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Abstract 19 

Introduction. Although it is still at a very early stage compared to its mass spectrometry (MS) 20 

counterpart, Proton Nuclear Magnetic Resonance (NMR) lipidomics is worth being investigated as an 21 

original and complementary solution for lipidomics. Dedicated sample preparation protocols and 22 

adapted data acquisition methods have to be developed to set up an NMR lipidomics workflow; in 23 

particular, the considerable overlap observed for lipid signals on 1D spectra may hamper its 24 

applicability. 25 

Objectives. The study describes the development of a complete proton NMR lipidomics workflow for 26 

application to serum fingerprinting. It includes the assessment of fast 2D NMR strategies, which, 27 

besides reducing signal overlap by spreading the signals along a second dimension, offer compatibility 28 

with the high-throughput requirements of food quality characterization. 29 

Methods. The robustness of the developed sample preparation protocol is assessed in terms of 30 

repeatability and ability to provide informative fingerprints; further, different NMR acquisition 31 

schemes –including classical 1D, fast 2D based on non-uniform sampling or ultrafast schemes– are 32 

evaluated and compared. Finally, as a proof of concept, the developed workflow is applied to 33 

characterize lipid profiles disruption in serum from ­agonists diet fed pigs. 34 

Results. Our results show the ability of the workflow to discriminate efficiently sample groups based 35 

on their lipidic profile, while using fast 2D NMR methods in an automated acquisition framework. 36 

Conclusion. This work demonstrates the potential of fast multidimensional 1H NMR –suited with an 37 

appropriate sample preparation– for lipidomics fingerprinting as well as its applicability to address 38 

chemical food safety issues. 39 
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 42 

1 Introduction 43 

Over the last decade, the growth of lipidomics, defined as “the full characterization of lipid molecular 44 

species and of their biological roles with respect to expression of proteins involved in lipid metabolism 45 

and function, including gene regulation” (Spener et al., 2003), has been noteworthy. It encountered a 46 

revival of research works thanks to recent advances in both analytical chemistry and data analysis, 47 

which greatly accelerated progresses in the field. Lipidomics is now considered a relevant approach for 48 

addressing a broad range of research questions, as attested by the large number of review articles 49 

dedicated to the topic (Bou Khalil et al., 2010; Cajka and Fiehn, 2014; Hyotylainen et al., 2017; Li et al., 50 

2014; Wenk, 2005, 2010; Yang and Han, 2016). The applications of this field of research are diverse 51 

and include disease biomarker discovery, drug development, drug safety assessment, nutrition or plant 52 

research (Zhao et al., 2014). Some studies also showed its potential as a tool for the assessment of 53 

food quality; authenticity applications in particular have been widely reported (Li et al., 2017). In 54 

chemical food safety, lipidomics-based strategies are also relevant, both at the risk analysis and 55 

management steps, for instance for the control of forbidden growth promoting agents in livestock 56 

(Nzoughet et al., 2015). It is worth noting that most of the reported lipidomics studies use Mass 57 

Spectrometry (MS) as a fingerprinting analytical strategy, often hyphenated to liquid chromatography. 58 

Although MS allows sensitive measurement of hundreds of species in a single scan (Veenstra, 2012), it 59 

is a destructive technique, which suffers from the various capabilities of ionization between lipid 60 

species. Nuclear Magnetic Resonance (NMR), in contrast, does not induce degradation of the sample 61 

upon analysis and is a highly reproducible and directly quantitative technique in spite of its lower 62 

sensitivity. NMR is therefore a very promising tool for lipidomics, as illustrated by a recent perspective 63 

on the subject (Li et al., 2017). Moreover, covering the wide range of lipid species with one single 64 

untargeted MS method is difficult (Lee and Yokomizo, 2018) and NMR lipidomics could be a useful 65 

complementary strategy for identifying the discriminant lipid classes. 66 



However, even though a few studies reported the use of 1H NMR for lipidomics (Beger et al., 2006; 67 

Ekman et al., 2009; Fernando et al., 2011), this technique is still minor in the field (Cajka and Fiehn, 68 

2014; Li et al., 2014). The reasons for this lack of popularity are diverse. First of all, 1D 1H NMR spectra 69 

suffer from severe peak overlaps, which hinder the accurate determination of peak areas (Giraudeau, 70 

2017). Heteronuclear NMR such as 13C NMR is considered an interesting alternative as it offers a better 71 

resolution of the NMR signals, thanks to the large bandwidth involved. Indeed, 13C NMR has been used 72 

for decades in the analysis of lipids, for instance to determine the composition of fatty acids in food 73 

samples (Mavromoustakos et al., 1997; Vlahov, 1997). Nevertheless, such method suffers from a poor 74 

sensitivity compared to 1H, due to the low abundance of 13C (1.1% at natural abundance) and to the 75 

low gyromagnetic ratio of this nucleus  –although the latter can be circumvented by indirect detection 76 

methods (Merchak et al., 2017). Interestingly, 31P NMR has also been reported for lipidomics (Li et al., 77 

