs were bitten by heterogeneous tick cohorts

varying in numbers and consisting of different developmental stages and sexes. Keeping the

pigs together to minimize stress when exposed to tick feeding prevented the use of chemical

restraint. In addition to testing for virus uptake, the period elapsed between feedings also

allowed infected tick to bite at different times PI, and single or multiple biting events by the

same ticks as it occurs in the field. Thus, the approach taken with the experiments presented

herein is biologically relevant as compared to laboratory vector competence studies where arti-

ficial feeding systems are used [49, 50]. Additionally, using negative controls receiving no

treatment and positive control pigs that were infected by intramuscularly injection, which is

the reference method to infect pigs experimentally with ASFV, afforded the measurement of

clinical symptoms observed in pigs after they were bitten by infected ticks [43]. Pigs infected

either by intramuscular injection or Ornithodoros tick bites displayed similar disease outcome

with similar clinical score kinetics and a comparable onset of hyperthermia.

The Palearctic soft tick species O. erraticus and O. verrucosus were unable to transmit the

ASFV strains tested to susceptible pigs under the experimental conditions of this present

study. However, inoculation of naïve pigs with a homogenate of pooled infected ticks revealed

that ASFV remained infectious during at least two months in OeO, OeG and OvZ ticks, and

during eight months in the OeG ticks. This observation documents a potential mechanism for

ASFV maintenance, as reservoir, for several months by Palearctic soft tick species (O. erraticus
and O. verrucosus).

ASFV transmission by O. erraticus infected with Georgia2007/1 failed regardless of the

number of ticks used per challenge (15 to 140), the number of challenges (1 or 3), or the time

elapsed between tick infection and the transmission attempt (2 and 8 months). Although these

findings are in agreement with previous observations by our research group [51], O. erraticus
also failed to transmit the ASFV OURT88/1 strain included in our study design as a positive

control. This strain was originally isolated from O. erraticus collected in Ourique, the Alentejo

region of Portugal. Previous research documented that O. erraticus from this geographic area

were able to transmit the virus to pigs [42]. Therefore, it will be important to confirm if rele-

vant genetic differences between ASFV strains emerging in Eurasia are determinants of vector

competence for O. erraticus, O. verrucosus, and other Palearctic soft tick species [52].

Previous studies also showed that vector competence can vary according to the ASFV strain

and the soft tick populations tested where a gut barrier for generalization of infection before

virus transmission occurs may exist [20]. However, the transmission failure in the OeG and

OeO pairs is unlikely due to a tick gut barrier for infection. Productive infection, but not trans-

mission, appears evident by the recovery infectious ASFV at time points later than 4 weeks PI,

as shown by the outcome of the experiments where pigs were inoculated with tick homogenate

[25, 27].The first experimental data testing the vector competence of O. verrucosus for ASFV

are presented here. The scarce availability of O. verrucosus ticks limited the conduct of trans-

mission trials with 30 OvZ ticks per pig, which yielded negative results. This outcome was sim-

ilar to that observed with O. erraticus, with differences in ASFV loads at the 2-month PI time
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point as noted by the lower Ct values for OvZ. O. verrucosus is relatively small as compared to

O. moubata and O. erraticus. Ukraine is considered the northern boundary of the geographical

range for O. verrucosus [31], and its distribution appears to be associated with ecological niches

such as riverine cliffs and limestone outcrops, which would limit its potential to be involved in

the circulation of ASFV even if it had been shown to be a competent vector on these studies

[53]. However, the results obtained with OvZ documented the ASFV reservoir ability of orally

infected O. verrucosus for at least 2 months. Continued ecological changes in Ukraine promot-

ing contact between O. verrucosus and susceptible hosts, e.g. through synanthropization, could

results in the adaptation of ASFV strains to circulate in this native soft tick species.

Future studies will help to determine if differences in barriers other than the gut or genetic

factors influence the relative vector competence for ASFV between populations of Palearctic

soft tick species including O. erraticus [25, 52]. It will be important to determine if relevant

genetic differences between closely related tick-transmissible and refractory strains exist,

which could help identify potential vector competence determinants for ASFV.

Contamination of skin lesions with coxal fluid excreted during tick feeding is a possible

mode for saliva-independent transmission as suggested by the ASFV titers in soft ticks and

virus detection by PCR in washings obtained from mosquito netting retrieved after the

attempted transmission in all the soft tick-virus pairs tested [15, 54]. Relevant differences in

blood feeding biology exist between the ticks tested in our experiments. O. moubata excretes

coxal fluid during the feeding process and after host detachment whereas coxal fluid excretion

by O. erraticus and O. verrucosus occurs within several hours after feeding is completed [55].

