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Abstract

Motivation: Structure-based Computational Protein design (CPD) plays a critical role in advancing the
field of protein engineering. Using an all-atom energy function, CPD tries to identify amino acid sequences
that fold into a target structure and ultimately perform a desired function. The usual approach considers a
single rigid backbone as a target, which ignores backbone flexibility. Multistate design (MSD) allows instead
to consider several backbone states simultaneously, defining challenging computational problems.
Results: We introduce efficient reductions of positive MSD problems to Cost Function Networks with
two different fitness definitions and implement them in the Pomp? (Positive Multistate Protein design)
software. Pomp¢ is able to identify guaranteed optimal sequences of positive multistate full protein redesign
problems and exhaustively enumerate suboptimal sequences close to the MSD optimum. Applied to NMR
and back-rubbed X-ray structures, we observe that the average energy fitness provides the best sequence
recovery. Our method outperforms state-of-the-art guaranteed computational design approaches by orders
of magnitudes and can solve MSD problems with sizes previously unreachable with guaranteed algorithms.
Availability: https://forgemia.inra.fr/thomas.schiex/pompd as documented Open Source.
Contact: Thomas.Schiex@inra.fr and Sophie.Barbe@insa-toulouse.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction with a minimum energy conformation is known to be decision NP-
complete (Pierce and Winfree, 2002). Because of this, most CPD
approaches rely on stochastic optimization algorithms such as Monte
Carlo Simulated Annealing or Genetic algorithms, which provide only

Computational Protein Design (CPD) seeks to identify sequences that
adopt a desired tertiary structure with sufficient stability to ultimately
perform adesired function. This requires an energy function that accurately
reflects protein stability and a reliable search method to identify a
sequence with a conformation of optimal stability (Global Minimum
Energy Conformation or GMEC). Because of the intractable combination
of the many degrees of freedom of a protein and the non-convex form of

asymptotic convergence guarantees. Recent progress in guaranteed
discrete optimization techniques showed that such stochastic methods
may durably fail to find or even get close to the GMEC when the
problem becomes hard. Despite years of CPU-time, a tuned Simulated
Annealing algorithm was unable to find the global energy optima that
was identified and proved as optimal by Cost Function Networks (CFN)
algorithms (Simoncini et al., 2015; Allouche et al., 2014). The recent
design of the hyper-stable self-assembling S-propeller “Ika” by CFN
technology (Noguchi et al., 2019) indicates that guaranteed methods can

even the crudest energy functions, this problem has been simplified by
several assumptions: the energy is supposed to be described as a pairwise
decomposable function, the protein backbone degrees of freedom are fixed
to an idealized target backbone and the side-chain of each amino acid is
assumed to adopt one of a finite set of possible conformations or rotamers.

Despite these simplifications, the size of the search space remains also be useful in practice, combining efficiency with the assurance that

optimization did not fail.

In this paper, we aim at combining the guarantees and efficiency
of CFN algorithms with the idea of defining the target structure as
an ensemble of backbone conformations instead of a single idealized

exponentially large and the problem of searching for a sequence
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structure. Indeed, the traditional single state protein design (SSD) contrasts
with the increasing evidence that proteins do not remain fixed in a
unique conformational state but rather sample conformational ensembles.
Compared to the usual SSD approach, multistate design (MSD) has shown
to provide enhanced design capacities (Davey and Chica, 2012) to stabilize
an ensemble of backbones (Allen et al., 2010), to design conformational
switches (Ambroggio and Kuhlman, 2006) or proteins with specific
binding properties (Negron and Keating, 2013). In these cases, MSD seeks
to identify a sequence that optimizes a function of its optimal energies
on the different considered states. This function, or “fitness”, is itself non
trivial to compute, as it requires the computation of optimal conformations
of the sequence on several backbone states. Many SSD optimization
algorithms have been extended to MSD, with more or less general fitness
functions, including Monte Carlo with simulated annealing (Ambroggio
and Kuhlman, 2006), genetic algorithms (Pokala and Handel, 2005), the
FASTER approach (Allen and Mayo, 2010), cluster expansion (Negron
and Keating, 2013), and dead-end-elimination (Yanover et al., 2007), also
in combination with A* (Hallen and Donald, 2016).

The nature of the fitness function intimately depends on the design
problem. The Boltzmann-weighted average of the energies in each state
is ideal when the aim is to stabilize any of the backbone states. When
instead, it is to design a sequence that fits several conformational states,
the fitness will typically be the average of the energies on all states. These
two cases are identified as positive multistate design. The sought sequence
tries to maximize stability in all states: the fitness improves when the
energy of the sequence improves in any state. However, for some design
problems undesirable states are present and this property is violated:
the fitness function may worsen when the energy of the sequence in an
undesirable state improves. This can occur for the design of protein-ligand
binding or oligomeric association specificity. These design problems
involve negative design, against unwanted binding partners present in the
medium. Specificity then arises from the preference for a given partner
over the others. Thus, undesirable (negative) molecular states also have to
be considered.