2017) but does not allow the analysis of global lipid fingerprint, as it focuses on the determination of 78 

phospholipids. 79 

Alternatively, 2D 1H NMR is an appealing solution in order to obtain a better resolution of the lipid 80 

signals without sacrificing the sensitivity, as it allows to spread the signals on a 2D plane. Such 81 

experiments are however difficult to apply to lipidomics, as they involve long experiments up to 82 

several hours of acquisition which do not meet the high-throughput requirements associated with 83 

omics approaches. Moreover, the absolute quantification is not straightforward and thus requires 84 

specific and time-consuming acquisition schemes or calibration procedures (Giraudeau, 2014). 85 

Fortunately, fast 2D NMR approaches have emerged to tackle the issue of acquisition time (Rouger et 86 

al., 2017). Two of these approaches, ultrafast (UF) NMR and non-uniform sampling (NUS) have already 87 

shown great potential and usefulness in the field of metabolomics (Marchand et al., 2017), either used 88 

for fingerprinting (Le Guennec et al., 2014) or associated with a calibration procedure for targeted 89 

analyses (Jézéquel et al., 2015) when absolute quantification is necessary. 90 



Based on such developments, fast 2D NMR could also be relevant within NMR-based lipidomics 91 

workflows. However, in order to use such strategies on a routine basis, there is a need for the 92 

development and testing of a suitable and comprehensive workflow, including a repeatable sample 93 

preparation protocol and an efficient fingerprinting method. In this perspective, we have set up a 94 

complete strategy for serum lipidomics. First a sample preparation procedure was developed and 95 

assessed in terms of repeatability, a critical characteristic for the ultimate comparison of the samples. 96 

Then two different fast 2D 1H NMR techniques for untargeted lipidomics fingerprinting were 97 

experimented and their performances were compared to 1D 1H NMR. Finally, to evaluate the capacity 98 

of the developed approach to address key challenges in NMR lipidomics –namely exploitability, wealth 99 

of information and relevance with regard to research question raised– we applied the protocol to a 100 

current chemical food safety issue: the detection of forbidden vet drugs administration in livestock. In 101 

that context and as a proof of concept, serum samples from ractopamine diet fed pigs have been 102 

characterized and their lipids fingerprints compared to control ones with the objective of highlighting 103 

specific patterns. Such a set of serum samples (n > 40) was obtained in a well-controlled animal 104 

experiment which already enabled reporting specific patterns when investigating the polar fraction of 105 

the metabolome by MS-metabolomics (Peng et al., 2017). Subsequent data processing and analysis 106 

enabled describing specific lipidomics patterns upon NMR fingerprinting associated to ractopamine 107 

treated animals, as could be expected upon the use of such growth promoter (Guitton et al., 2017). 108 

2 Materials and Methods 109 

The detailed experimental protocol (sample preparation, NMR data acquisition and processing, data 110 

analysis) is provided as Supplementary Material. We will focus here on the most critical points of the 111 

workflow. 112 

2.1 Animal experiment/samples 113 

 Blood samples were collected from an ethically approved experiment described elsewhere (Peng et 114 

al., 2017) and involving ten four-month-old female pigs randomly divided in control and treated 115 



groups, the latter one being daily exposed to Ractopamine hydrochloride (Sigma Aldrich) through feed 116 

(10 ppm). Four QC samples consisting of all the collected samples pooled in identical quantities and 117 

mixed together, were prepared. All serum samples were aliquoted and stored at -20°C before analysis. 118 

A schematic of this design can be found in Supplementary Fig. 3. 119 

For all preliminary sample preparation optimization steps, a serum mix constituted from routine pig 120 

blood tests was used as matrix reference. 121 

2.2 Solvents, chemicals 122 

Details on the solvent and chemicals used for extraction/analysis can be found in Supplementary 123 

Material. 124 

2.3 Sample preparation 125 

The lipidic fraction was obtained from serum (sample size 300 µL) according to a modified Bligh and 126 

Dyer extraction, inspired from Kouassi-Nzoughet (Nzoughet et al., 2015). The final extracts were 127 

suspended in 700 µL of CDCl3 containing 0.3 mmol/L of dimethylsulfone (DMSO2) as an internal 128 

standard.  129 

2.4 NMR Analysis 130 

All the spectra were automatically recorded using IconNMR (Bruker Biospin) on a 16.4 T Bruker Avance-131 

III HD spectrometer operating at a 1H frequency of 700.13 MHz, equipped with an inverse 1H/13C/15N/2H 132 

cryogenically cooled probe. The sample temperature was set at 298 K and a SampleJet auto-sampler 133 

set at 277 K, requiring 4 inches long NMR tubes in 96-well plates was used. 1D 1H, 2D 1H NUS ZQF-134 

