# Positive multistate protein design 

Jelena Vucinic, David Simoncini, Manon Ruffini, Sophie Barbe, Thomas<br>Schiex

## To cite this version:

Jelena Vucinic, David Simoncini, Manon Ruffini, Sophie Barbe, Thomas Schiex. Positive multistate protein design. Bioinformatics, 2020, 10.1093/bioinformatics/btz497 . hal-02625007

HAL Id: hal-02625007
https://hal.inrae.fr/hal-02625007
Submitted on 25 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## Supplementary information

## POsitive Multistate Protein design

Jelena Vucinic ${ }^{1,2}$, David Simoncini ${ }^{1,3}$, Manon Ruffini ${ }^{1,2}$, Sophie Barbe ${ }^{1 *}$ and Thomas Schiex 2*

${ }^{1}$ LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
${ }^{2}$ MIAT, Université de Toulouse, INRA, Auzeville-Tolosane, France.
${ }^{3}$ IRIT UMR 5505-CNRS, Université de Toulouse, 31042 Cedex 9, France.

## 1 Proof of theorem 1

This Theorem is in two parts. The first part says that positive MSD is NP-complete, the second part says that negative MSD is $N P^{N P}$-complete. We start with the first part, proving that positive MSD is only NP-complete:

Proof. The problem is in NP because it is possible to verify a positive instance given a short certificate defined by a sequence $\mathbf{a} \in \prod_{i} S_{i}$ and a set of conformation sequences $\mathbf{c}_{j}=\arg \min _{\mathbf{c} \in \prod_{i} R_{i, a[i]}^{j}} E_{j}(\mathbf{a}, \mathbf{c})$ for sequence a on each of the backbone $B_{j} \in \mathbf{B}^{+}$. It suffices to compute the joint fitness of all states and check if it is lower than the threshold $k$. It is complete for NP since SSD is just the case where $\left|\mathbf{B}^{+}\right|=1$ and is NP-complete (Pierce and Winfree, 2002).

The second requires to show that the general $\oplus$-MSD problem is $N P^{N P}$-complete.
Proof. We must prove that:

- it belongs to the class NP ${ }^{N P}$;
- any problem in $N P^{N P}$ reduces to $\oplus$-MSD in polynomial time.

Let us introduce the following $N P^{N P_{-}}$-complete problem, called $\exists \forall 3$ DNF :
Given two sets of propositional variables $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ and $\mathbf{q}=\left(q_{1}, \ldots, q_{m}\right)$, and a boolean formula $H(\mathbf{p}, \mathbf{q})$ over these variables, in disjunctive normal form (DNF), with each cube conjunction of three literals, is there a valuation $\nu_{\mathbf{p}}$ of $\mathbf{p}$, such that for any valuation $\nu_{\mathbf{q}}$ of the variables of $\mathbf{q}, \nu_{\mathbf{q}} \nu_{\mathbf{p}}(H(\mathbf{p}, \mathbf{q}))$ is true?

Assuming we had a NP-oracle, that could solve any instance of SSD, it would be possible to verify a positive instance of $\oplus-\mathrm{MSD}$ defined by a sequence $\mathbf{a} \in \prod_{i} S_{i}$, by calling the oracle to compute the minimum conformation energy $E_{j}(\mathbf{a})=\min _{\mathbf{c} \in \prod_{i} C_{i, \mathbf{a}[i]}^{j}} E_{j}(\mathbf{a}, \mathbf{c})$ on each backbone $B_{j} \in \mathbf{B}^{+} \cup \mathbf{B}^{-}$ and combining these energies to check that

$$
\left(\bigoplus_{B_{j} \in \mathbf{B}^{+}} \min _{\mathbf{c} \in \prod_{i} C_{i, \mathbf{a}[]]}^{j}} E_{j}(\mathbf{a}, \mathbf{c})\right)-\left(\bigoplus_{B_{j} \in \mathbf{B}^{-}} \min _{\mathbf{c} \in \prod_{i} C_{i, \mathbf{a}[i]}^{j}} E_{j}(\mathbf{a}, \mathbf{c})\right) \leq k
$$