In this paper, we show that the type of the fitness function has
a profound influence on the computational nature of the problem.
The introduction of undesirable states makes the problem qualitatively
more complex, shifting its complexity from NP-complete to the much
harder NPNP-complete category (Stockmeyer, 1976). This result has
several implications. Negative MSD being qualitatively harder than SSD,
optimization methods may become unable to reach good quality solutions
sooner than in the SSD case. It also shows that positive MSD is an
interesting target: it is “just” NP-complete while capturing some backbone
flexibility and dynamics (Davey et al., 2017). Hence, we leverage the
polynomial equivalence of NP-complete problems by introducing efficient
reductions of two variants of positive multistate design to Cost Function
Networks. The first variant uses a minimum energy fitness and the second
one a (weighted) average energy fitness. Beyond saving programming
efforts, this approach directly benefits from the advanced CFN processing
machinery (Cooper et al., 2010; Hurley et al., 2016).

On various positive MSD problems, we show that it is possible to
identify an optimal MSD sequence with associated optimal conformations
in reasonable time, on computationally extremely challenging design
problems of a size far beyond what has been solved with existing state-of-
the-art guaranteed multistate design methods (Hallen and Donald, 2016),
including recent CFN based methods with dedicated algorithms (Karimi
and Shen, 2018). Pomp? is also natively able to exhaustively enumerate
suboptimal sequences close to the MSD optimum, which is convenient
for sequence library design. Contrarily to what has been previously
described (Allen et al., 2010), we observe that the use of an ensemble
of NMR structures as a positive ensemble of backbones provides strong
improvements in term of native sequence and sequence similarity recovery

when an average energy criteria is used. We also show that this
improvement is reduced but still present when a backrub generated
ensemble derived from a single X-ray structure is used. These results show
that Positive Multistate Design is essentially as hard to solve as Single State
Design, both in theory and in practice. Given the significant improvement
that the multistate approach brings, positive MSD should be considered as
a default design approach when specificity is not the main target.

2 Methods

We use bold letters to denote sequences of objects (e.g. a for a sequence
of amino acids or ¢4 for a sequence of conformations for the amino acid
sequence a). Each element of a sequence is denoted by a plain letter such
as a € a. The element at position ¢ in a sequence s is denoted as s[].

2.1 Our definitions of multistate design

In discrete rigid MSD, we are given a set of positive backbones that
represent the target structure and a set of negative backbones that are
undesirable. In either the positive or negative case, these states have also
been called “sub-states” (Karimi and Shen, 2018). The final fitness of a
sequence is then defined as the difference of the fitness on the positive and
negative states. Various definitions of the fitness can be considered:

o If the set of states represents “possible backbones” that the sequence
can (de)stabilize, with no prior knowledge on which one will be
adopted in practice, the Boltzmann-weighted energy over all the
considered states (defined as the sum of e~ PE FE, where 8 = kB%),
is an attractive criteria. Because this gives an exponential advantage
to the backbone with lowest energy, it has been approximated by the
minimum energy (Karimi and Shen, 2018). This becomes equivalent
to what is called Multistate Analysis (MSA) (Davey and Chica, 2017).

e If instead the set of states represents structures that must be jointly
(de)stabilized, as in conformational switches design for example, it
is important that the energy of every state contributes to the fitness:
optimizing the average energy is more adequate.

More formally, we are given a set of positive and negative rigid
backbone states B = B+ U B, all with the same number ¢ of residues.
Ateach position 1 < ¢ < £, we have a set S; of possible amino acids. For
each a € S; and each state B; € B, we are given a set Cf’a of allowed
conformations for the amino acid a at position ¢ in state B;. At position
i, apairr = (a,c) wherea € S; and ¢ € Cg ,, is called a rotamer.

We also assume that the energy Fj(a, c) é)f a backbone By, equipped
with a given amino acid sequence a € [], S; and conformations ¢ €
I, Cf,a[i] is described as a sum of terms that each involve at most two
rotamers r; = (a[i], c[¢]) and r; = (a[j], c[j]), for 1 < ¢,5 < £:

Ey(a,c) = |E)+ Y BEy(ri) +
1<i<e

> Ey(rar)| ()

1<i<j<e

To capture the different criteria that have been used, such as minimum or
(weighted) average energy, we imagine that a binary operator & is used to
combine the energies of the backbones. Optimizing the minimum energy
is obtained using @& = min. This will be called min-MSD. Since the
number of states is fixed, optimizing the average energy is obtained using
@ = +. This will be called 3-MSD.

