S. Ollier, C. Robert-granié, L. Bernard, Y. Chilliard, and C. Leroux, Mammary transcriptome analysis of fooddeprived lactating goats highlights genes involved in milk secretion and programmed cell death, J. Nutr, vol.137, pp.560-567, 2007.

A. Minuti, Z. Zhou, D. E. Graugnard, S. L. Rodriguez-zas, A. R. Palladino et al., Acute mammary and liver transcriptome responses after an intramammary Escherichia coli lipopolysaccharide challenge in postpartal dairy cows, Physiol. Rep, 2015.

H. Seegers, C. Fourichon, and F. Beaudeau, Production effects related to mastitis and mastitis economics in dairy cattle herds, Vet. Res, vol.34, pp.475-491, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00902768

K. R. Matthews, R. A. Almeida, and S. P. Oliver, Bovine mammary epithelial cell invasion by Streptococcus uberis, Infect. Immun, vol.62, pp.5641-5646, 1994.

R. A. Almeida, K. R. Matthews, E. Cifrian, A. J. Guidry, and S. P. Oliver, Staphylococcus aureus invasion of bovine mammary epithelial cells, J. Dairy Sci, vol.70, pp.76454-76462, 1996.

T. J. Lam, L. J. Lipman, Y. H. Schukken, W. Gaastra, and A. Brand, Epidemiological characteristics of bovine clinical mastitis caused by Staphylococcus aureus and Escherichia coli studied by DNA fingerprinting, Am. J. Vet. Res, vol.571, pp.39-42, 1996.

B. A. Mallard, J. C. Dekkers, M. J. Ireland, K. E. Leslie, S. Sharif et al., Alteration in immune responsiveness during the periparturient period and its ramification on dairy cow and calf health, J. Dairy Sci, vol.81, issue.98, pp.75612-75619, 1998.

L. M. Sordillo and W. Raphael, Significance of Metabolic Stress, Lipid Mobilization, and Inflammation on Transition Cow Disorders, Vet. Clin. Food Anim, vol.29, pp.267-278, 2013.

W. Suriyasathaporn, C. Heuer, E. N. Noordhuizen-stassen, and Y. H. Schukken, Hyperketonemia and the impairment of udder defense: A review, Vet. Res, vol.31, pp.397-412, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00902662

D. E. Shuster, E. Lee, and M. E. Kehrli, Bacterial growth, inflammatory cytokine production, and neutrophil recruitment during coliform mastitis in cows within ten days after calving, compared with cows at midlactation, Am. J. Vet. Res, vol.57, pp.1569-1575, 1996.

R. M. Bruckmaier, Gene expression of factors related to the immune reaction in response to intramammary Escherichia coli lipopolysaccharide challenge, J. Dairy Res, vol.72, pp.120-124, 2005.

K. M. Moyes, J. K. Drackley, J. L. Salak-johnson, D. E. Morin, J. C. Hope et al., Dietary-induced negative energy balance has minimal effects on innate immunity during a Streptococcus uberis mastitis challenge in dairy cows during midlactation, J. Dairy Sci, vol.929, pp.4301-4316, 2009.

K. H. Perkins, M. J. Vandehaar, J. L. Burton, J. S. Liesman, R. J. Erskine et al., Clinical Responses to Intramammary Endotoxin Infusion in Dairy Cows Subjected to Feed Restriction, J. Dairy Sci, vol.85, p.74246, 2002.

L. M. Sordillo, K. Shafer-weaver, and D. Derosa, Immunobiology of the mammary gland, J. Dairy Sci, vol.808, pp.76121-76127, 1997.

M. R. Waldron, A. E. Kulick, A. W. Bell, and T. R. Overton, Acute Experimental Mastitis Is Not Causal Toward the Development of Energy-Related Metabolic Disorders in Early Postpartum Dairy Cows, J. Dairy Sci, vol.89, pp.596-610, 2006.

M. Rinaldi, R. W. Li, and A. V. Capuco, Mastitis associated transcriptomic disruptions in cattle, Vet. Immunol. Immunopathol, vol.138, pp.267-279, 2010.

J. J. Loor, K. M. Moyes, and M. Bionaz, Functional adaptations of the transcriptome to mastitis-causing pathogens: The mammary gland and beyond, J. Mammary Gland Biol. Neoplasia, vol.16, pp.305-322, 2011.