Let us reduce $\exists \forall 3$ DNF to $\oplus$-MSD . Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), \mathbf{q}=\left(q_{1}, \ldots, q_{m}\right), H(\mathbf{p}, \mathbf{q})$ be a $\exists \forall 3$ DNF instance, where $H(\mathbf{p}, \mathbf{q})=C_{1} \vee \cdots \vee C_{k}$, and for each $i \in[|1, k|], l_{i}^{1}, l_{i}^{2}$ and $l_{i}^{3}$ are the literals of $C_{i}$. Let us construct an instance of $\oplus-\mathrm{MSD}$ with $n+m+k$ variables, represented as a CFN:

- For each variable $p \in \mathbf{p}$, we introduce the variable $V_{p}$ with domain $\{T, F\}$, representing the valuation of $p$;
- For each variable $q \in \mathbf{q}$, we introduce the variable $V_{q}$ with domain $\{T, F\}$, representing the valuation of $q$;
- For each cube $C_{i}$ of $H(\mathbf{p}, \mathbf{q})$, we introduce the variable $V_{C_{i}}$ with domain $\left\{l_{i}^{1}, l_{i}^{2}, l_{i}^{3}\right\}$.

For each cube $C_{i}$ and each variable $x \in \mathbf{p} \cup \mathbf{q}$ that appears in $C_{i}$, the binary cost between $V_{C_{i}}$ and $V_{x}$ is defined as follows:

$$
E_{x, C_{i}}:\left(v, l_{i}\right) \in D^{V_{x}} \times D^{V_{C_{i}}}= \begin{cases}1 & \text { if } v=T \text { and } l_{i}=x \\ 1 & \text { if } v=F \text { and } l_{i}=\neg x \\ 0 & \text { otherwise }\end{cases}
$$

If the literal $l_{i}$ is satisfied by the valuation $v$ of its variable $x$, the corresponding binary cost is 1 .
The total energy is the sum of the binary terms: $E=\sum_{x, C_{i}} E_{x, C_{i}}$. Given an assignment of all variables, the energy is zero if and only if all binary terms are zero. This means that for each cube $C_{i}$, the variable $V_{C_{i}}$ is assigned a literal $l_{i}$ that is not satisfied by the valuation $\nu_{\mathbf{p}} \nu_{\mathbf{q}}$ defined by the assignment. Finally, we consider the $\oplus$-MSD instance with a single negative backbone:

Does there exist $\mathbf{a} \in \prod_{i} D^{V_{p_{i}}}$ such that:

$$
-\left(\min _{\mathbf{c} \in \prod_{i} D^{V_{C_{i}} \times \prod_{j}} D^{V_{q_{j}}}} E(\mathbf{a}, \mathbf{c})\right) \leq-1
$$

If the $\exists \forall 3$ DNF instance is positive, there exists a valuation $\nu_{\mathbf{p}}$ such that $\nu_{\mathbf{p}} H(\mathbf{p}, \mathbf{q})$ is a tautology. So, if a is the assignment of the variables $V_{p}, p \in \mathbf{p}$ that corresponds to $\nu_{p}$, then for any assignment of $V_{q}, q \in \mathbf{q}$, there always exists a cube $C_{i}$, which all literals are satisfied, hence, the binary cost is greater than 1 . This is equivalent to:

$$
\min _{\mathbf{c} \in \prod_{i} D^{V_{C_{i}} \times \prod_{j}} D^{V_{q_{j}}}} E(\mathbf{a}, \mathbf{c}) \geq 1
$$

So the $\oplus$-MSD instance is positive.
Conversely, if the $\oplus$-MSD instance is positive, there exists $\mathbf{a} \in \prod_{i} D^{V_{p_{i}}}$, corresponding to a valuation $\nu_{\mathbf{p}}$, such that the energy of any assignment of the remaining variables is greater than 1 , meaning that $\nu_{\mathbf{p}} H(\mathbf{p}, \mathbf{q})$ is a tautology.

