Proof of theorem 1

This Theorem is in two parts. The first part says that positive MSD is NP-complete, the second part says that negative MSD is NP NP -complete. We start with the first part, proving that positive MSD is only NP-complete:

Proof. The problem is in NP because it is possible to verify a positive instance given a short certificate defined by a sequence a ∈ i S i and a set of conformation sequences c j = arg min c∈ i R j i,a [i] E j (a, c) for sequence a on each of the backbone B j ∈ B + . It suffices to compute the joint fitness of all states and check if it is lower than the threshold k. It is complete for NP since SSD is just the case where |B + | = 1 and is NP-complete [START_REF] Pierce | Protein design is np-hard[END_REF].

The second requires to show that the general ⊕-MSD problem is NP NP -complete.

Proof. We must prove that:

• it belongs to the class NP NP ;

• any problem in NP NP reduces to ⊕-MSD in polynomial time.

Let us introduce the following NP NP -complete problem, called ∃∀3DNF :

Given two sets of propositional variables p = (p 1 , . . . , p n ) and q = (q 1 , . . . , q m ), and a boolean formula H(p, q) over these variables, in disjunctive normal form (DNF), with each cube conjunction of three literals, is there a valuation ν p of p, such that for any valuation ν q of the variables of q, ν q ν p (H(p, q)) is true?

Assuming we had a NP-oracle, that could solve any instance of SSD, it would be possible to verify a positive instance of ⊕-MSD defined by a sequence a ∈ i S i , by calling the oracle to compute the minimum conformation energy

E j (a) = min c∈ i C j i,a[i] E j (a, c) on each backbone B j ∈ B + ∪ B -
and combining these energies to check that

  B j ∈B + min c∈ i C j i,a[i] E j (a, c)   -   B j ∈B - min c∈ i C j i,a[i] E j (a, c)   ≤ k
Let us reduce ∃∀3DNF to ⊕-MSD . Let p = (p 1 , . . . , p n ), q = (q 1 , . . . , q m ), H(p, q) be a ∃∀3DNF instance, where

H(p, q) = C 1 ∨ • • • ∨ C k , and for each i ∈ [|1, k|], l 1
i , l 2 i and l 3 i are the literals of C i . Let us construct an instance of ⊕-MSD with n + m + k variables, represented as a CFN:

• For each variable p ∈ p, we introduce the variable V p with domain {T, F }, representing the valuation of p;

• For each variable q ∈ q, we introduce the variable V q with domain {T, F }, representing the valuation of q;

• For each cube C i of H(p, q), we introduce the variable V C i with domain {l 1 i , l 2 i , l 3 i }. For each cube C i and each variable x ∈ p ∪ q that appears in C i , the binary cost between V C i and V x is defined as follows:

E x,C i : (v, l i ) ∈ D Vx × D V C i =    1 if v = T and l i = x 1 if v = F and l i = ¬x 0 otherwise 1
If the literal l i is satisfied by the valuation v of its variable x, the corresponding binary cost is 1.

The total energy is the sum of the binary terms: E = x,C i E x,C i . Given an assignment of all variables, the energy is zero if and only if all binary terms are zero. This means that for each cube C i , the variable V C i is assigned a literal l i that is not satisfied by the valuation ν p ν q defined by the assignment. Finally, we consider the ⊕-MSD instance with a single negative backbone: Does there exist a ∈ i D Vp i such that:

-   min c∈ i D V C i × j D Vq j E(a, c)   ≤ -1
If the ∃∀3DNF instance is positive, there exists a valuation ν p such that ν p H(p, q) is a tautology. So, if a is the assignment of the variables V p , p ∈ p that corresponds to ν p , then for any assignment of V q , q ∈ q, there always exists a cube C i , which all literals are satisfied, hence, the binary cost is greater than 1. This is equivalent to:

min c∈ i D V C i × j D Vq j E(a, c) ≥ 1 So the ⊕-MSD instance is positive.
Conversely, if the ⊕-MSD instance is positive, there exists a ∈ i D Vp i , corresponding to a valuation ν p , such that the energy of any assignment of the remaining variables is greater than 1, meaning that ν p H(p, q) is a tautology.

Note that the ⊕-MSD instance consists of n + m + k variables, each with domain size less than 3, and k × (n + m) binary energies, that can be described in a 3 × 2-sized matrix, where each coefficient is straightforward to compute. Therefore, the reduction is valid and polynomial.