More formally, the @-MSD problem asks whether there exists a
sequence a € [ ], S; (the sequence design space) such that

min  Ej(a,c)| - @ min  Ej(a,c)| <k
B;eB+ <€l ¢ B;eB- €L O]

i,ali] i,ali]
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Fig. 1. In SSD (left), a single state (yellow) is used to score and rank sequences (1,2 and 3) according to their energy, which defines the sequence fitness (grey arrow): the best sequence
is sequence 3. In &-MSD, an ensemble of (here) four backbone states (cyan, blue, red and green) is used to score and rank sequences. The fitness of each sequence (grey arrow) can be
computed using the min (center) or the (weighted) sum of the sequence energies in each state (right). Depending on the used operator, the ranking may change and different sequences can

be selected. In min-MSD sequence 2 is ranked first as it has the best energy on the green backbone. In 3-MSD, it is ranked last because of its bad energy on the cyan backbone.

When the set B~ is empty, we say that this is a positive &-MSD
problem. The problem is to identify a sequence a € [, S; (the sequence
design space) such that:

min <k

1 Ej(a,c)
B;eB+ c€ll; O o

In this paper, we consider three types of design approaches: SSD,
min-MSD (equivalent to MultiState Analysis (Davey and Chica, 2017))
and 3-MSD. These three approaches are described in Figure 1 showing
how different backbones are used to score various sequences in each case.

2.2 Computational Complexity of Multistate Design

Since Pierce’s seminal paper (Pierce and Winfree, 2002), we know
that the SSD problem is decision NP-complete: given an arbitrary rigid
backbone, and arbitrary pairwise decomposable energy function and
rotamer library, deciding whether there exists a sequence and associated
side-chain conformations with energy lower than a given threshold k is NP-
complete. This result proves that the SSD problem is among the hardest of
all the problems in its class: any other problem in NP can be reduced to it
efficiently (in a time that grows as a polynomial in the size of the problem).

Theorem 1. Assuming energies are represented as finite objects and that
addition, comparison and & can be computed in a time polynomial in the
length of their arguments, the positive &-MSD problem is NP-complete
and the general @®-MSD problem is NPNP-complete (or Eg—complete).

The proof'is given as a Supplementary Information. This theorem says
that even if we had an algorithm (also called oracle) that could solve any
instance of an NP-complete problem (such as SSD) in constant time, then,
in the worst case, solving the general MSD problem would still require an
exponential number of calls to this oracle (assuming, as it is usual, that the
Polynomial Hierarchy does not collapse (Stockmeyer, 1976)).

2.3 Cost function networks

Cost function networks are deterministic Graphical Models derived from
Constraint Satisfaction Problems (Schiex et al., 1995), introduced in
Artificial Intelligence for automated reasoning (Rossi et al., 2006).

Definition 1. A CEN (X, W, k) is defined by:

e aset X of variablesz; € X indexedby I = {1,...,n}, eachvariable
x; takes its values in a finite domain D; of maximum cardinality d.

e a set of numerical cost functions wg € W each involving a subset
{z; € X |1 € S} of all variables.

e The cost k is a finite or infinite upper bound on costs: a cost of k or
above is considered as forbidden.

The set S C I of a cost function wg is called the scope of the cost
function. We denote by D the Cartesian product of the domains of all
variables indexed in S: DS = [lics Di-

The cost of an assignment t of all variables is defined as the sum
ZwSEW wg (¢[S]) of all cost functions. If it is strictly less than k, it
is said to be a solution. Notice that the upper bound k plays the role
as an infinite cost: any assignment with cost k or above is considered
as infeasible and is not a solution. The weighted constraint satisfaction
problem (WCSP) is to identify a solution of guaranteed minimum cost
overall t € DX,

2.4 Modeling SSD with Cost Function Networks

We model the rigid discrete SSD problem using a CEN (X, W, k) with
one variable z; per position ¢ in the design. The domain of variable x; is
the set of rotamers (a, c) € S; x C; 4 available for design at position ¢ and
the set of functions W contains the terms of the pairwise decomposable
energy functions: a constant term F () for the rigid bodies, one-body terms
E(x;) that capture internal side-chain energies and rotamer-backbone
interactions at position ¢ and two-bodies terms E(x;, ;) which capture
interactions between positions ¢ and j. The objective is to find the
combination of rotamers which minimizes the joint cost/energy of the
backbone. This is the optimum solution of the WCSP (Allouche et al.,
2014; Traoré et al., 2013; Simoncini et al., 2015).