We hypothesize that physiological variation in coxal fluid excretion could influence differences

in vector competence for ASFV between Ornithodoros species. More investigations on viral

titers in the ticks and their excreta, and visualization of ASV in tick tissues could help to under-

stand the vector incompetence of O. erraticus in our experiments.

Our results verified the vector competence and the reservoir ability of O. moubata for

Liv13/33. Horizontal transmission to pigs was successful at 2 and 8 months PI. This confirmed

results from the study by Rennie [18], which detected ASFV 9 weeks PI in salivary glands of O.

moubata artificially infected with Liv13/33. Vertical transmission to progeny was also

observed, as previously reported [19]. Here, we demonstrated that infected progeny of female

OmL ticks can transmit ASFV to pigs during their first blood meal.

Considering the presumed origin of the Georgia2007/1 strain [3], and the apparently wide-

spread natural infection with ASFV genotype II in ticks from Southeast Africa [10], we

hypothesized that O. moubata would successfully transmit this strain. OmG ticks were able to

transmit ASFV at 2 and 6 months PI in single challenges using 30 ticks per pig. These results

contrast findings in a previous report where a single infected soft tick O. porcinus was able to

transmit ASFV to a susceptible pig [15]. Additional studies are needed to determine if the

observed discrepancies are due to insufficient amounts of virus being transmitted under those

challenge conditions [56, 57], or if the particular tick/virus strain combination influences vec-

tor competence [18, 21, 55].

It is critical to apply integrative taxonomy to the study of ticks and tick-borne diseases,

including investigations on aspects related to vector competence. In the case of this study, the

classical Afrotropical tick vector of ASFV is known by various names such as O. porcinus, O.

moubata porcinus or simply as O. moubata. However, the most recent integrative taxonomic

revision involving genetic and morphological analyses in the O. moubata group of ticks

revealed that at least 4 distinct species (O. moubata, O. phacochoerus, O. porcinus and O. water-
bergensis) could be potentially implicated in the transmission of ASFV with more species to be

described if extensive geographical sampling were to be conducted [58]. At this point, an issue

is to relate these new taxonomic data with previous studies on vector competence for ASFV in
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soft ticks. Looking forward, it is evident that work remains to be done to enhance our under-

standing of vector competence for ASFV given the diversity of soft ticks. This situation may

also apply to other soft ticks as potential ASFV vectors that may include cryptic species like O.

erraticus [25, 59] and O. verrucosus [33]. Sequencing and depositing or referencing voucher

sequences of genetic markers commonly used in tick taxonomy should be a priority for vector

competence studies [60], which will enhance our understanding of the role soft ticks can play

as vectors of ASFV.

The genetic background of tick populations, their physiological status, or infections with

other pathogens/endosymbionts, have been shown to significantly influence the competence

of ticks as vectors of various infectious agents [60–62]. Therefore, predicting vector compe-

tence of a given tick species for ASFV will remain challenging, as long as the intrinsic determi-

nants for successful tick infection and tick-borne transmission of ASFV remain to be fully

determined. Future work involving comparative–omics approaches will offer the opportunity

to explore the molecular basis of Ornithodoros-ASFV associations, as some viral genes appar-

ently play an important role in infection and replication processes of ASFV in soft ticks [27,

63].

Finding a tick naturally infected with ASFV is not sufficient to predict its vector compe-

tence, which includes both the ability of the tick to become infected and then its ability to

transmit to a susceptible animal [64]. Moreover, such a discovery does not predict the tick’s

role in the epidemiology of ASF. A strict set of criteria to incriminate and define an arthropod

as a vector or reservoir for a given pathogen exists in biomedical research [65, 66], with compe-

tence being only a part of the broader definition of vector capacity that in the case of arbovi-

ruses also includes extrinsic and intrinsic factors influencing their replication and

transmission in nature by the biological vector. In view of the global ASF crisis, this study

highlights the need to address the challenges related to the taxonomy, ecology and geographic

distribution of Ornithodoros ticks in parts of the world where ASFV is emerging and re-emerg-

ing [31, 60].

Supporting information

S1 Fig. Clinical scores of pigs positive for ASFV that were infected in three different ways.

Results are presented by boxplots. Cross correspond to the mean and horizontal lines corre-

spond to the median.

(TIF)

Acknowledgments

We are grateful to Jean-Marie Guionnet and Angélique Moro for animal care and sampling at
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