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Livestock trade network: potential 
for disease transmission and 
implications for risk-based 
surveillance on the island of 
Mayotte
Younjung Kim  1,2, Laure Dommergues3, Ali Ben M’sa3, Philippe Mérot4, Eric Cardinale5,6, 
John Edmunds7, Dirk Pfeiffer1,2, Guillaume Fournié1 & Raphaëlle Métras  6,7,8

The island of Mayotte is a department of France, an outermost region of the European Union located 
in the Indian Ocean between Madagascar and the coast of Eastern Africa. Due to its close connection 
to the African mainland and neighbouring islands, the island is under constant threat of introduction 
of infectious diseases of both human and animal origin. Here, using social network analysis and 
mathematical modelling, we assessed potential implications of livestock movements between 
communes in Mayotte for risk-based surveillance. Our analyses showed that communes in the central 
region of Mayotte acted as a hub in the livestock movement network. The majority of livestock 
movements occurred between communes in the central region and from communes in the central 
region to those in the outer region. Also, communes in the central region were more likely to be infected 
earlier than those in the outer region when the spread of an exotic infectious disease was simulated on 
the livestock movement network. The findings of this study, therefore, suggest that communes in the 
central region would play a major role in the spread of infectious diseases via livestock movements, 
which needs to be considered in the design of risk-based surveillance systems in Mayotte.

The South Western Indian Ocean islands, including the Comoros, La Reunion, Madagascar, Mayotte and 
Seychelles, are connected to each other and to the African mainland by the movement of people and animals1. 
Among these islands, Mayotte, located in the Northern Mozambique Channel, is highly connected to its neigh-
bouring territories. In particular, illegal import of livestock from the Comoros is not uncommon2, making the 
island vulnerable to the introduction of infectious diseases affecting animals and/or humans. Mayotte has recently 
suffered from the introductions of Dengue, Chikungunya, and Rift Valley fever (RVF) viruses, the latter proba-
bly resulting from the introduction of a lineage from the African continent via illegally imported animals from 
the Comoros1–3. Moreover, its livestock population is under constant threat from recent outbreaks of Peste des 
Petits Ruminants (PPR) in the Comoros and high endemicity of Foot-and-Mouth disease (FMD) and lumpy skin 
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disease in Eastern Africa4–6, increasing the potential for Mayotte to serve as an entry point of these diseases into 
Europe, as an outermost region of the European Union.

The livestock population in Mayotte was estimated to be approximately 20,000 for cattle and 13,000 for small 
ruminants7. In addition to the national surveillance programmes for brucellosis and bovine tuberculosis, an 
animal disease surveillance system (SESAM, Système d’Epidémiosurveillance Animale à Mayotte) has been in 
operation in Mayotte since 2009. Although it depends on both active (e.g. RVF serosurveys) and passive (e.g. 
abortion and mortality reports by farmers) surveillance components, the detection of exotic livestock disease 
heavily relies on active surveillance since reporting livestock disease by Mayotte farmers may not always be sys-
tematic (Dommergues, personal communication). Given this situation, the effective and efficient allocation of 
limited resources has particular importance since active surveillance requires considerable resources. Risk-based 
surveillance could achieve this by incorporating prior information about its target population, derived from epi-
demiological studies, into the design of traditional surveillance8.

The contact network can be used to infer the underlying transmission network since it influences how dis-
ease transmits among the population combined with host infection status9. Among different types of contacts, 
livestock movements constitute major routes for the spread of infectious livestock disease10. For example, the 
long-range movement of sheep in combination with local transmission resulted in the FMD epidemic in the UK 
in 200110,11. Livestock movements could, therefore, provide insight into the structure of the underlying transmis-
sion network and thus allow early detection and more effective management of infectious disease12. To do this, 
social network analysis and mathematical modelling have been employed widely to describe contact patterns of 
livestock movements and analyse their potential use for designing disease control strategies12.

This study aimed at identifying the network characteristics of livestock movements in Mayotte and assessing 
their potential implications for risk-based surveillance. First, these data were presented as a network of admin-
istrative communes connected by livestock movements and characterised by social network analysis at both the 
global and commune levels. Second, we assessed the time from the introduction of an exotic livestock disease into 
the island to the infection of individual communes by stochastic simulations. Finally, to assess the validity of the 
inferences from our analyses, we compared RVF IgG seroprevalence between clusters of communes that were 
classified based on their similarity in the network position (i.e. structural equivalence) over the study years, using 
longitudinal RVF IgG seroprevalence data2.