2.5 Positive min-MSD as a Cost Function Network

In positive min-MSD, one seeks a sequence that best stabilizes one
backbone among all backbones B; € BT or equivalently that minimizes:

minJr min Ey() + Z Ey(ry) + Z Ey(ri,7j)
Br€BT ce[l, O] iy 1<i<e 1<i<j<t

where we use the decomposable form of the energy from Equation 1.
This problem can be tackled by solving the SSD problem on every
backbone state B; € B and using the sequence of the backbone with
minimum energy Ey,in as the solution. Given an energy gap of size
A > 0, a library of suboptimal sequences whose energy is less than
Epnin + A can be obtained by taking the union of the libraries obtained
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with energy threshold A on every backbone B; € BT Because it allows
to consider each state independently, this approach is often referred as just
a “Multistate Analysis” (MSA) (Davey and Chica, 2012).

Instead of solving as many SSD problems as there are states, the
problem can be modelled as a single Cost Function Network whose optimal
solution will define both the optimal sequence and the state on which the
optimum is reached. This model exploits the fact that CFNs solvers can
deal with terms involving more than two variables.

For a set BT of n states, we start from a model with the same variables
as in the SSD case: one variable x; per position 7, with a domain equal to
the set of available rotamers at this position. We also introduce a variable
zp withadomain {1, ..., b} that represents an index in the set of positive
states. The CFN for SSD of any of those backbones involves zero, one and
two-bodies terms. We introduce the new variable x4, in the scope of each
of these terms so that:

o all the constant terms Fy () for state B, € B are transformed in a
one-body function depending on the state index z; and equal to the
constant term for this state () = Eq,.

e forevery position i, all the one-body terms Ey,(z;) forstates B, € BT
are transformed in two-bodies terms F(zp, ;) = Ep(x;).

e for every pair of positions (i, 7), all the two-bodies terms Ej (z;, ;)
for all states B, € BT are transformed in three-bodies terms
E(xp, @i, x5) = Ep(xg,z5).

A solution of the resulting CFN defines a state through its index xy
and a sequence-conformation for every position in x;. The cost of the
solution is, by definition of the terms above, equal to the energy of this
sequence-conformation on this backbone. An optimal solution minimizes
the energy over all possible choices of states and sequence-conformations
and is therefore a solution of the positive min-MSD problem.

This approach was tested but never found to outperform the simple
approach where each backbone is solved independently. We therefore
used this latter method. The reduction above has the advantage that it
simplifies the construction of a sequence library: it suffices to enumerate
all suboptimal sequences within A of the optimum of this Cost Function
Network to directly build the joint library.

2.6 Positive ©-MSD as a Cost Function Network

In positive 3-MSD, one seeks a sequence that best simultaneously
stabilizes all states B; € BT or equivalently that minimizes:

min B+ Y Ey(r)+ >, Ep(riry)

J
B,eB+ °€lLi O 1) 1<i<e 1<i<j<e

This problem cannot be tackled by solving the SSD for every state
B, € Bt and summing the energies because the optimal sequences for
each SSD problem may differ. To avoid this issue, we exploit the capacity
of CFNs to represent hard constraints using the cost “k”. Contrarily to
stochastic search algorithms (that could fail because of lack of ergodicity or
require specific treatment to preserve it), CEN algorithms have the capacity
to actively exploit these constraints to accelerate search by predicting
inconsistent choices using local consistencies (Cooper et al., 2010).

For each state B € Bt, we compute the SSD CFN defined in
Section 2.4. We use a superscript for all variables in these CFNs to identify
the state they correspond to: :vi’ is the variable representing position % in
the SSD CFN of state Bj. We build a X-multistate CFN as follow:

e the set of variables of the multistate CFN is the union of all the sets
of variables of each SSD CFN. For a positive X-MSD full redesign
problem with n backbones of length ¢, there will be n¢ variables, each
with the same domain as in the original SSD problems.

o the set of functions of the multistate CEN contains all the cost function
Ep(), Ep(?), Ep(2?, mg’) of every SSD CEN plus a set of two-bodies
functions SS(x?,
state By, and By, € BT, enforce that the rotamers used in the states
By, and By, for position ¢ should represent the same amino acid.
SS(a:f, :c?/) is equal to zero if xi? and zf' represent the same amino

aci?/) which, for every position ¢ and every pair of

acid and is equal to the upper bound k in Definition 1 otherwise.

A solution of the multistate CFN contains a solution defining a sequence
and conformation for every state B, € B™T. By definition, the cost of this
solution is the sum of all energy terms over all states. Additionally, the
SS(xb, z?l ) functions impose that the same sequence is used in all states:
an optimal solution defines a sequence that minimizes the sum of energies.
It therefore solves the positive X-MSD problem.

This generates a CFN with n{ variables, n£(£27+1)
Z@ additional SS(z?, xf,) constraints. Since the SS(x?, xf/)
constraints define an equivalence relation, transitivity implies that it is

sufficient to only enforce this constraint for every pair b, b+ 1 of successive
n(n—1)
—

energy terms and

states. This requires ¢(n — 1) constraints instead of £

This reduction is used in the rest of the paper to solve positive 3-MSD:
the MSD problem is transformed in a CEN and the CEN solved. The use
of a single CFN also allows to easily generate suboptimal sequences using
the dedicated SCP-branching strategy (Traoré et al., 2016).