TOCSY and 2D 1H UF COSY spectra were separately acquired. Acquisition and processing parameters 135 

are detailed in Supplementary Material.  136 

3 Results and discussion 137 

3.1 Sample preparation  138 



As described in Fig. 1, the first step of the lipidomics workflow aims at extracting the lipidic fraction of 139 

the samples in a repeatable way so that they can eventually be compared, while eliminating interfering 140 

signals such as those from proteins. Therefore, it is crucial to check the repeatability of this step and 141 

the apparent composition of the resulting fraction, via NMR spectra observation.  To this aim, the same 142 

reference serum mix was extracted four different times, using the modified Bligh and Dyer protocol 143 

described in Supplementary Material. The four NMR tubes were thus submitted to 1D 1H analysis (see 144 

Supplementary Material for the detailed parameters of acquisition, processing and integration) in 145 

identical conditions. Since 1D NMR is considered repeatable at ca. 1% for signal-to-noise ratio (SNR) 146 

values higher than 50 (Barding et al., 2012; Malz, 2008), any variation observed across the four 147 

resulting NMR spectra above this value is mainly expected to reflect the repeatability of the 148 

preparation step, provided that the observed signals are intense enough. The spectra (Supplementary 149 

Fig. 1, top) obtained for these samples showed a rich fingerprint with characteristic signals mainly 150 

originating from cholesterol, glycerol backbone and fatty acyl chains, therefore attesting for the lipidic 151 

rich fraction obtained. The assignment of the 1D NMR signals, achieved both from comparison with 152 

literature data (Ekman et al., 2009; Fernando et al., 2011; Jayalakshmi et al., 2011) and the analysis of 153 

various lipid standards, is available in Supplementary Material (Supplementary Fig. 2). The 154 

repeatability of the extraction protocol was evaluated through the integration of the main observable 155 

NMR signals, by drawing large buckets in order to avoid “cutting” overlapping signals which could 156 

eventually account for the observed variability. This was followed by normalization on the total sum 157 

for each spectrum and calculation of the Coefficients of Variation (CVs) across the different replicates 158 

for each of these normalized areas (Supplementary Fig. 1, bottom). All resulting CV values were 159 

observed below 9%, with only two regions respectively around 3.5 and 1.9 ppm presenting variations 160 

above 4%. The value observed for the 3.5 ppm (labeled “k” in Supplementary Material) region is 161 

probably due to the low SNR of the associated signal, which accentuates the measurement error. For 162 

the 1.9 ppm region (labeled “f”), the high CV can be attributed to the broad water signal around 1.6 163 

ppm, caused by an unfortunate water residue in the CDCl3 bottle used for this experiment. Even if this 164 



particular signal was voluntarily discarded for the bucketing, its broad base overlaps the signal 165 

integrated in the 1.9 ppm region and therefore influences the CV of this bucketing region. 166 

Consequently, a new CDCl3 bottle was used for all subsequent experiments of the study resulting in no 167 

observable water signal thereafter. Apart from those particular cases, the CV values can be deemed as 168 

satisfying as they are consistent with repeatability values from the literature. For instance, Pellegrino 169 

et al. (Pellegrino et al., 2014) tested various methods for serum lipids by LC-MS and obtained optimal 170 

values (ca. 3% Relative Standard Deviation). Therefore, the proposed extraction method ensures a 171 

sufficient repeatability to compare NMR signals, it is also reasonably simple and can be used for high-172 

throughput purposes. However, as both the serum and solvent volumes involved are relatively high 173 

compared with an extraction dedicated to MS, particular care is necessary to take the organic phase, 174 

without drawing part of the thicker protein layer. Moreover, the stability of the extracts has been 175 

verified and resulted in no change in the apparent lipidic fingerprint (superimposed 1D NMR spectra 176 

at 128 scans) neither when stored at 277K for one week or stored at 253K for up to 3 weeks; thus 177 

validating the use of a 277K autosampler and the storage conditions (253K) of the NMR tubes used 178 

between analysis batches. Consequently, we further implemented this protocol to a set of samples 179 

selected for its relevance in the present lipidomics context. 180 

3.2 NMR fingerprinting. 181 

For NMR lipidomics, a broad range of 1D and 2D pulse sequences are of potential relevance (Barding 182 

et al., 2012; Marchand et al., 2017). 1D 13C NMR was initially considered, either through direct 183 

detection or polarization transfer experiments, because of the better natural spectral resolution of this 184 

nucleus compared to 1H. Unfortunately, because of limited sample availability, 13C NMR spectra of the 185 

serum lipid extract at natural abundance could not be recorded with enough sensitivity in a reasonable 186 

time. For similar reasons, the use of 2D heteronuclear pulse sequences such as Heteronuclear Single-187 