Description of protein benchmark systems

Table S 1: Description of protein systems: For each instance: system name, reference PDB id, crystallographic resolution or number of conformations for NMR structures, number of amino acid residues(N), SCOP stuctural classification(Class). Recently, a guaranteed CFN-based algorithm for both positive and negative min-MSD was introduced as the iCFN method [START_REF] Karimi | iCFN: an efficient exact algorithm for multistate protein design[END_REF]. The authors did not use a reduction of the problem to CFN but proposed and implemented a new algorithm that exploits some of the underlying machinery of CFN algorithms (arc consistencies [START_REF] Cooper | Soft arc consistency revisited[END_REF]). The authors showed that their method outperforms the guaranteed COMETS software [START_REF] Hallen | Comets (constrained optimization of multistate energies by tree search): A provable and efficient protein design algorithm to optimize binding affinity and specificity with respect to sequence[END_REF]. We therefore decided to compare Pomp d against iCFN only.

The iCFN website (https://shen-lab.github.io/software/iCFN/) gives access to both the software in binary format and to multistate design energy matrices. We wrote a first python script to translate iCFN-formatted problems into the cfn.gz CFN format that can be directly read by the CFN solver toulbar2. iCFN uses double resolution floating point energies and the cfn.gz format relies on a fixed point representation of energies. We used a "6 digits after the decimal point" representation. We wrote a second python/PyRosetta script to generate energy matrices in iCFNformat directly from PyRosetta. These scripts make it possible to either apply Pomp d to the positive min-MSD instances available on the iCFN website or to apply the iCFN algorithm on our benchmark set (for the min-MSD problem only as iCFN is not able to tackle Σ-MSD).

The iCFN command line used on the positive min-MSD problems was iCFN -just pos -ecutDEE=2

-ecutDEE across=2 -ecutDEE seq=10 -ecut stability=5 -max conf seq=1 -max dis seq=9999 files which asks for one solution of the min-MSD problem, with no limitation on the number of mutations in the produced design sequence. Except for the effect of the various pruning thresholds used by iCFN that reduce computing time, this precisely matches the min-MSD problem we solve using CFN reductions.

The iCFN multistate designs use a specific rotamer library that includes 2 extra protonated states for glutamate (Glu) and aspartate (Asp) as well as 3 protonated states for histidine (His). Because the 'cpd' branch of toulbar2 relies on the one letter code of amino acids, it is currently unable to process the corresponding energy matrices. We therefore used the 'master' branch of toulbar2 to solve these problems. The command line used in this case is simply -m -hbfs: which deactivates the default Hybrid Best First Search algorithm [START_REF] Allouche | Anytime hybrid best-first search with tree decomposition for weighted csp[END_REF] for a simple Depth-First Search and activates the median cost variable ordering heuristic [START_REF] Allouche | Computational protein design as an optimization problem[END_REF]. All computations were done on a laptop equipped with 16GB of RAM and a Intel(R) Core(TM) i7-7600U CPU at 2.80GHz. 

Clustering distance thresholds
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Table S 2

 S : User-defined clustering distance thresholds (d) for each protein structure.Table S 3: Multistate design problems: for each problem we give the average search space of four SSD problems, search space for the min-MSD problem, defined as the sum of all SSD search space sizes, the raw Σ-MSD search space size, defined by the product of the size of all variable domains and the search space size reduced by the SS constraints that impose that all states use the same sequence.