Note that the $\oplus$-MSD instance consists of $n+m+k$ variables, each with domain size less than 3 , and $k \times(n+m)$ binary energies, that can be described in a $3 \times 2$-sized matrix, where each coefficient is straightforward to compute. Therefore, the reduction is valid and polynomial.

## 2 Description of protein benchmark systems

Table S1: Description of protein systems: For each instance: system name, reference PDB id, crystallographic resolution or number of conformations for NMR structures, number of amino acid residues(N), SCOP stuctural classification(Class).

| System name | PDB ID | Number of conformations | Number of residues |
| :---: | :---: | :---: | :---: |
| Saccharomyces cerevisiae J-domain | 5 vso | 20 | 75 |
| Human SNF5/INI1 domain | 517b | 20 | 75 |
| Trypanosoma brucei Pex14 N-terminal domain | 5 mmc | 20 | 70 |
| Immunoglobulin binding domain of streptococcal protein G | 1gb1 | 60 | 56 |
| Cytotoxin-I from the venom of cobra N. oxiana | 5t8a | 20 | 61 |
| E2 lipoyl domain from Thermoplasma ac idophilum | 215 t | 33 | 77 |
| Spider toxin U4-hexatoxin-Hila | 2 n 6 r | 20 | 76 |
| Phi PII from timothy grass pollen | 1 bmw | 38 | 96 |
| Antibacterial factor-2 | 5 x 5 | 20 | 68 |
| Peptide toxin SsTx from Scolopendra subspinipes mutilans | $5 \times 0 \mathrm{~s}$ | 20 | 53 |
| Rhabdopeptide NRPS Docking Domain Kj12A-NDD | 6 ews | 20 | 63 |
| Platelet integrin-binding C4 domain of von Willebrand factor | 6 fwn | 20 | 85 |
| Human ubiquitin at 298 K | $6 q 98$ | 20 | 79 |
| Ubiquitin (Q41N variant) | 6jlt | 20 | 76 |
| Sushi 1 domain of GABAbR1a | 6hkc | 20 | 75 |
| System name | PDB ID | $\mathrm{R}(\AA)$ | Number of residues |
| Hydrophobic protein from Soybean | 1hyp | 1.8 | 80 |
| Alpha-amylase inhibitor hoe-467A | 1 hoe | 2 | 74 |
| E.coli Cold-shock protein A | 1 mjc | 2 | 69 |
| B1 immunoglobulin-binding domain of streptococcal protein G | 1pga | 2.07 | 56 |
| PAS Factor from Vibrio vulnificus | 2b8i | 1.8 | 77 |
| Apo-GolB | 4y2k | 1.7 | 65 |
| Toxin isolated from the Malayan Krait | $1 \mathrm{f94}$ | 0.97 | 63 |
| Allergen phl p2 | 1 who | 1.9 | 96 |
| Alpha-spectrin src homology 3 domain | 1tud | 1.77 | 62 |
| Headpiece Domain of Chicken Villin | $1 \mathrm{yu5}$ | 1.4 | 67 |
| Ribosomal protein L30 from thermus thermophilus | 1 bxy | 1.9 | 60 |
| C-TERMINAL DOMAIN OF THE RIBOSOMAL PROTEIN L7/L12 | 1 ctf | 1.7 | 74 |
| C-Myb DNA-Binding Domain | 1 guu | 1.6 | 52 |
| Domain 3 of human alpha polyC binding protein | 1 wv | 2.1 | 82 |
| Type III Antifreeze Protein RD1 from an Antarctic Eel Pout | 1ucs | 0.62 | 64 |

## 3 Solving positive min -MSD with iCFN

Recently, a guaranteed CFN-based algorithm for both positive and negative min-MSD was introduced as the iCFN method (Karimi and Shen, 2018). The authors did not use a reduction of the problem to CFN but proposed and implemented a new algorithm that exploits some of the underlying machinery of CFN algorithms (arc consistencies (Cooper et al., 2010)). The authors showed that their method outperforms the guaranteed COMETS software (Hallen and Donald, 2016). We therefore decided to compare $\mathrm{POMP}^{d}$ against iCFN only.