Quantum Correlation (HSQC) was also discarded. 188 



Therefore, we focused on 1H NMR spectroscopy for optimal sensitivity, testing three different 189 

possibilities. Moreover, in order to keep the workflow compatible with high-throughput expectations, 190 

an auto-sampler was employed, which can automatically transfer the NMR tubes into the magnet and 191 

allows an automatic setting of the shims as described in Supplementary Material. Such procedure 192 

allows optimal shim adjustment while keeping limited the human intervention throughout analysis.  193 

Firstly, the classical 1H 1D pulse–acquire sequence was selected because of its recognized high 194 

repeatability and reproducibility, as detailed above. However, when lipid extracts are analyzed with 195 

this method, significant overlaps are observed between the signals, as can be observed in Fig. 2a. 196 

To increase the resolving power without sacrificing the analysis duration, the use of fast 2D NMR 197 

approaches was tested. While many fast 2D NMR methods have been described in the literature 198 

(Rouger et al., 2017), here this paper focuses on those whose repeatability has already been studied 199 

(Le Guennec et al., 2012; Martineau et al., 2013) and whose potential for metabolomics has already 200 

been demonstrated, e.g. NUS and ultrafast (Jézéquel et al., 2015; Le Guennec et al., 2014). The 201 

objective of the present work was not to propose new method optimizations, but rather to evaluate 202 

the potential of recently published approaches in the conditions that were previously optimized and 203 

published in methodological papers. In 2D NMR, as opposed to 1D, the coefficient of proportionality 204 

between the NMR signal (peak volumes) and the analyte concentration depends on numerous 205 

parameters such as coupling constants, relaxation times or pulse sequence delays, arising from the 206 

multi-pulse nature of 2D NMR experiments. Nevertheless, each individual signal intensity remains 207 

directly proportional to the analyte concentration (Giraudeau, 2014). In an untargeted lipidomics 208 

framework, this feature ensures the validity of the comparison of a signal from samples of a similar 209 

nature. In addition, it has been shown that such 2D spectra used for relative quantification do not need 210 

to be recorded with full relaxation between scans, since longitudinal relaxation is only one among 211 

numerous factors impacting the peak volume (Giraudeau, 2014). This choice relies on the assumption 212 

that relaxation times do not vary significantly between samples of the same nature with small 213 



concentration variations. This explains the choice of a short recovery time (4.9 s) to remain compatible 214 

with rapid analysis.  215 

The first fast 2D NMR approach used in the proposed workflow is the ZQF-TOCSY, acquired with a Non-216 

Uniform Sampling (NUS) scheme. The resulting lipid extract spectra (see Fig. 2b), with 50% NUS, show 217 

an important number of signals while keeping a reasonable analysis time of 1 h 47 min (A fully 218 

annotated spectrum can be found in Supplementary Fig. 2c). NUS, depending on the way it is used, 219 

either allows saving time for a 2D experiment or multiplying the number of points in the indirect 220 

dimension, thus enhancing spectral resolution. Le Guennec et al. demonstrated the potential of this 221 

approach, in the case of the ZQF-TOCSY pulse sequence, for homonuclear 2D NMR metabolomics (Le 222 

Guennec et al., 2014). The choice of the ZQF-TOCSY pulse sequence was motivated by the clean in-223 

phase resulting lineshapes and the high number of observable correlations, as illustrated in Fig. 2b. As 224 

shown by Le Guennec et al., a 50% level of NUS (resulting in an overall experiment time divided by 225 

two) is the optimal choice for ZQF-TOCSY on complex mixtures; higher levels of NUS would result in 226 

reconstruction artefacts that could alter the subsequent data extraction and analysis (Le Guennec et 227 

al., 2015). 228 

The second fast 2D approach evaluated in this paper is ultrafast 2D NMR, with a hybrid multi-scan 229 

experiment based on the UF COSY sequence. While such experiment has already been used in a 230 

metabolomics context (Jézéquel et al., 2015; Le Guennec et al., 2014), this is, to our knowledge, the 231 

first time that such an approach is used for lipidomics purposes and the first time it is applied in an 232 

automatic way, using an auto-sampler. While UF 2D NMR allows the acquisition of a complete 2D NMR 233 

spectrum within a single scan, the sensitivity of sub-second experiments is not suitable for complex 234 

samples with realistic concentrations. However, it has been shown that a multi-scan experiment based 235 

on UF 2D NMR offers an appealing alternative to conventional NMR for typical experiment durations 236 

below 30 minutes (Le Guennec et al., 2012). In these conditions, even if they suffer from the need to 237 

compromise between resolution, spectral witdhwidth and sensitivity (Akoka and Giraudeau, 2015), 238 



such hybrid experiments can offer a much higher repeatability than conventional 2D NMR due to their 239 

better immunity towards spectrometer instabilities. Indeed, UF spectra are not affected by t1 noise 240 

contrary to their conventional counterparts, and this is a significant advantage for samples with large 241 

dynamic ranges (Pathan et al., 2011). Here, we used the UF version of the COSY pulse sequence. 242 