2.7 Benchmark Preparation

Two datasets have been prepared. The first one contains 15 NMR structures
and the second one 15 X-ray structures (see Table S1) that have been
extracted from the Protein Data Bank (PDB) (Berman et al., 2000) and
filtered with following criteria:

e monomeric proteins, no missing or nonstandard residues, no ligand
e maximum sequence length of 100 amino acid residues

e NMR resolved structures must contain at least 20 conformations

e X-ray structures must be resolved below 2 A

The set of backbones in the NMR ensemble was submitted to RMSD-based
hierarchical clustering using the Durandal software (Berenger et al., 2012)
in order to select the four most diverse conformations.

The X-ray ensembles have been generated by RosettaBackrub (Davis
et al., 2006) which uses the BackrubEnsemble method for flexible protein
backbone modeling in Rosetta (Friedland et al., 2009; Humphris and
Kortemme, 2008). One hundred conformations were generated for each
structure. This step was followed by the same RMSD-based hierarchical
clustering as for the NMR ensembles in order to select the four most
diverse among given conformations. Clustering distance thresholds were
set to reach the desired number of clusters (see Table S2). The structures
were relaxed using RosettaFastRelax with harmonic constraints, resulting
in output structures which are typically within 2 A RMSD of the initial
structure. Pairwise energy matrices were computed with Dunbrack2010
rotamer library (Shapovalov and Dunbrack, 2011) and beta_nov16
scoring function (Alford et al., 2017), using PyRosetta 171 (Chaudhury
et al., 2010). These problems define huge search spaces (Table S3) with
sizes that can exceed 10990 or 10540 if the effect of the S'S constraints is
taken into account.

We also used the 4 multistate problems provided with the multistate
iCFN solver at https://shen-lab.github.io/software/
iCFN. All 4 problems include eleven states of 3QDJ, a complex between
TCR DMFS5 and human Class I MHC HLA-A2 with a bound MART-1(27-
35) nonameric peptide, produced by an MD simulation (Karimi and Shen,
2018). Each problem has a single residue to redesign (from 20 possible
amino acids, with 7 protonation states for Asp, Glu and His), all close
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Fig. 2. Overall workflow for Xray and NMR structures.

residues are considered as flexible. Because of a dense rotamer library
(4, 731 rotamers), these problems define large search spaces (Table S4).

2.8 Solving SSD, min-MSD and £-MSD with Pomp*

Thanks to the three reductions of SSD, positive min-MSD and 3-MSD to
CFNes, it is now possible to solve these problems using a CEN solver such
as toulbar2 (https://github.com/toulbar2/toulbar?2).

For our benchmarking NMR and X-ray instances, we downloaded
toulbar2 from its repository, using its ’cpd’ branch. All instances were
solved using the “~dee: -0=-3 -B=1 —-A -cpd” taken in a recent
paper (Simoncini et al., 2015). Compared to the default behavior,
this command line deactivates Dead End Elimination and activates the
exploitation of the interaction structure (treewidth) and the strong ’Virtual
Arc Consistency’ bounds (Cooper et al., 2010). Computations were done
on an Intel(R) Xeon(R) CPU E5-2630 at 2.30GHz with 24GB of RAM.
The overall workflow is described in Figure 2.

3 Results and Discussion
3.1 Comparing SSD, min-MSD and 3-MSD

Protein design problems can be modeled as SSD, min-MSD or 2-MSD.
SSD has the advantage of simplicity: there is only one backbone to design.
MSD approaches have the advantage of accounting for protein backbone
flexibility, with additional modeling and computing costs. As we already
mentioned, min-MSD seems more suitable for situation of uncertainty: it
is not known which, among all the available backbones, is the suitable one.
Instead >3-MSD seems more suitable when there is an explicit requirement
that all states should be stabilized.

We assessed Pomp? on our benchmark backbone conformational
state ensembles, either extracted from NMR structures or generated by
backrub motions from X-ray structures. Notice that our benchmark dataset
represents a selection of full protein design problems for structures of size
varying between 53 and 96 residues.