Methods
Data. Data on livestock movements that occurred from 2007–2014 were collected from two sources: the offi-
cial farm registry of the Chambre de l’Agriculture, de la Pêche et de l’Aquaculture de Mayotte (CAPAM), and the 
records of livestock moved by truck by the Coopérative des Eleveurs de Mayotte. While the official farm registry 
included the date and the farms of origin and destination for each movement of each animal, the truck dataset 
only contained information about the number of animals moved between communes on a given date. We merged 
the two datasets into one, which resulted in 3505 livestock movement records between communes (detailed in 
Supplementary Material A).

Network Characteristics. All livestock movements that occurred in a study year, that is from July to June 
of the following year, were aggregated to draw seven yearly static networks. Study years were used to capture 
the rainy season as a whole (November-March) since it was considered to influence livestock movements. The 
networks were directed and weighted, with the 17 communes as nodes and livestock movements as edges. The 
number of livestock moved from commune i to commune j was the weight of a directed edge from i to j.

First, the large-scale structure of each yearly network was assessed by the density (i.e. the proportion of poten-
tial edges present in a network), giant strongly and weakly connected components (GSCC, GWCC), average path 
length and clustering coefficient13,14. The GSCC and GWCC were to assess the lower and upper limit of the max-
imum epidemic size, respectively14. The average path length and clustering coefficient of the observed networks 
were compared to the metrics of random networks to assess whether yearly networks exhibited small-world 
properties15 (detailed in Supplementary Material B). Between all pairs of yearly networks, the correlation in the 
distributions of edges was assessed through a quadratic assignment procedure (QAP)16.

Second, in each yearly network, the similarity in the position of nodes was assessed by exploring their struc-
tural equivalence. Euclidean distance was used as a measure of structural equivalence to account for not only the 
presence of livestock movements but also the number of animals moved between communes17. That is, two com-
munes were considered structurally equivalent if they received and sent the same number of animals from, and to, 
the same communes, excluding the two communes being compared17. As in other network characteristics, live-
stock movements within communes were not considered when structural equivalence was assessed. To identify 
clusters of communes with similar livestock movement patterns, communes were then classified into two clusters 
based on Euclidean distances computed for all pairs of communes. These structurally equivalent clusters were 
defined using Ward’s criterion18,19 at the point where two clusters resulted in the total minimum within-cluster 
variance. The statistical significance of commune partitions into structurally equivalent clusters was explored by 
comparing the edge density and the number of livestock moved within and between clusters between observed 
and permuted networks.

Third, communes’ importance was assessed with the following centrality measures: in- and out-strength, 
betweenness and closeness (detailed in Supplementary Material B). The correlation between those centrality 
measures was examined by the Kendall rank correlation test.

Finally, the associations between in- and out-strength of a commune and its human and livestock population 
sizes were assessed by linear regression, accounting for the non-independence of network data by using a permu-
tation test20. The association between the number of livestock moved between communes and the shortest road 
distance was explored using the QAP regression tests21,22, based on a semi-partialing permutation method16,23. 



www.nature.com/scientificreports/

3SCIEnTIfIC RepoRts |  (2018) 8:11550  | DOI:10.1038/s41598-018-29999-y

Road distances between communes were calculated using the x-y coordinates of the centre of the largest town in 
each commune as a geographical reference point24.

Dynamic Epidemic Simulation. Baseline model. Epidemic spread through livestock movements was 
simulated. The spread of a hypothetical exotic infectious disease between the communes of Mayotte through the 
movements of livestock was assessed by stochastic simulations. At the start of a simulation, all communes were 
susceptible. The infection was seeded in a randomly selected commune and on a random day of the study period 
(2007–2014). Daily livestock movements between communes were then replayed as recorded in the dataset until 
the end of the study period. The infection status of susceptible commune j upon receiving Wi j d, ,  animals from 
commune i on day d was simulated by a Bernoulli trial with Pi j d, , , the probability that commune j became infected, 
as the probability of success. Pi j d, ,  was defined as:

P p1 (1 ) , if commune i was infected
0 , if commune i was not infected

i j d

W

, , inf
i j d, ,

=






− −

where pinf  was the probability that an animal from an infected commune was infectious and transmitted the dis-
ease to other animals in the susceptible commune where it was introduced. Infected communes remained 
infected until the end of a simulation. We generated 20,000 epidemic simulations for each value of pinf : 0.1, 0.5 
and 0.9, corresponding to low, medium and high disease transmission scenarios, respectively.