Although less information is obtained with COSY sequence compared to ZQF-TOCSY, UF COSY has a 243 

much higher sensitivity compared to UF TOCSY –the latter being hampered by the effect of molecular 244 

diffusion during the spin-lock period. Indeed, hybrid COSY spectra based on UF spectroscopy yield 245 

clean and rich spectra (see Fig. 2c) free of t1 noise, which facilitates the bucketing step (A fully 246 

annotated spectrum can be found in Supplementary Fig. 2d). Moreover, the analysis duration (26 min 247 

in the present work, corresponding to the maximum allowed for UF experiments regarding hardware 248 

considerations) is much reduced compared to conventional 2D NMR, making such sequence precious 249 

for high-throughput applications.  250 

3.3 Application of the workflow to food safety issues 251 

Once this robust workflow was set up, it was applied to study the effect of ractopamine in pigs, and in 252 

particular to assess lipids profile disruption in serum upon such treatment. Ractopamine is a synthetic 253 

drug belonging to the ­agonist family that may be used as a growth promoter in finishing pigs to 254 

promote leaner meat (Ricks et al., 1984). While being authorized in a number of countries worldwide 255 

(n>25), it has been banned within the EU since the late 80s (Council Directive 88/146/EEC; Council 256 

Directive 96/22/EC). To comply efficiently with such ban, new screening techniques, including 257 

untargeted approaches, are expected, to detect any potential abuse (Dervilly-Pinel et al., 2012; Pinel 258 

et al., 2010). Untargeted approaches have already proved their efficiency in the bovine species for the 259 

detection of urinary specific signatures upon ­agonists treatment (Dervilly-Pinel et al., 2015). 260 

Regarding the porcine species, untargeted approaches have not been reported so far in that context, 261 

except for a study dealing with the investigation of polar metabolome modifications in the serum as a 262 

consequence of ractopamine treatment (Peng et al., 2017). However, as the effect of growth 263 

promoters, particularly ­agonists, on the expression of lipids has been studied and reported for a long 264 



time (Dunshea, 1993; Dunshea et al., 1998; Soares da Silva Ferreira et al., 2013), it appears that globally 265 

investigating lipid profiles through untargeted approach such as lipidomics would be a relevant 266 

strategy to generate new knowledge about biological pathways involved. It could also potentially 267 

highlight candidate biomarkers that may be further used in a screening context for classification 268 

purposes. In this part, results obtained with the three analysis methods (1D, 2D NUS ZQF-TOCSY, 2D 269 

UF COSY) are discussed and compared.  270 

1D NMR results. 271 

After application of the workflow, each 1D spectrum was subjected to manual bucketing. As can be 272 

seen in Fig. 2a, much overlap is observed on the 1D lipid spectra, in particular in the 0.8 – 2.4 ppm 273 

region. Therefore, manual bucketing was optimized in order to prevent, as much as possible, splitting 274 

a signal in two different buckets, while drawing a large number of buckets in order to get enough 275 

variables for the statistical analysis and subsequent data interpretation. Buckets were first drawn on a 276 

superposition of all the spectra, to take potential chemical shift variations into account. These buckets 277 

were then applied individually to each spectrum and normalized on the total sum, to ensure 278 

comparability of the samples, including QC. Here, the QC are used for setting up shim file as well as 279 

assessment of the quality of the analysis. Thus, the data quality was checked by calculating the CVs for 280 

each variables across all QC samples. As no bucket presented a CVQC > 10%, all the variables (35 in 281 

total) were kept for subsequent statistical analysis. Firstly, a Principal Component Analysis (PCA) on all 282 

the samples was performed in order to check the quality of the data, paying particular attention to the 283 

QC samples. The PCA score plot showed clustered QCs, illustrating the reproducibility of the analysis 284 

during the entire experiment (Supplementary Fig. 4). QCs were then removed for subsequent analyses. 285 

As can be expected, samples from days 3 and 9 did not appear different on the PCA score plot between 286 

control and treated groups (Supplementary Fig. 5), in accordance with previous findings in bovine 287 

reporting a slower response of the lipidome to -agonist actions compared to metabolome one 288 



(Nzoughet et al., 2015). Those time points were then discarded for the rest of the analyses; 289 

corresponding PCA is shown in Supplementary Fig. 6. 290 

The data were then analyzed with a two-component partial least squares-discriminant analysis (PLS-291 

DA), whose score plot is illustrated in Fig. 3a. The first principal component (PC) accounts for 35.8% 292 

whereas the second PC accounts for 13.8%. As can be seen in Fig. 3a, a discrimination is observed along 293 

the PC1 between the control group (in red) and the treated group (in green). A very good discrimination 294 

between sample groups is obtained (R² = 0.84 and Q² = 0.69). The robustness of the model for 295 

discriminating sample classes was further validated by a permutation test (n= 100) –available in 296 