3-MSD outperforms SSD and min-MSD in terms of sequence recovery
In order to compare the accuracy of these methods, we used the
native sequence recovery (nsr) and native sequence similarity recovery
(nssr), which have been used extensively to evaluate protein design
methods (Havranek et al., 2004; Humphris and Kortemme, 2007; Loffler
et al., 2017). Native sequence recovery is defined as the fraction of
positions where the native and designed sequences are identical. Native
sequence similarity is defined as the fraction of positions where the native
and designed sequences have a positive similarity score in BLOSUM62
protein similarity matrix. For SSD, nsr and nssr have been computed as
the average of the recovery for the four SSD conformations. The results
of these comparisons are shown in Table 1. X-MSD achieves on average a
nsr of 64.7% and 66.4% and a nssr of 74.4% and 73.9% for respectively
back-rubbed X-ray and NMR structure datasets. For every protein design
in the X-ray structure dataset and for 13 out of the 15 protein designs
in the NMR structure dataset, 3-MSD provides the best native sequence
recovery (p-value when comparing to respectively average SSD and min-
MSD over all proteins of 2.5 10~6 and 1.3 10~?, Wilcoxon signed rank
test). For NMR structures, 3-MSD performs 15.6% better on average

Clusterin
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Fig. 3. CPU time in seconds (Y logscale axis) vs. problem size (MB) for SSD and 3-MSD
problems (X axis). Each point represents one instance, NMR structures are in red, X-ray
in blue. SSD problems are represented as circles, £-MSD problems as squares. A related
figure with the X axis showing protein size is available as Figure S1.

than SSD and 8% better for X-ray structures. min-MSD achieves native
sequence recovery rates which can almost not be differentiated from those
obtained by SSD (p-value of 0.6 on the 30 proteins, Wilcoxon signed rank
test). While min-MSD and SSD achieve a better sequence recovery rate on
the X-ray dataset than on the NMR structures (7 — 9% better on average),
3-MSD s less sensitive to the dataset type (1% better on average on X-ray
dataset).

We expected 3-MSD to perform better on NMR, given that the NMR
ensemble corresponds to likely states of the observed proteins and min-
MSD to be more adapted to the back-rubbed X-ray structures that just
define a set of possible states. Instead, >-MSD dominates even in the back-
rubbed case. Instead, min-MSD is worse than SSD on NMR ensembles but
at least improves over SSD on back-rubbed X-ray structures. It is possible
that a set of 4 states is too small for min-MSD to have a chance to find a
suitable backbone while the more consensual approach of -MSD is able
to extract local information from every backbone.

Analyzing the efficiency of Pomp?® on SSD and ©-MSD: Because SSD
and @-MSD are NP-complete, we expect an exponential cpu-time growth
as the sizes of the problems solved increase. We plotted the cpu-time taken
by Pomp? to solve the SSD and X-MSD problems against the problem
size represented as the size (in bytes) of the compressed file that contains
the description of the problem solved in wcsp format (see Figure 3).
Empirically, we observe that for each class of problem (SSD and ¥-MSD),
an exponential function fits the CPU-time reasonably well and that the 3-
MSD problems tend to be simpler to solve than the SSD problems, given
their larger size. In the end, the relatively slow increase in CPU time as the
size grows shows that full redesign problems using an SSD or a positive
min-MSD and 3-MSD approach can be solved on a standard computer
for proteins of size less than 100 amino acids in reasonable time, with
guarantee on the fitness of the produced sequence.

Comparing the computational efficiency of iCFN and Pomp® We
compared Pomp? to the recent iCFN solver (Karimi and Shen, 2018).
iCFN can solve min-MSD problems but not 3-MSD problems. In our first
comparison, we converted the 4 positive multistate problems available on
the iCFN web site (see SI) to a format that we could process. We tackled
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Table 1. Native sequence recoveries and similarity recoveries for SSD, min-
MSD and X-MSD on both NMR structure (left) and X-ray structure (right)
datasets. The protein sequences have length that vary from 53 to 96.

NMR structures X-ray structures

PBDID SSD min-MSD 3-MSD PBDID SSD min-MSD X-MSD

Native sequence recoveries Native sequence recoveries

Svso 48.0%  44.0% 62.7% lThyp 61.8%  67.5% 68.9%
517b 52.9%  53.6% 59.5% lhoe 60.1%  59.4% 77.0%
Smmc 542%  60.0% 58.5% Imjc 56.5%  53.6% 59.4%
Igbl 48.7%  46.4% 60.7% Ipga 52.7%  58.9% 73.2%
5t8a 39.7%  39.3% 37.7% 2b8i 48.4%  42.8% 57.1%
215t 584%  49.3% 83.1% 4y2k 62.7%  67.7% 70.8%
2n6r 53.9%  52.6% 67.1% 1194 643%  65.1% 71.4%
Ibmw 534%  56.4% 79.8% Iwho 614%  62.7% 68.1%
5ix5 52.6%  48.5% 63.2% ltud 458%  45.0% 48.3%
5x0s 429%  50.9% 58.5% lyu5 64.1%  65.7% 68.6%
6ews 46.8%  46.1% 69.8% Ibxy 53.3%  50.0% 60.0%
6fwn 55.8%  54.1% 72.9% letf 57.9%  50.7% 60.9%
6qf8 54.3%  51.3% 68.4% lguu 53.4%  66.6% 66.6%
6jlt 549%  57.8% 65.7% Iwvn 41.9%  44.5% 50.0%
6hkc 45.0%  44.0% 66.6% lucs 66.1%  70.3% 70.3%
Average 50.8%  50.3% 66.4% Average 56.7%  58.0% 64.7%