The iCFN website (https://shen-lab.github.io/software/iCFN/) gives access to both the software in binary format and to multistate design energy matrices. We wrote a first python script to translate iCFN-formatted problems into the cfn.gz CFN format that can be directly read by the CFN solver toulbar2. iCFN uses double resolution floating point energies and the cfn.gz format relies on a fixed point representation of energies. We used a " 6 digits after the decimal point" representation. We wrote a second python/PyRosetta script to generate energy matrices in iCFNformat directly from PyRosetta. These scripts make it possible to either apply Pomp ${ }^{d}$ to the positive min-MSD instances available on the iCFN website or to apply the iCFN algorithm on our benchmark set (for the min-MSD problem only as iCFN is not able to tackle $\Sigma$-MSD).

The iCFN command line used on the positive min-MSD problems was iCFN -just_pos -ecutDEE=2 -ecutDEE_across=2 -ecutDEE_seq=10 -ecut_stability=5 -max_conf_seq=1 -max_dis_seq=9999 〈files〉 which asks for one solution of the min-MSD problem, with no limitation on the number of mutations in the produced design sequence. Except for the effect of the various pruning thresholds used by iCFN that reduce computing time, this precisely matches the min-MSD problem we solve using CFN reductions.

The iCFN multistate designs use a specific rotamer library that includes 2 extra protonated states for glutamate (Glu) and aspartate (Asp) as well as 3 protonated states for histidine (His). Because the 'cpd' branch of toulbar2 relies on the one letter code of amino acids, it is currently unable to process the corresponding energy matrices. We therefore used the 'master' branch of toulbar2 to solve these problems. The command line used in this case is simply -m -hbfs: which deactivates the default Hybrid Best First Search algorithm (Allouche et al., 2015) for a simple Depth-First Search and activates the median cost variable ordering heuristic (Allouche et al., 2014). All computations were done on a laptop equipped with 16 GB of RAM and a $\operatorname{Intel}(\mathrm{R})$ Core(TM) i7-7600U CPU at 2.80 GHz .

## 4 Clustering distance thresholds

Table $S 2$ : User-defined clustering distance thresholds (d) for each protein structure.

| NMR structures |  | X-ray structures |  |
| :---: | :---: | :---: | :---: |
| PBD ID | $d(\AA)$ | PBD ID | $d(\AA)$ |
| 5vso | 2.0 | 1hyp | 0.5 |
| 517b | 0.4 | 1hoe | 0.4 |
| 5 mmc | 2.0 | 1 mjc | 0.6 |
| 1 gb 1 | 0.3 | 1pga | 0.4 |
| 5t8a | 0.2 | 2b8i | 0.4 |
| 215 t | 1.0 | 4 y 2 k | 0.4 |
| 2n6r | 0.3 | 1 f94 | 0.4 |
| 1 bmw | 1.2 | 1 who | 0.4 |
| 5 ix 5 | 0.6 | 1tud | 0.5 |
| 5 x 0 s | 1.5 | 1 yu 5 | 0.15 |
| 6 ews | 0.5 | 1 bxy | 0.5 |
| 6 fwn | 0.8 | 1 ctf | 0.3 |
| 6 ff | 1.2 | 1 guu | 0.3 |
| 6jlt | 0.5 | 1 wvn | 0.5 |
| 6hkc | 1.0 | 1 ucs | 0.3 |

## 5 Search space sizes for different design problems

Table S3: Multistate design problems: for each problem we give the average search space of four SSD problems, search space for the min-MSD problem, defined as the sum of all SSD search space sizes, the raw $\Sigma$-MSD search space size, defined by the product of the size of all variable domains and the search space size reduced by the $S S$ constraints that impose that all states use the same sequence.