Supplementary Fig. 7a– and a CV-ANOVA. The latter resulted in a p-value of 2.6 x 10-5, thus denoting  297 

significance of the model (Eriksson et al., 2008) and the ability of the NMR lipidomics workflow to 298 

discriminate sample classes. 299 

2D ZQF-TOCSY results. 300 

The 2D 1H-1H ZQF-TOCSY experiment could potentially improve the quality of the results by spreading 301 

the signals into an additional dimension. After processing the spectra, manual bucketing was operated 302 

on the 2D peak volumes, by manually drawing rectangular buckets on a 2D contour plot of the spectra. 303 

Correlation and diagonal signals were integrated as both contain valuable information; in particular, 304 

the information from singlets is only observable on the diagonal. Note that peak overlap was still 305 

present in the CH2 region, albeit to a lesser extent than for 1D spectra. Moreover, t1 noise, mainly 306 

originating from the very intense CH2 signal of the fatty acyl chains, complicated the bucketing of 307 

neighboring signals. Fortunately, as TOCSY provides symmetrical spectra, bucketing could be 308 

performed by individually selecting, for each pair of symmetric correlation signals, the one less 309 

disturbed by surrounding noise or peak overlap. After normalization on the total sum, a cleaning step 310 

similar to the one performed on 1D data was carried out. This step led to the suppression of only 13 311 

variables from the dataset which originally contained 153 variables, thus highlighting the good quality 312 

of the original data. After checking the quality of the fingerprints by PCA, a two component PLS-DA 313 



was performed, from which the score plot is illustrated in Fig. 3b. The first PC explains 38.1% of the 314 

variance whereas the second PC explains 11.0%. Samples from both classes could be separated 315 

efficiently by the model, as attested by the associated performances (R² = 0.84 and Q² 0.71), 316 

permutation tests (Supplementary Fig 6b) and the p-value (3.8 x 10-4) from the CV-ANOVA. The 317 

discrimination performance achieved with this model from 2D spectra is similar to the one achieved 318 

with 1D. However, the added value of such 2D fingerprint lies in the additional dimension that reduces 319 

signal overlap, leading to a facilitated bucketing step and to the generation of a higher number of 320 

variables, which are less affected by peak overlap. This was further confirmed by orthogonal PLS-DA 321 

(OPLS-DA), that allow for an easier interpretation of the variable involvement in the discrimination 322 

between classes, through loading plot examination. In the associated loading plot from the 1D data, 323 

some neighboring overlapping buckets appear close to each other, suggesting similar apparent pattern 324 

towards the control/treated status.  Fig. 4a illustrates such an example where the bucket attributed to 325 

the -CH2-CH=CH signal from Fatty Acyls (FA) in both buckets n°14 and 15 in the 1D dataset, is merged 326 

with the CH (C12) signal from Cholesterol/Esterified cholesterols (Chol/CholE ) in bucket n°14 and 327 

overlaps with the neighboring CH (C7) from Chol/CholE (bucket n°13). These three buckets are located 328 

close to each other in the associated loading plot from OPLS-DA (see Supplementary Fig. 8a). In such 329 

cases, doubt still remains about the real relevance of all variables. It is difficult to assess if  theirif their 330 

relative positions on the loading plot arise from a genuine similar biological behavior regarding the 331 

control/treated status or are the result of overlapping signals. On the contrary, with 2D data, the 332 

corresponding correlation signals can resolve such ambiguity, as the peaks are spread along a second 333 

dimension. In Fig 4b from a ZQF-TOCSY spectrum, signals can be separated and integrated according 334 

to associated lipid classes. As a consequence, the signal -CH2-CH=CH from FA (bucket n°27 in the ZQF-335 

TOCSY dataset) can be integrated in a separated bucket from the signals CH (C7) and CH (C12) from 336 

Chol/Chol (bucket n°26). Such integration shows that these two variables actually present opposite 337 

behavior towards the control/treated status and are located at opposite sides of the associated OPLS-338 

DA loading plot (Supplementary Fig. 8b). Similar occurrences could also be observed, which can be 339 



more generally objectivized through examination of the variables loading values according to their 340 

positions on the spectra (Supplementary Fig.8). The enhanced and better resolved fingerprint provided 341 

by 2D NMR therefore offers an increased confidence in the identification of potential biomarkers and 342 

hence in the investigation of lipid metabolism pathways. A similar conclusion was reached in the field 343 

of 2D NMR metabolomics (Le Guennec et al., 2014). This result therefore confirms the potential of fast 344 