The results of the epidemic simulation were analysed in the following ways. First, we discarded simulations 
in which less than half of the communes were infected as we only wanted to consider simulations that resulted 
in large epidemics. Second, to assess the potential of communes to act as sentinels during large epidemics, we 
computed for each simulation and each commune the time from the day when the infection was seeded to the 
day when the commune was infected (‘time-to-infection’), except for the commune in which the infection was 
seeded. For each commune, we then assessed the distribution of time-to-infection values using the median as the 
measure of central tendency.

Model accounting for potential bias. We assessed the potential bias in the model outcome that could arise from 
the data. First, recall bias in the reported movement dates was possible. It could change the temporal sequence 
of animal movements and, therefore, epidemic patterns. We, therefore, assessed the impact of modifying those 
reporting dates on the simulated epidemics. We assumed that 10 to 30% of the livestock movements occurred 
+/− one month around their reported dates. The following steps were repeated for each simulation and reported 
livestock movement of each dataset. We first simulated whether a livestock movement actually occurred on its 
reported date through a Bernoulli trial with the parameter being drawn from a Uniform distribution U[0.7, 0.9]. 
If the trial was successful, the livestock movement occurred on its reported date. If not, the date was simulated 
by adding to the reported date a rounded random number drawn from a Normal distribution (μ = 0, σ2 = 100) 
truncated between −30 and 30. We then merged the two datasets, accounting for possible overlap between them. 
When there were livestock movements that occurred on the same date between the same communes in both 
datasets, we randomly selected the number of livestock movements among its possible values. For example, if 
there were 5 and 3 movements in the official and truck datasets, respectively, one value was randomly selected 
from integer values between 5 and 8.

Finally, some of the simulations finished before infecting all communes since every simulation ended on the 
last day of the study period regardless of when the infection was seeded. To assess the extent of bias from this, we 
considered that the time-to-infection for communes which did not become infected during the course of a given 
simulation was equal to (1) the [length of the simulation +1 day] or (2) [infinity]. The actual time-to-infection for 
these communes, therefore, lay between these two bounds.

RVF Seroprevalence and network structure. To explore the validity of our analyses, we used longitudi-
nal RVF IgG seroprevalence data from Mayotte2. We assessed whether the distribution of RVF IgG seroprevalence 
across the island could be associated with the movements of animals by comparing annual RVF IgG seropreva-
lence patterns between structurally equivalent clusters, with a particular focus on an RVF epidemic between 
2008–20103. More specifically, annual RVF IgG seroprevalence in clusters of communes that were classified based 
on communes’ structural equivalence was estimated. The seroprevalence pc y,  in a commune cluster c (central or 
outer) on year y was:

p
P
Nc y

i i c i y

i i c i y
,

, ,

, ,
=

∑

∑
∈

∈

with Ni y,  and Pi y,  being the total number of animals and the number of positive animals sampled on commune i 
in year y, respectively. The 95% confidence intervals were obtained by accounting for clustering at herd level, 
using varbin function of the aod package25 in R26. We further explored whether the between-cluster difference 
observed in RVF IgG seroprevalence could be explained by vector-related transmission. For this, we used 
Normalised Difference Vegetation Index (NDVI) as a proxy of mosquito abundance since it reflects the level of 
vegetation and water presence, i.e. conditions promoting mosquito proliferation27.

Data availability. The official and truck datasets are available from Supplementary Information S1 and S2, 
respectively. Commune IDs and their geographic coordinates are available from Supplementary Information S3. 



www.nature.com/scientificreports/

4SCIEnTIfIC RepoRts |  (2018) 8:11550  | DOI:10.1038/s41598-018-29999-y

Model codes for epidemic simulation are available from Supplementary Information S4 (original model) and S5 
(model accounting for potential recall bias) online as R scripts.