Native sequence similarities Native sequence similarities

5vso 58.6%  54.6% 70.6% lhyp 71.3%  75.7% 81.1%
517b 69.6%  65.2% 75.4% lhoe 672%  68.9% 82.4%
Smmc 59.6%  63.1% 61.5% Imjc 67.5%  66.7% 69.6%
1gbl 629%  60.7% 67.8% Ipga 62.9%  69.6% 80.3%
5t8a 52.5%  52.5% 49.2% 2b8i 63.3%  58.4% 71.4%
215t 71.1%  62.3% 90.9% 4y2k 66.1%  69.2% 75.4%
2n6r 64.5%  59.2% 73.7% 1194 742%  73.0% 80.9%
Ibmw 64.9%  64.9% 84.1% Iwho 72.1%  73.4% 80.9%
5ix5 62.8%  58.8% 72.1% Itud 55.0%  56.7% 55.0%
5x0s 51.9%  60.4% 75.5% lyu5 724%  73.1% 74.6%
Gews 65.8%  73.0% 82.5% Ibxy 64.5%  58.3% 73.3%
6fwn 63.2%  61.1% 78.8% Ietf 65.6%  59.4% 68.1%
6qf8 64.4%  64.4% 77.6% Iguu 69.6%  72.5% 82.4%
6jlt 62.5%  61.8% 71.1% Iwvn 57.1%  63.5% 62.2%
6hkc 593%  58.6% 78.6% lucs 73.0%  76.6% 78.1%
Average 62.2%  61.4% 73.9% Average 66.8%  67.7% 74.4%

the min-MSD problem on these four instances with 11 states with iCFN
and Pomp?. Since sequence recovery was shown to be better on £-MSD,
we also tried to solve 3-MSD problem with Pomp¢ only. This is also the
criteria that COMETS (Hallen and Donald, 2016) uses.

The results are presented in Table 2. We observe that Pomp? is much
faster than iCFN, by a non constant factor that increases with problem
size. Furthermore, the X-MSD variant can also always be solved in
reasonable time by Pomp? despite the vast search spaces (See Table S4).
A possible explanation for this surprising capacity to explore vast spaces
of size larger than 10%40 is that the several backbones in each problem
are sufficiently similar to define correlated regions of low energies that
enable both quick identification of optimal sequences and fast optimality
proof. To check if this intuition is true, we computed, for each protein
in the benchmark set, the difference AE between the average energy

of the SSD optimal sequences (S.SD) and the optimal average energy
provided by ¥-MSD (see Table S5). With an average of respectively
19.2 kcal.mol =1 and 10.5 kcal.mol~? for respectively NMR and back-
rubbed X-ray structures, these exact differences show that the 3-MSD
sequences have higher energies than the SSD sequences: there is a non
negligible frustration generated by trying to fit all backbones together.
This frustration is also more important for NMR structures than X-ray
structures (p-value = 0.03, Wilcoxon rank sum test) indicating that the

back-rubbed structures are more compatible with each other energy-wise
than the NMR structures.

Table 2. Comparison of the CPU-times (in seconds) for iCEN and Pomp? for
solving min-MSD and for Pomp? to solve the corresponding $-MSD.

redesigned iCFN Pomp?  speedup Pomp?
position min-MSD min-MSD >-MSD
26 445.4 25.7 17.3 554
28 594.9 327 18.1 99.9
98 640.3 22.7 28.2 89.6
100 719.8 29.5 244 105.1

We also converted our benchmarking problems to a format suitable
for iCFN min-MSD algorithm. After 65 hours of computing, none of the
full-redesign min-MSD problems could be solved by iCFN. This was even
the case for the smallest protein of our dataset (PDB id: 1pga) which is
solved by Pomp? in less than 20 minutes. We therefore prepared several
design problems with increasingly smaller search spaces by decreasing
the number of mutable amino acid residues, leaving non-mutable residues
as flexible. With a number of mutable residues reduced to 5, iCFN was
still unable to provide a solution after 24 hours. It’s only after fixing all
non-mutable residues in a rigid position that iCFN could finally produce
a solution in 247 seconds. Pomp® solves this problem in 14.59 seconds.

3.2 Sequence enumeration for min-MSD and ©-MSD

In addition to the optimal sequence, Pomp® can provide an exhaustive
list of sub-optimal sequences within a given energy threshold of the MSD
optimum. In order to characterize the energy landscape of the min and -
MSD approaches, we enumerated all sequences within a 1 kcal.mol =1
of the optimum for the largest protein of our dataset (96 amino acid
residues) whose structure has been solved by both NMR (1bmw) and
X-ray crystallography (1who). As expected, 3-MSD enumerations are
computationally more costly than min-MSD enumerations (Table 3).