| PBD ID | average $\overline{S S D}$ <br> search space | $\begin{aligned} & \text { min-MSD } \\ & \text { search space } \end{aligned}$ | $\Sigma$-MSD <br> search space | $\Sigma$-MSD reduced search space |
| :---: | :---: | :---: | :---: | :---: |
| NMR structures |  |  |  |  |
| 5vso | $1.310^{181}$ | $5.410^{181}$ | $8.510^{723}$ | $1.610^{431}$ |
| 517b | $2.610^{170}$ | $1.010^{171}$ | $6.410^{680}$ | $3.110^{411}$ |
| 5 mmc | $5.610^{158}$ | $2.310^{159}$ | $4.110^{634}$ | $8.310^{380}$ |
| 1gb1 | $2.510^{137}$ | $1.010^{138}$ | $5.910^{547}$ | $1.610^{329}$ |
| 5 t 8 a | $9.410^{133}$ | $3.810^{134}$ | $5.910^{535}$ | $4.810^{297}$ |
| 215 t | $2.210^{185}$ | $9.010^{185}$ | $7.210^{738}$ | $2.110^{438}$ |
| 2 n 6 r | $3.410^{168}$ | $1.310^{169}$ | $4.010^{673}$ | $9.310^{376}$ |
| 1 bmw | $5.210^{229}$ | $2.110^{230}$ | $1.110^{914}$ | $1.410^{547}$ |
| $5 i x 5$ | $4.410^{148}$ | $1.710^{149}$ | $2.010^{593}$ | $7.810^{327}$ |
| 5 x 0 s | $1.210^{119}$ | $4.910^{119}$ | $1.410^{470}$ | $2.010^{263}$ |
| 6 ews | $8.110^{155}$ | $3.210^{156}$ | $4.310^{622}$ | $5.410^{376}$ |
| 6 fwn | $2.810^{188}$ | $1.110^{189}$ | $2.410^{751}$ | $4.310^{419}$ |
| 6qf8 | $2.310^{188}$ | $9.110^{188}$ | $4.010^{750}$ | $9.310^{453}$ |
| 6 jlt | $6.910^{188}$ | $2.810^{189}$ | $1.510^{755}$ | $3.510^{458}$ |
| 6 hkc | $4.510^{174}$ | $1.810^{175}$ | $6.610^{694}$ | $1.210^{402}$ |
| Xray structures |  |  |  |  |
| 1hyp | $2.110^{166}$ | $8.210^{166}$ | $3.210^{664}$ | $4.810^{375}$ |
| 1hoe | $2.210^{171}$ | $8.910^{171}$ | $5.810^{684}$ | $8.610^{395}$ |
| 1 mjc | $4.310^{165}$ | $1.710^{166}$ | $10.010^{661}$ | $4.910^{392}$ |
| 1 pga | $4.710^{137}$ | $1.910^{138}$ | $1.510^{550}$ | $4.010^{331}$ |
| 2 b 8 i | $7.710^{189}$ | $3.110^{190}$ | $5.110^{758}$ | $1.510^{458}$ |
| 4 y 2 k | $2.510^{161}$ | $9.810^{161}$ | $1.710^{644}$ | $3.410^{390}$ |
| 1 f 94 | $2.910^{134}$ | $1.210^{135}$ | $1.410^{537}$ | $1.810^{291}$ |
| 1who | $2.610^{227}$ | $1.010^{228}$ | $6.110^{907}$ | $7.810^{540}$ |
| 1 tud | $3.110^{146}$ | $1.310^{147}$ | $5.010^{585}$ | $3.310^{351}$ |
| 1 yu 5 | $9.410^{165}$ | $3.810^{166}$ | $2.910^{663}$ | $9.010^{401}$ |
| 1 bxy | $5.810^{147}$ | $2.310^{148}$ | $7.610^{590}$ | $5.010^{356}$ |
| 1 ctf | $5.210^{164}$ | $2.110^{165}$ | $1.910^{658}$ | $9.3810^{388}$ |
| 1 guu | $1.210^{123}$ | $4.710^{123}$ | $1.410^{492}$ | $1.210^{293}$ |
| 1wvn | $8.010^{179}$ | $3.210^{180}$ | $4.510^{718}$ | $6.810^{429}$ |
| 1 ucs | $5.910^{153}$ | $2.410^{154}$ | $7.910^{614}$ | $1.310^{365}$ |