2D 1H NMR for lipidomics applications. 345 

2D UF COSY. 346 

While the ZQF-TOCSY experiment still suffers from the time penalty inherent to conventional 2D NMR 347 

acquisitions, the UF COSY allows to record a 2D spectrum in a time comparable to the one used for 1D 348 

spectra. Fourty-eight buckets could originally be drawn, resulting in a dataset containing 39 variables 349 

after normalization and suppression of buckets with CVQC>10%. This number is comparable to the 35 350 

variables of the 1D dataset, but in this case 2D buckets suffer from less signal overlap than in 1D; this 351 

is mainly due to the spreading of the signals along a second dimension. Again, the 2D UF COSY dataset 352 

was submitted to PLS-DA, after data processing. The resulting PLS-DA score plot (Fig. 3c) shows a 353 

similar distribution of the samples compared to 1D and 2D NUS ZQF-TOCSY data, with explained 354 

variances of 30.1% for PC 1 and 9.1% for PC 2. This model achieved an efficient discrimination of the 355 

two sample classes with R² and Q² values of 0.82 and 0.60 and with confidence parameters associated 356 

to the model (p-value from the CV-ANOVA (5.1 x 10-4), permutation tests (Supplementary Fig. 7c) ). 357 

Such performance is similar to the one obtained from 1D and ZQF-TOCSY, while the analysis duration 358 

remains as low as 26 min.  This result can probably be explained by the high repeatability of UF COSY 359 

experiments, as previously described in the literature (Akoka and Giraudeau, 2015; Le Guennec et al., 360 

2012). The main advantage related to UF COSY is the resolving of ambiguities in the identification of 361 

putative biomarkers thanks to the contribution of the second dimension, as explained above for ZQF-362 

TOCSY, with as an acquisition time comparable to the presented 1D experiment and four times faster 363 

than the ZQF-TOCSY NUS approach. These results confirm the potential of this technique for lipidomics 364 



applications, considering both the relevance of the information provided as well as rapidity of the 365 

process. However, it is important to note that the resolution of the observed signals with UF spectra is 366 

lower than the NUS spectra and that the COSY sequence only allows to observe correlations between 367 

spins which are coupled to each other, as opposed to ZQF-TOCSY, resulting in fewer variables than the 368 

latest. Therefore, when one uses the herein presented workflow for lipidomics applications where 369 

sample availability is limited, the choice of the selected acquisition approach strongly depends on the 370 

desired requirements. If many variables are needed and the number of samples is limited, ZQF-TOCSY 371 

NUS appears as a reasonable option. Alternatively, in the case of large-scale applications, where high-372 

throughput is most important, UF COSY would appear as the most appropriate choice.  373 

Biological effects of Ractopamine. 374 

Although the full biological interpretation of our data was not the primary aim of this work, a 375 

preliminary interpretation of the effect of Ractopamine on serum lipid profiles in pigs has been carried 376 

out, based on the results obtained with the developed workflow. The link between ractopamine and 377 

lipid metabolism has been investigated decades ago in farm animals (Dunshea, 1993) and a reduction 378 

in the deposition of adipose tissue in the carcass of pigs fed diets containing ractopamine is commonly 379 

reported. Such an effect is hypothesized to occur through either reduction in lipogenesis and/or 380 

increase in lipolysis and is expected to be reflected in blood through characterization of the lipid 381 

profiles disruption, as targeted in the present work. 382 

As similar lipids exhibit the same signals on various zones of 1H NMR spectra, the variables obtained 383 

after the bucketing step are rarely unique to one particular lipid. Therefore, this technique does not 384 

allow the identification of specific lipid species but rather generally informs on chemical groups or lipid 385 

classes, from which qualitative and semi-quantitative variations in observed signals may be the basis 386 

for biological interpretation. Consequently, the results from the NUS ZQF-TOCSY dataset were 387 

explored, as it contains the highest amount of variables and spectral resolution, facilitating subsequent 388 

interpretation. From the PLS-DA described above, the main variables responsible for class separation 389 



were extracted using the associated loading plot. Each of these variables was submitted to a Wilcoxon 390 

test in order to confirm its discriminative ability, for each time point of this dataset i.e. for days 16, 18, 391 

23 and 29. Of particular interest for class separation were the variables related to Chol/CholE, 392 

phospholipids (PL) and triacylglycerols (TAG) signals. Boxplots for each of these lipid classes can be 393 

found in Supplementary Fig.9. Chol/CholE were found to be significant for discrimination between the 394 

control and the treated group for day-18, day-29 and marginally significant (p<0.07) for day-23. PL 395 

were significant for day-29 and marginally significant for day-23 whereas TAG were significant for day-396 

18 and marginally significant for day-23. PL and TAG both presented higher concentrations in samples 397 

from treated population, associated to lower Chol/CholE concentrations compared to controlled 398 

population. In a recent review, da Sylva Ferreira et al. (Soares da Silva Ferreira et al., 2013) went 399 

through published studies to understand the in vivo mechanism behind the reduction of adipose tissue 400 

in carcass of ractopamine-treated animals. In their work, they discussed the two hypothesized 401 

pathways in respect of the literature: the reduction in lipogenesis and/or the increase in lipolysis; 402 

considering the evaluation of different parameters such as enzymatic activities or quantification of 403 

non-esterified fatty acids (NEFA) in porcine blood samples. They concluded on a predominant 404 

inhibition of lipogenesis to explain the reduction of lipid deposition on the carcass, rather than a 405 

positive effect on lipolysis. Indeed, ractopamine administration is generally not associated with an 406 

increase of serum NEFA. 407 

Our results suggest lower concentrations of free and esterified cholesterol in pig serum upon the use 408 

of ractopamine. The TAG seem to be affected with higher concentrations, yet this was only observed 409 

as significant on a short time window (day 18, day 23). The PL were affected in the same way as TAG, 410 

albeit at a later stage. The disrupted PL profiles observed in the present study are in accordance with 411 

previous observations on muscle where diacylglycerophosphoethanolamine, phosphatidylinositol and 412 

sphingomyelin have been associated with ractopamine administration to pigs (Guitton et al., 2017). 413 