		NMR structures X-ray structures
		PBD ID d ( Å) PBD ID d ( Å)
		5vso 2.0	1hyp 0.5	
	5l7b 0.4 PBD ID average SSD min-MSD	1hoe 0.4 Σ-MSD	Σ-MSD reduced
		5mmc 2.0 search space search space search space search space 1mjc 0.6
	5vso 5l7b 5mmc 1gb1 5t8a 2l5t 2n6r 1bmw 5ix5 5x0s 6ews	1gb1 0.3 5t8a 0.2 NMR structures 1pga 0.4 2b8i 0.4 2l5t 1.0 1.3 10 181 5.4 10 181 8.5 10 723 4y2k 0.4 2n6r 0.3 2.6 10 170 1.0 10 171 6.4 10 680 1f94 0.4 1bmw 1.2 5.6 10 158 2.3 10 159 4.1 10 634 1who 0.4 5ix5 0.6 2.5 10 137 1.0 10 138 5.9 10 547 1tud 0.5 5x0s 1.5 9.4 10 133 3.8 10 134 5.9 10 535 1yu5 0.15 6ews 0.5 2.2 10 185 9.0 10 185 7.2 10 738 1bxy 0.5 6fwn 0.8 3.4 10 168 1.3 10 169 4.0 10 673 1ctf 0.3 6qf8 1.2 5.2 10 229 2.1 10 230 1.1 10 914 1guu 0.3 6jlt 0.5 4.4 10 148 1.7 10 149 2.0 10 593 1wvn 0.5 6hkc 1.0 1.2 10 119 4.9 10 119 1.4 10 470 1ucs 0.3 8.1 10 155 3.2 10 156 4.3 10 622	1.6 10 431 3.1 10 411 8.3 10 380 1.6 10 329 4.8 10 297 2.1 10 438 9.3 10 376 1.4 10 547 7.8 10 327 2.0 10 263 5.4 10 376
	6fwn	2.8 10 188	1.1 10 189	2.4 10 751	4.3 10 419
	6qf8	2.3 10 188	9.1 10 188	4.0 10 750	9.3 10 453
	6jlt	6.9 10 188	2.8 10 189	1.5 10 755	3.5 10 458
	6hkc	4.5 10 174	1.8 10 175	6.6 10 694	1.2 10 402
			Xray structures	
	1hyp	2.1 10 166	8.2 10 166	3.2 10 664	4.8 10 375
	1hoe	2.2 10 171	8.9 10 171	5.8 10 684	8.6 10 395
	1mjc	4.3 10 165	1.7 10 166	10.0 10 661	4.9 10 392
	1pga	4.7 10 137	1.9 10 138	1.5 10 550	4.0 10 331
	2b8i	7.7 10 189	3.1 10 190	5.1 10 758	1.5 10 458
	4y2k	2.5 10 161	9.8 10 161	1.7 10 644	3.4 10 390
	1f94	2.9 10 134	1.2 10 135	1.4 10 537	1.8 10 291
	1who	2.6 10 227	1.0 10 228	6.1 10 907	7.8 10 540
	1tud	3.1 10 146	1.3 10 147	5.0 10 585	3.3 10 351
	1yu5	9.4 10 165	3.8 10 166	2.9 10 663	9.0 10 401
	1bxy	5.8 10 147	2.3 10 148	7.6 10 590	5.0 10 356
	1ctf	5.2 10 164	2.1 10 165	1.9 10 658	9.38 10 388
	1guu	1.2 10 123	4.7 10 123	1.4 10 492	1.2 10 293
	1wvn	8.0 10 179	3.2 10 180	4.5 10 718	6.8 10 429
	1ucs	5.9 10 153	2.4 10 154	7.9 10 614	1.3 10 365

Table S 4

 S : iCFN multistate design problems: for each problem we give the position of the redesigned residue, the number of flexible residues around the redesigned residue and the search space for the min-MSD problem, defined as the sum of all SSD search space sizes, the raw Σ-MSD search space size, defined by the product of the size of all variable' domains and the actual search space size, reduced by the SS constraints that impose that all states use the same sequence. Energy difference between SSD optimal sequences and Σ-MSD sequenceTable S 5: Difference in energy for each protein in the benchmark between the average of all SSD optimal sequences and the energy of the optimal Σ-MSD sequence (kcal).

	6 NMR PDB Σ-MSD-SSD X-ray PDB Σ-MSD-SSD
		5vso	16.0	1hyp	12.7
		5l7b	10.4	1hoe	14.8
		5mmc	14.3	1mjc	8.9
		1gb1	11.6	1pga	12.8
		5t8a	5.6	2b8i	13.3
		2l5t	25.4	4y2k	5.5
		2n6r	11.7	1f94	9.2
		1bmw	44.9	1who	17.5
		5ix5	21.7	1tud	4.2
		5x0s	30.3	1yu5	6.3
		Mean	19.2	Mean	10.5
	redesigned # of flexible min-MSD	Σ-MSD	Σ-MSD
	position	residues	search size search size reduced search size
	26	18	7.6 10 30	1.6 10 323	7.7 10 308
	28	18	3.1 10 34	6.3 10 362	3.1 10 348
	98	19	4.9 10 31	7.7 10 334	3.7 10 320
	100	29	1.4 10 42	5.2 10 447	2.5 10 433
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