Table 3. Number of enumerated sequences and CPU-time taken for the
enumeration for 1who and 1bmw

min-MSD 3 -MSD
#of seq. CPU-time # ofseq. CPU-time
Ibmw 131,616 250" 94,522 43°30”
Iwho 56,790 2°32” 143,457 67°16”

Different important features of the fitness landscape of SSD problems
have already been studied in (Simoncini et al., 2018). We used some of
these features to analyze the landscapes of min-MSD and ¥ -MSD. The
distribution of the Hamming distances to the optimal sequence (number
of substitutions compared to the optimum) shows a similar uni-modal
distribution for both methods (Figure 4). However, 3-MSD shows a
narrower distribution, with more solutions close to the optimum (mode
at distance 5 of the optimum instead of 7 and 10 respectively for 1bmw
and 1who in min-MSD). These results are consistent with the nsr and nnsr
computed for all enumerated sequences (average values shown in Table 4).

We also computed the local optima network defined by the enumerated
sequences and a neighborhood at a Hamming distance of 1 (See Figure 5).
For both proteins, the networks for the >-MSD landscapes are much more
densely connected than the min-MSD networks. In min-MSD, the basin
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Table 4. Average nsr and nssr over all enumerated sequences.

nsr(%)

nssr(%)

PBDID min-MSD X-MSD min-MSD 3X-MSD

lwho  62.9% 67.9% 74.7% 80.3%
1bmw  55.6% 79.5% 63.2% 84.3%
@ | 1bmw
° = 5-MSD
& = minMSD
° 1who
n_ |

1 5 9 13
Distance to optimum

Fig. 4. Distribution of Hamming distances to GMEC for 1bmw (top) and 1who (bottom).
min-MSD is shown in red and £-MSD in blue.

of the global optimum is often disconnected from most of the other basins.
Instead, the 3-MSD landscapes show far less wider basins which can be
reached by all or a large fraction of the other basins. This may explain
why, despite the frustration generated by the requirement of fitting several
backbones, 2-MSD are easier to solve given their size: they clearly more
identify the globally optimal sequence.

From a biological perspective, the >-MSD fitness landscapes seem
more relevant. Considering that evolution occurs by random mutations, one
can interpret these networks as an abstract representation of the possible
mutational paths that can be explored by evolution. The densely connected
3-MSD local optima networks allow random mutations to easily escape
local minima. By capturing the natural flexibility of proteins in a more
realistic manner, 3-MSD leads to more natural fitness landscapes.

4 Conclusion

In this paper, we have shown that multistate protein design problems can be
intrinsically much harder than the usual NP-complete Single State Protein
Design problem (Pierce and Winfree, 2002). This additional complexity
can be precisely pinned down to the introduction of negative states.
While negative states are crucial when the design target is to generate
specificity, when the aim is just to stabilize an ensemble of backbones,
or to design conformational switches, positive states suffice. The positive
MSD problem is therefore a soft spot of multistate protein design, offering
the ability to capture some of the flexibility of protein backbones while
remaining “only” NP-complete, just as SSD.

To exploit this situation, we designed efficient reductions of the
optimization problem defined by positive MSD problems to the generic
discrete optimization framework of Cost Function Networks (Cooper et al.,
2010), a framework introduced in Artificial Intelligence that has already
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Fig. 5. 2D views of the local optima networks of 1bmw and 1who for min-MSD and -
MSD. The size of a node is proportional to the log size of the attraction basin of the local
minima. The energy of the local minima is represented as a color gradient from blue (high
energy) to red (low energy). Edge thickness is proportional to the probability of escaping
a basin to another basin assuming that the probability to go from a solution to any of its

neighbors is uniform. A 3D-view is available in the SI (Figure S2).

shown its efficiency on SSD problems (Traoré et al., 2013; Simoncini
et al., 2015). On a mixture of RMN and back-rubbed X-ray structures,
Pomp? shows that the average energy criteria is clearly superior to the
MSA approach in terms of native sequence recovery. In terms of efficiency,
it also outperforms a very recent guaranteed multistate algorithm such as
iCFN (Karimi and Shen, 2018), which is also restricted to the simple min-
MSD (or MSA) problem. In our knowledge, this is the first time that it
is possible to access guaranteed optimal average energy full multistate
redesigns of proteins of size close to 100 amino acids, defining search
space of size larger than 10590, Because it just relies on a reduction to
CFN, this approach also inherits all the capabilities of CFN solvers such
as toulbar2, including the ability to exhaustively enumerate sequences
within a threshold of the optimum to directly produce a sequence library.
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