B. Buitenhuis, C. M. Røntved, S. M. Edwards, K. L. Ingvartsen, and P. Sørensen, In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis, BMC Genom, vol.12, 2011.

S. Mitterhuemer, W. Petzl, S. Krebs, D. Mehne, A. Klanner et al., Escherichia coli infection induces distinct local and systemic transcriptome responses in the mammary gland, BMC Genom, vol.11, p.138, 2010.

J. Günther, D. Koczan, W. Yang, G. Nurnberg, D. Repsilber et al., Assessment of the immune capacity of mammary epithelial cells: Comparison with mammary tissue after challenge with Escherichia coli, Vet. Res, vol.40, p.31, 2009.

J. Günther, K. Esch, N. Poschadel, W. Petzl, H. Zerbe et al., Comparative kinetics of Escherichia coli-and Staphylococcus aureus-specific activation of key immune pathways in mammary epithelial cells demonstrates that S. aureus elicits a delayed response dominated by interleukin-6 IL-6) but not by IL-1A or tumor necrosis factor alpha, Infect. Immun, vol.79, pp.695-707, 2011.

B. Griesbeck-zilch, H. H. Meyer, C. Kuhn, M. Schwerin, and O. Wellnitz, Staphylococcus aureus and Escherichia coli cause deviating expression profiles of cytokines and lactoferrin messenger ribonucleic acid in mammary epithelial cells, J. Dairy Sci, vol.91, pp.2215-2224, 2008.

C. J. Hogarth, J. L. Fitzpatrick, A. M. Nolan, F. J. Young, A. Pitt et al., Differential protein composition of bovine whey: A comparison of whey from healthy animals and from those with clinical mastitis, Proteomics, vol.4, pp.2094-2100, 2004.

J. L. Boehmer, D. D. Bannerman, K. Shefcheck, and J. L. Ward, Proteomic analysis of differentially expressed proteins in bovine milk during experimentally induced Escherichia colimastitis, J. Dairy Sci, vol.91, pp.4206-4218, 2008.

J. Pires, K. Pawlowski, J. Rouel, C. Delavaud, G. Foucras et al., Undernutrition modifies metabolic responses to intramammary lipopolysaccharide but has limited effects on inflammation indicators in early lactation cows, J. Dairy Sci, pp.2018-15446, 2019.

P. Rainard and C. Riollet, Innate immunity of the bovine mammary gland, Vet. Res, vol.37, pp.369-400, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00903030

K. Atabai, D. Sheppard, and Z. Werb, Roles of the Innate Immune System in Mammary Gland Remodeling During Involution, J. Mammary Gland Biol. Neoplasia, vol.121, pp.37-45, 2007.

K. Hughes and C. J. Watson, The spectrum of STAT functions in mammary gland development, Jak-stat, vol.13, pp.151-158, 2012.

J. E. López-meza, A. Gutiérrez-barroso, and A. Ochoa-zarzosa, Expression of tracheal antimicrobial peptide in bovine mammary epithelial cells, Res. Vet. Sci, vol.87, pp.59-63, 2009.

S. Yarus, J. M. Rosen, A. M. Cole, and G. Diamond, Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice, Proc. Natl. Acad. Sci, vol.93, pp.14118-14121, 1996.

K. M. Moyes, P. Sørensen, and M. Bionaz, The Impact of Intramammary Escherichia coli Challenge on Liver and Mammary Transcriptome and Cross-Talk in Dairy Cows during Early Lactation Using RNAseq, PLoS ONE, vol.11, p.157480, 2016.

D. A. Priestman, S. C. Mistry, A. Halsall, and P. J. Randle, Role of protein synthesis and of fatty acid metabolism in the longer-term regulation of pyruvate dehydrogenase kinase, Biochem. J, vol.300, pp.659-664, 1994.

E. M. Ibeagha-awemu, R. Li, A. A. Ammah, P. L. Dudemaine, N. Bissonnette et al., Transcriptome adaptation of the bovine mammary gland to diets rich in unsaturated fatty acidFAs shows greater impact of linseed oil over safflower oil on gene expression and metabolic pathways, BMC Genom, vol.17, 2016.

J. Bouvier-muller, C. Allain, G. Tabouret, F. Enjalbert, D. Portes et al., Whole blood transcriptome analysis reveals potential competition in metabolic pathways between negative energy balance and response to inflammatory challenge, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607548

J. H. Lee, E. J. Kim, D. K. Kim, J. M. Lee, S. B. Park et al., Hypoxia Induces PDK4 Gene Expression through Induction of the Orphan Nuclear Receptor ERRc, PLoS ONE, vol.7, p.46324, 2012.