Results
Network Characteristics. During the study period, the number of between-commune livestock move-
ments peaked in 2009 (n = 712, 22.3%), whereas it was the lowest in 2014 (n = 350, 11.0%). The density of yearly 
networks ranged between 0.40 and 0.52, and the total number of livestock movements per year between 350 and 
712. The number of livestock moved in (in-strength) and out (out-strength) of a commune ranged from 2 to 
142, and from 0 to 155, respectively, and their distributions were right-skewed (Fig. 1). All yearly networks were 
connected via livestock movements, with the GWCC always including the 17 communes, and the GSCC either 
16 or 17 communes. The networks were strongly correlated between all pairs of yearly networks, suggesting that 
the overall structure of the livestock movement network in Mayotte was stable over the study years; the correla-
tion statistic between any two networks was significantly higher than those between the permuted networks (all 
p-values < 0.001).

All yearly networks showed a high level of clustering, which was significantly higher than in random networks 
(Supplementary Fig. S1). However, they did not seem to exhibit small-world properties as the average path length 
was longer than for random networks, in all but one study year (Supplementary Fig. S2).

Each yearly network was partitioned into two structurally equivalent clusters, with this partition being corre-
lated with the geographical location of the communes (Fig. 2). Communes in the central region of the island of 
Mayotte tended to be classified as one cluster (red in Fig. 2), and communes in the outer region as another (blue 
in Fig. 2); communes in the former cluster were referred to as central communes and those in the latter cluster 
as outer communes. Cluster composition was stable over the study period, with the membership of only 3 com-
munes varying over the study period, whereas the other 14 communes were always either central (n = 3) or outer 
(n = 11) (Fig. 2); when presenting results from the yearly networks in aggregate, communes were re-classified as 
central communes if they were classified as central communes in more than half the yearly networks, otherwise as 
outer communes. Node connectedness greatly varied according to their membership. Nodes’ centrality measures 
tended to be higher in central than outer communes (Fig. 3). More animals were moved between central than 
between outer communes, and from central to outer communes than from outer to central communes, except for 
one study year (Supplementary Fig. S3). In every study year, the number of livestock movements between central 
communes (or between outer communes) was significantly higher (or lower) in the observed network than in 
the permuted networks. However, there was no significant difference in the number of livestock movements from 
central to outer communes (or from outer to central communes) between the observed and permuted networks. 
Furthermore, in every study year, almost all possible edges were realised between central communes (i.e. den-
sity = 1), whereas less than a third between outer communes (Supplementary Fig. S4).

Finally, in each of the study years, out-strength was associated with the size of the livestock population 
(Supplementary Table S1); on average, communes sent out 1–3 more animals as their livestock population 
increased by 100 animals. In-strength also showed positive correlations, but there was no statistical significance 
in all but one study year (July 2011–June 2012). The size of the human population had no significant association 

Figure 1. In- and out-strength distributions of the livestock movement network. The in- and out-strength were 
aggregated over the study period, and their median values were presented as frequency distributions. The low 
and high ends of the vertical bars corresponded to the minimum and maximum value, respectively.
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Figure 2. The livestock movement network in Mayotte from 2007 to 2014. Nodes and edges corresponded to 
communes and livestock movements between communes, respectively. The size of the nodes represented the 
number of livestock in the communes in 2010. The arrow and width of the edges represented the direction and 
the total number of livestock movements between communes over the study years, respectively. The nodes were 
expressed as pie charts, showing the proportion of communes’ structurally equivalent cluster over the study 
years.

Figure 3. In-strength, out-strength, betweenness (left y-axis) and closeness (right y-axis) by structurally 
equivalent cluster over the study years.
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with in- and out-strength in most study years. Finally, QAP regression tests showed that the number of livestock 
moved between two communes increased as the distance between them decreased (Supplementary Table S2).