Table $S 4$ : iCFN multistate design problems: for each problem we give the position of the redesigned residue, the number of flexible residues around the redesigned residue and the search space for the min-MSD problem, defined as the sum of all SSD search space sizes, the raw $\Sigma$-MSD search space size, defined by the product of the size of all variable' domains and the actual search space size, reduced by the $S S$ constraints that impose that all states use the same sequence.

| redesigned <br> position | \# of flexible <br> residues | min-MSD <br> search size | $\Sigma$-MSD <br> search size | $\Sigma$-MSD <br> reduced search size |
| :---: | :---: | :---: | :---: | :---: |
| 26 | 18 | $7.610^{30}$ | $1.610^{323}$ | $7.710^{308}$ |
| 28 | 18 | $3.110^{34}$ | $6.310^{362}$ | $3.110^{348}$ |
| 98 | 19 | $4.910^{31}$ | $7.710^{334}$ | $3.710^{320}$ |
| 100 | 29 | $1.410^{42}$ | $5.210^{447}$ | $2.510^{433}$ |

## 6 Energy difference between SSD optimal sequences and $\Sigma$-MSD sequence

Table S5: Difference in energy for each protein in the benchmark between the average of all SSD optimal sequences and the energy of the optimal $\Sigma$-MSD sequence (kcal).

| NMR PDB | $\Sigma$-MSD- $\overline{S S D}$ | X-ray PDB | $\Sigma$-MSD- $\overline{S S D}$ |
| :---: | :---: | :---: | :---: |
| 5vso | 16.0 | 1hyp | 12.7 |
| 517b | 10.4 | 1hoe | 14.8 |
| 5 mmc | 14.3 | 1 mjc | 8.9 |
| 1gb1 | 11.6 | 1 pga | 12.8 |
| 5t8a | 5.6 | 2 b 8 i | 13.3 |
| 215 t | 25.4 | 4 y 2 k | 5.5 |
| 2 n 6 r | 11.7 | 1 f 94 | 9.2 |
| 1 bmw | 44.9 | 1who | 17.5 |
| 5 ix 5 | 21.7 | 1 tud | 4.2 |
| 5 x 0 s | 30.3 | 1 yu 5 | 6.3 |
| Mean | 19.2 | Mean | 10.5 |

## 7 CPU-time for SSD and $\Sigma$-MSD as a function of protein size



Figure $S 1$ : The CPU-time (Y logscale axis) is represented for SSD and $\Sigma$-MSD for both NMR and X-ray structures as a function of the protein size (X-axis). The general trend is exponential as expected with closely related slopes but a constant shift in computational cost by a factor of 1.5 orders of magnitude.q

## 8 3D representation of local optima networks



Figure $S 2$ : 3D view of local optima networks. From left to right: 1 bmw with min-MSD and $\Sigma$ -MSD, 1who with min-MSD and $\Sigma$-MSD.

## References

Allouche, D. et al. (2014). Computational protein design as an optimization problem. Artificial Intelligence, 212, 59-79.

Allouche, D. et al. (2015). Anytime hybrid best-first search with tree decomposition for weighted csp. In International Conference on Principles and Practice of Constraint Programming, pages 12-29. Springer.

Cooper, M. C. et al. (2010). Soft arc consistency revisited. Artificial Intelligence, 174(7-8), 449-478.
Hallen, M. A. and Donald, B. R. (2016). Comets (constrained optimization of multistate energies by tree search): A provable and efficient protein design algorithm to optimize binding affinity and specificity with respect to sequence. Journal of Computational Biology, 23(5), 311-321.

Karimi, M. and Shen, Y. (2018). iCFN: an efficient exact algorithm for multistate protein design. Bioinformatics, 34(17), i811-i820.

Pierce, N. A. and Winfree, E. (2002). Protein design is np-hard. Protein engineering, 15(10), 779-782.