These observations provide complementary and yet undescribed pieces of information that may 414 

contribute to a better understanding of lipid metabolism modifications as a consequence of -agonist 415 



exposure. The full biological investigation of the metabolic and lipidic consequences of -agonist 416 

exposure will be the purpose of future research. 417 

4 Conclusion 418 

In this paper, the development of a robust NMR workflow for untargeted lipidomics, using serum as a 419 

matrix, is proposed. First, the repeatability of the sample preparation, using only 300 µL as sample size, 420 

was assessed. Our results demonstrate the ability of the protocol to answer lipidomics requirements 421 

in terms of reduced analytical variability. Further, the developed approach proposes, for high-422 

throughput purposes, the innovative combination of automated analysis together with fast 1H 2D NMR 423 

acquisition schemes while keeping a satisfying resolution of the NMR signals. Afterwards, the whole 424 

workflow was successfully applied on serum samples collected in the frame of an animal experiment 425 

in which disruption of the seric lipid profile was expected within the treated group of animals involved. 426 

The observed results confirmed the impact of ­agonists on lipids as already suggested in previous 427 

studies in blood (Dunshea and King, 1994), adipose or muscle tissues (Guitton et al., 2017; Reiter et al., 428 

2007). Further biological work is currently ongoing to identify the lipids involved and investigate the 429 

biological pathways impacted. Despite these encouraging results, further improvements of the 430 

approach are still necessary. S since several steps of the workflow are still performed manually (sample 431 

extraction, data integration). The next step will be targeted dedicated at testing enhanced bucketing 432 

approaches, in order to make the best of our data while limiting human intervention, as 2D automatic 433 

processing for semi-quantitative approaches emerge in the literature (Puig-Castellvi et al., 2018). 434 

Concerning the ractopamine application, our results also showed that further investigations are still 435 

necessary for a complete biological understanding. Still, this study highlights the potential of advanced 436 

NMR methods for high-throughput lipidomics, thus paving the way towards a better complementarity 437 

of NMR and MS in the field. For the analysis of the results and the comparison of the different NMR 438 

datasets, the standard PLS-DA was used although the experimental design includes repeated measures 439 

on the same animals. For thorough analysis and complete understanding of the biological effects 440 



explaining our results, advanced statistical methods suitable for this particular design could be used, 441 

such as multilevel methods (Liquet et al., 2012; Westerhuis et al., 2010). Moreover, an appealing 442 

perspective is the combination of the described NMR data with MS data, as performed by Marshall et 443 

al. for metabolomics (Marshall et al., 2015) in order to optimize the understanding of the effect of 444 

Ractopamine. 445 
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 465 

Fig. 1 Schematic of the developed workflow for 1H NMR lipidomics466 



 467 

Fig. 2 1H NMR sequences used for lipidomics fingerprinting and associated spectra from pig serum extract. a) 1D Pulse-468 
acquire. b) 2D ZQF-TOCSY. c) Interleaved multi-scan UF COSY. Spectra recorded at 700 MHz with a cryogenically cooled 469 
probe 470 

 471 



 472 

Fig. 3 PLS-DA score plot of the lipidomics study of ractopamine in pigs from: a) 1D data b) 2D NUS ZQF-TOCSY data c) 2D UF 473 
COSY data. Associated R² and Q² values are specified within each box. Each dot represents an individual (i.e a sample) and is 474 
labeled as PXX/D_YY corresponding to the pig number (P) and the sampling day (D). Green dots correspond to the Treated 475 
group whereas red dots correspond to the Control group 476 

477 



 478 

Fig. 4 Zooms on specific bucketing regions in spectra from pig serum lipid extracts. a) Bucketing from a 1D spectrum. The 479 
bucket n°15 contains the -CH2-CH=CH signal from FA; the bucket n°14 contains both the -CH2-CH=CH signal from FA and CH 480 
(C12) from Chol/CholE; the bucket n°13 contains the CH (C7) from Chol/CholE. b) Bucketing from a ZQF-TOCSY spectrum. The 481 
bucket n°27 contains the -CH2-CH=CH signal from FA whereas the bucket n°26 contains the CH (C12) and CH (C7) from 482 
Chol/CholE. 483 

484 
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