Dynamic Epidemic Simulations. For the three values of pinf  tested (0.1, 0.5, 0.9), the median number of 
days from disease incursion to commune infection was about 1.4 times lower for central than outer communes 
(Fig. 4). Less than 3 months were needed for diseases with a high transmission potential to reach central com-
munes (pinf : 0.9, median: 80 days), whereas it took almost a year for diseases with a low transmission potential 
(pinf : 0.1, median: 362 days). On average, the commune of Sada was infected the earliest for all values of pinf  and 
therefore was used as a baseline commune when computing the relative time from disease incursion to commune 
infection. The relative time did not differ much among central communes but was more variable for outer com-
munes (Fig. 5). In addition, as pinf  decreased, the relative time from disease incursion to commune infection 
(filled points in Fig. 5) and the likelihood of commune infection during simulations (hollow points in Fig. 5) 
decreased in most communes, especially in outer communes. For the three values of pinf  tested, accounting for 
potential recall bias in the reported dates and possible overlap between the two datasets resulted in almost the 
same time-to-infection (Supplementary Figs S5 and S6). Finally, after accounting for communes which were not 
infected during simulations, the outer communes’ time-to-infection slightly increased for pinf  = 0.1, while it 
remained almost unchanged for central communes (Supplementary Table S3).

RVF seroprevalence and network structure. During the RVF epidemic (2008–2010), RVF IgG sero-
prevalence was higher in central than outer communes (Fig. 6). The difference between central and outer com-
munes was marked in 2008 when RVF seroprevalence was 5.9 times higher in central than outer communes. 
However, it became smaller as RVF seroprevalence in outer communes gradually increased between 2009–2010. 
A similar pattern was also observed after the epidemic period; in central communes, RVF seroprevalence 
increased in 2012 with decreases in the following study years. In contrast, in outer communes, RVF seroprev-
alence remained low in 2012 and showed a slight increase in 2013. During the epidemic period, there was little 
difference in NDVI between central and outer communes.

Discussion
In the livestock movement network, central communes were closely connected between themselves and to outer 
communes, whereas outer communes maintained large network distances between themselves or to central 
communes. These patterns were statistically significantly associated with the number of livestock and the road 
distance between communes. In the epidemic simulation, central communes tended to be infected earlier than 
outer communes upon the introduction of exotic livestock disease. Finally, RVF IgG seroprevalence was higher in 
central than outer communes during the previous epidemic.

Our network analyses showed that central communes acted as a hub in the livestock movement network. 
Dense connectivity between central communes and from central to outer communes resulted in a higher clus-
tering coefficient than random networks. However, outer communes had relatively sparse connectivity between 
themselves and to central communes, with the shortest path between outer communes being mostly mediated via 
central communes. This resulted in a longer average path length than random networks, which contrasted with 
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Figure 4. Time from disease incursion to commune infection (in days) aggregated by structurally equivalent 
cluster (Baseline model). For the three values of pinf  tested (0.1, 0.5, 0.9), the number of days from disease 
incursion to commune infection was aggregated by structurally equivalent cluster (central and outer 
communes) and plotted in the log scale (y-axis). Numbers in boxplots corresponded to the median values.
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small-world properties15. Under this network structure, an epidemic would have a different pattern in the early 
stage depending on where a livestock disease is first introduced. If the disease is first introduced into an outer 
commune, it may be limited within the commune or spread towards central communes rather than the other 
outer communes. However, once the disease affects central communes, a rapid and widespread epidemic is pos-
sible due to dense connectivity between central communes and from central to outer communes. Moreover, the 
consequence of an epidemic would be more severe when central communes are affected, given a larger livestock 
population being present in central than outer communes.

Next, the epidemic simulation showed that the difference in the absolute number of days to commune infec-
tion decreased sharply as pinf  increased. In particular, the difference between central and outer communes also 
decreased, showing the potential for a rapid and widespread epidemic upon on the introduction of highly trans-
missible livestock diseases, such as FMD or PPR. Considering that these diseases are endemic in Eastern Africa, 
surveillance should be reinforced with particular attention to the movement of animals coming from this area.

The epidemic simulation also showed that central communes tended to be infected earlier than outer com-
munes regardless of where the infection was seeded. The difference between central and outer communes could 
be larger than observed since the epidemic simulation did not account for within-commune factors; a commune 
was assumed to be infected at the same level as other infected communes as soon as it received an infected animal. 
However, communes may have different within-commune infection dynamics. In fact, central communes tended 
to have not only larger livestock and human populations but also more livestock movements within themselves 
than outer communes. The prevalence of infection may, therefore, be higher in central than outer communes.