B. B. Rasmussen and R. R. Wolfe, Regulation of fatty acid oxidation in skeletal muscle, Annu Rev. Nutr, vol.19, pp.463-484, 1999.

H. Akbar, M. Bionaz, D. B. Carlson, S. L. Rodriguez-zas, R. E. Everts et al., Feed restriction.; but not L-carnitine infusion.; alters the liver transcriptome by inhibiting sterol synthesis and mitochondrial oxidative phosphorylation and increasing gluconeogenesis in mid-lactation dairy cows, J. Dairy Sci, vol.96, pp.2201-2213, 2013.

J. K. Drackley, Biology of dairy cows during the transition period: The final frontier?, J. Dairy Sci, vol.82, issue.99, pp.75474-75477, 1999.

F. Palmieri, The mitochondrial transporter family SLC25: Identification, properties and physiopathology, Mol. Asp. Med, vol.34, pp.465-484, 2013.

K. M. Moyes, J. D. Drackley, D. E. Morin, S. L. Rodriguez-zas, R. E. Everts et al., Predisposition of cows to mastitis in non-infected mammary glands: Effects of dietary-induced negative energy balance during mid-lactation on immune-related genes, Funct. Integr. Genom, vol.11, pp.151-156, 2011.

D. R. Kashyap, A. Rompca, A. Gaballa, J. D. Helmann, J. Chan et al., Peptidoglycan Recognition Proteins Kill Bacteria by Inducing Oxidative.; Thiol.; and Metal Stress, PLoS Pathog, vol.10, 2014.

H. Ohtsuka, M. Koiwa, S. Fukuda, Y. Satoh, T. Hayashi et al., Changes in peripheral leukocyte subsets in dairy cows with inflammatory diseases after calving, J. Vet. Med. Sci, vol.66, pp.905-909, 2004.

H. Li, S. Hou, X. Wu, S. Nandagopal, F. Lin et al., The Tandem PH Domain-Containing Protein 2 (TAPP2) Regulates Chemokine-Induced Cytoskeletal; Reorganization and Malignant B Cell Migration, PLoS ONE, issue.8, p.57809, 2013.

J. W. Lee, M. J. Paape, T. H. Elsasser, and X. Zhao, Elevated milk soluble CD14 in bovine mammary glands challenged with Escherichia coli lipopolysaccharide, J. Dairy Sci, vol.86, issue.03, pp.73832-73838, 2003.

D. D. Bannerman, M. J. Paape, W. R. Hare, and E. Sohn, Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge, J. Dairy Sci, vol.86, pp.3128-3137, 2003.

S. P. Han, Y. H. Tang, and R. Smith, Functional diversity of the hnRNPs: Past.; present and perspectives, Biochem. J, vol.430, pp.379-392, 2010.

T. Geuens, D. Bouhy, and V. Timmerman, The hnRNP family: Insights into their role in health and disease, Hum. Genet, vol.135, pp.851-867, 2016.

U. Raffetseder, E. A. Liehn, C. Weber, and P. R. Mertens, Role of cold shock Y-box protein-1 in inflammation.; atherosclerosis and organ transplant rejection, Eur. J. Cell Biol, vol.91, pp.567-575, 2012.

S. A. Apostolidis, N. Rodríguez-rodríguez, A. Suárez-fueyo, N. Dioufa, E. Ozcan et al., Phosphatase PP2A is requisite for the function of regulatory T cells, Nat. Immunol, vol.17, pp.556-564, 2016.

R. B. Bhavsar, L. N. Makley, and P. A. Tsonis, The other lives of ribosomal proteins, Hum. Genom, vol.4, pp.327-344, 2010.

H. Schachtera and H. H. Freeze, Glycosylation diseases: Quo vadis?, Biochim. Biophys. Acta, vol.1792, pp.925-930, 2009.

R. Palorini, F. P. Cammarata, C. Balestrieri, A. Monestiroli, M. Vasso et al., Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response, Cell Death Dis, 2013.

H. I. Alanen, K. E. Salo, A. Pirneskoski, and L. W. Ruddock, pH dependence of the peptide thiol-disulfide oxidase activity of six members of the human protein disulfide isomerase family, Antioxid. Redox Signal, vol.83, pp.283-291, 2006.