We were able to compare the results of our analysis with RVF seroprevalence data as the data available covered 
most of the study period. In addition, although RVF is a vector-borne disease primarily transmitted to domestic 
ruminants via mosquito bites, movements of livestock have been suggested as one of the main factors involved in 
RVF dynamics2,28. Last and most importantly, an RVF epidemic between 2008–2010 provided a unique opportu-
nity to assess whether Mayotte communes experienced different epidemic patterns depending on their network 
properties. The observed trend in RVF seroprevalence may suggest that the actual transmission between com-
munes was shaped rather by livestock movements, assuming that the climate conditions for vectors and animal 
exposure to the vectors were similar across the whole island. Our study observed that average NDVI was similar 
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in both central and outer communes during the epidemic. Considering also that ruminant livestock in Mayotte 
are raised outdoors in herds of small sizes2, their exposure to mosquito bites might have been similar across the 
island, and their density might have been too low to have an impact on density-dependent RVF transmission. 
Under these conditions, the introduction of infected animals might have played a major role in the spread of RVF. 
The trend of RVF seroprevalence being high in central communes throughout the epidemic period may suggest 
that these communes acted as a hub for RVF spread via livestock movements. In particular, RVF seroprevalence 
reached its peak in central communes in the first year of the epidemic, which could be explained by the findings 
of the network analyses that almost all possible edges were realised between central communes in every study 
year. That is, RVF might have spread rapidly within central communes at the beginning of the epidemic and then 
towards outer communes. Data on other diseases, should they become available, could be used to further assess 
the validity of findings from our analysis.

This study had some limitations. First, our analyses were based on merged data from two sources of livestock 
movement data collected differently. For the official dataset, livestock movements were recorded when farm-
ers reported to CAPAM in person that they had sent out or received livestock. For this reason, some farmers 
reported the movement of an animal when they visited CAPAM long after the actual day of the movement. It was, 
therefore, possible that some of the recorded movement dates were affected by recall bias. However, its impact 
on the study results should be considered minimal given that our network analyses were performed on yearly 
static networks. Also, although the epidemic simulation used daily livestock movements, its outcome would have 
been influenced mainly by the overall flow of livestock movements between communes rather than their actual 
movement date, as shown in the model which accounted for possible bias. Second, livestock movements might 
have been underreported in the official dataset. In particular, livestock movements to/from outer communes 
might have been underreported more than those to/from central communes due to their more difficult access to 
CAPAM, located in Ouangani, in the centre of the island. In addition, some livestock movements, especially those 
of small ruminants, might not have been recorded in the truck dataset being moved by other drivers or farmers 
themselves. To minimise information bias and improve the representativeness of our analyses, we merged live-
stock movements from both datasets assuming that they complement each other.

Our study has significant implications for the design of risk-based surveillance in Mayotte. The main findings 
suggest that upon the introduction of exotic livestock disease, central communes are more likely to be infected 

Figure 6. RVF IgG seroprevalence and normalised difference vegetation index (NDVI) by structurally 
equivalent cluster. Solid vertical lines represented the 95% confidence intervals of RVF IgG seroprevalence of 
each study year, with points representing the means. Dashed lines represented the medians of NDVI at the 16-
day interval, with their background colour representing the range of the 1st and 3rd quantiles. NDVI data were 
extracted from the Moderate Resolution Imaging Spectroradiometer Terra satellite at 250 m spatial and 16-day 
temporal resolution29.
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early than outer communes, and that there is potential for a large epidemic. Considering that the probability of 
disease occurrence and its consequences are the two main elements in the risk assessment8, our study provides 
valuable information for the design of risk-based surveillance. For example, surveillance could adopt risk-based 
sampling by stratifying central and outer communes into high- and low-risk groups, respectively. Targeted bios-
ecurity measures could also be applied on livestock movements between and to central communes to minimise 
the size of an epidemic.

In conclusion, communes in the central region of Mayotte would play a major role in the spread of livestock 
diseases. A widespread epidemic is likely due to their high connectivity between themselves and to communes 
in the outer region. Surveillance efforts, therefore, need to be focused on central communes to achieve the timely 
detection of disease occurrence and minimise its consequences.
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