J. J. Galligan and D. R. Petersen, The human protein disulfide isomerase gene family, Hum. Genom, vol.6, 2012.

J. Grootjans, A. Kaser, R. J. Kaufman, and R. S. Blumberg, The unfolded protein response in immunity and inflammation, Nat. Rev. Immunol, vol.16, pp.469-484, 2016.

N. Garbi, S. Tanaka, F. Momburg, and G. J. Hammerling, Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57, Nat. Immunol, vol.7, pp.93-102, 2006.

H. Lilie, S. Mclaughlin, R. Freedman, and J. Buchner, Influence of protein disulfide isomerase PDI) on antibody folding in vitro, J. Biol. Chem, vol.269, pp.14290-14296, 1994.

C. Bregier, B. Kupikowska, H. Fabczak, and S. Fabczak, CCT chaperonins and their cochaperons, Postepy Biochem, vol.54, pp.64-70, 2008.

P. Carneiro, L. C. Peters, F. Vorraro, A. Borrego, O. G. Ribeiro et al., Gene expression profiles of bone marrow cells from mice phenotypeselected for maximal or minimal acute inflammations: Searching for genes in acute inflammation modifier loci, Immunology, vol.128, pp.562-571, 2009.

A. J. Horvath, J. A. Irving, J. Rossjohn, R. H. Law, S. P. Bottomley et al., The murine orthologue of human antichymotrypsin: A structural paradigm for clade A3 serpins, J. Biol. Chem, vol.280, pp.43168-43178, 2005.

K. Nomura, H. Kanegane, H. Karasuyama, S. Tsukada, K. Agematsu et al., Genetic defect in human X-linked agammaglobulinemia impedes a maturational evolution of pro-B cells into a later stage of pre-B cells in the B-cell differentiation pathway, Blood, vol.96, pp.610-617, 2000.

L. Bernard, C. Richard, V. Gelin, C. Leroux, and Y. Heyman, Milk fatty acid composition and mammary lipogenic genes expression in bovine cloned and control cattle, Livest. Sci, vol.176, pp.188-195, 2015.

M. Bonnet, L. Bernard, S. Bes, and C. Leroux, Selection of reference genes for quantitative real-time PCR normalisation in adipose tissue.; muscle.; liver and MG from ruminants, Animal, vol.7, pp.1344-1353, 2013.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) Method. Methods, vol.25, pp.402-408, 2001.

P. Magee, S. Pearson, J. Whittingham-dowd, and J. Allen, PPARgamma as a molecular target of EPA antiinflammatory activity during TNF-alpha-impaired skeletal muscle cell differentiation, The Journal of nutritional biochemistry, vol.2012, issue.11, pp.1440-1448

L. G. Zaros, P. A. Bricarello, A. F. Amarante, and L. L. Coutinho, Quantification of bovine cytokine expression using real-time RT-PCR methodology, Genet. Mol. Biol, vol.30, issue.3, pp.575-579, 2007.

K. Swanson, S. Gorodetsky, L. Good, S. Davis, D. Musgrave et al., Expression of a beta-defensin mRNA, lingual antimicrobial peptide, in bovine mammary epithelial tissue is induced by mastitis, Infection and immunity, vol.72, issue.12, pp.7311-7314, 2004.

S. W. Wang, S. S. Wang, D. C. Wu, Y. C. Lin, C. C. Ku et al., Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters, Cell death & disease, vol.4, p.907, 2013.

C. Leroux, L. Bernard, Y. Faulconnier, J. Rouel, A. De-la-foye et al., Bovine Mammary Nutrigenomics and Changes in the Milk Composition due to Rapeseed or Sunflower Oil Supplementation of High-Forage or High-Concentrate Diets, Journal of nutrigenetics and nutrigenomics, vol.2016, issue.2-4, pp.65-82

P. H. Westfall, D. V. Zaykin, and S. S. Young, Multiple tests for genetic effects in association studies, In Biostatistical Methods (Methods in Molecular Biology

S. Looney and . Ed, , pp.143-168, 2001.

P. D. Thomas, M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak et al., PANTHER: A library of protein families and subfamilies indexed by function, Genome Res, vol.13, pp.2129-2214, 2003.

, UniProt: The universal protein knowledgebase, The UniProt Consortium, vol.45, pp.158-169, 2017.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI