V. Peton and Y. Le-loir, Staphylococcus aureus in veterinary medicine, Infect. Genet. Evol, vol.21, pp.602-615, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209522

P. D. Alves, Molecular characterisation of Staphylococcus aureus strains isolated from small and large ruminants reveals a host rather than tissue specificity, Vet. Microbiol, vol.137, pp.190-195, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409359

N. L. Ben-zakour, Genome-Wide Analysis of Ruminant Staphylococcus aureus Reveals Diversification of the Core Genome, J. Bacteriol, vol.190, pp.6302-6317, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00729864

C. M. Guinane, Evolutionary Genomics of Staphylococcus aureus Reveals Insights into the Origin and Molecular Basis of Ruminant Host Adaptation, Genome Biol. Evol, vol.2, pp.454-466, 2010.

K. Nishifuji, M. Sugai, and M. Amagai, Molecular scissors" of bacteria that attack the cutaneous defense barrier in mammals, J. Dermatol. Sci, vol.49, pp.21-31, 2008.

R. B. Mariutti, The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus, pp.127-143, 2017.

L. Maréchal and C. , Staphylococcus aureus seroproteomes discriminate ruminant isolates causing mild or severe mastitis, Vet. Res, vol.42, p.35, 2011.

L. Maréchal and C. , Molecular Basis of Virulence in Staphylococcus aureus Mastitis, PLoS ONE, vol.6, p.27354, 2011.

R. B. Mariutti, Crystal structure of Staphylococcus aureus exfoliative toxin D-like protein: Structural basis for the high specificity of exfoliative toxins, Biochem. Biophys. Res. Commun, vol.467, pp.171-177, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212009

T. Yamaguchi, Identification of the Staphylococcus aureus etd Pathogenicity Island Which Encodes a Novel Exfoliative Toxin, ETD, and EDIN-B, Infect. Immun, vol.70, pp.5835-5845, 2002.

C. Y. Lee and J. J. Iandolo, Sequence Determination and Comparison of the Exfoliative Toxin A and Toxin B Genes from Staphylococcus aureus, J. Bacteriol, vol.169, p.6, 1987.

H. Sato, New Exfoliative Toxin Produced by a Plasmid-Carrying Strain of Staphylococcus hyicus, Infect. Immun, vol.67, p.5, 1999.

K. Futagawa-saito, Identification of first exfoliative toxin in Staphylococcus pseudintermedius, FEMS Microbiol. Let, vol.301, pp.176-180, 2009.

K. Iyori, Staphylococcus pseudintermedius exfoliative toxin EXI selectively digests canine desmoglein 1 and causes subcorneal clefts in canine epidermis: Staphylococcus pseudintermedius toxin, Vet. Dermatol, vol.22, pp.319-326, 2011.

K. Iyori, Identification of a novel Staphylococcus pseudintermedius exfoliative toxin gene and its prevalence in isolates from canines with pyoderma and healthy dogs: A novel Staphylococcus pseudintermedius exfoliative toxin, FEMS Microbiol. Let, vol.312, pp.169-175, 2010.

, Scientific RepoRtS |, vol.9, p.16336, 2019.

D. Brennan, Differential structural properties and expression patterns suggest functional significance for multiple mouse desmoglein 1 isoforms, Differentiation, vol.72, pp.434-449, 2004.

K. Nishifuji, A. Shimizu, A. Ishiko, T. Iwasaki, and M. Amagai, Removal of amino-terminal extracellular domains of desmoglein 1 by staphylococcal exfoliative toxin is sufficient to initiate epidermal blister formation, J. Dermatol. Sci, vol.59, pp.184-191, 2010.

M. Sekiguchi, Dominant Autoimmune Epitopes Recognized by Pemphigus Antibodies Map to the N-Terminal Adhesive Region of Desmogleins, J. Immunol, vol.167, pp.5439-5448, 2001.

K. Nishifuji, M. Amagai, T. Nishikawa, and T. Iwasaki, Production of recombinant extracellular domains of canine desmoglein 1 (Dsg1) by baculovirus expression, Vet. Immunol. Immunopathol, vol.95, pp.177-182, 2003.

K. Garbacz, L. Piechowicz, and A. Mroczkowska, Distribution of toxin genes among different spa types and phage types of animal Staphylococcus aureus, Arch. Microbiol, vol.197, pp.935-940, 2015.

M. Motoshima, Genetic Diagnosis of Community-Acquired MRSA: A Multiplex Real-Time PCR Method for Staphylococcal Cassette Chromosome mec Typing and Detecting Toxin Genes, Tohoku J. Exp. Med, vol.220, pp.165-170, 2010.

H. Nakaminami, Molecular epidemiology and antimicrobial susceptibilities of 273 exfoliative toxin-encoding-gene-positive Staphylococcus aureus isolates from patients with impetigo in Japan, J. Med. Microbiol, vol.57, pp.1251-1258, 2008.

L. Marechal and C. , Genome Sequences of Two Staphylococcus aureus Ovine Strains That Induce Severe (Strain O11) and Mild (Strain O46) Mastitis, J. Bacteriol, vol.193, pp.2353-2354, 2011.

D. Viana, Adaptation of Staphylococcus aureus to ruminant and equine hosts involves SaPI-carried variants of von Willebrand factor-binding protein: Molecular basis of S. aureus host adaptation, Mol. Microbiol, vol.77, pp.1583-1594, 2010.

N. W. De-jong, Identification of a staphylococcal complement inhibitor with broad host specificity in equid Staphylococcus aureus strains, J. Biol. Chem, vol.293, pp.4468-4477, 2018.

J. C. Marr, Characterization of novel type C staphylococcal enterotoxins: biological and evolutionary implications, Infect. Immun, vol.61, pp.4254-4262, 1993.

Y. Fudaba, Staphylococcus hyicus exfoliative toxins selectively digest porcine desmoglein 1, Microb. Pathog, vol.39, pp.171-176, 2005.

P. Ahrens and L. O. Andresen, Cloning and Sequence Analysis of Genes Encoding Staphylococcus hyicus Exfoliative Toxin Types A, B, C, and D, J. Bacteriol, vol.186, pp.1833-1837, 2004.

Y. Hanakawa, Enzymatic and Molecular Characteristics of the Efficiency and Specificity of Exfoliative Toxin Cleavage of Desmoglein 1, J. Biol. Chem, vol.279, pp.5268-5277, 2004.

S. Ladhani, C. L. Joannou, D. P. Lochrie, R. W. Evans, and S. M. Poston, Clinical, microbial, and biochemical aspects of the exfoliative toxins causing staphylococcal scalded-skin syndrome, Clin. Microbiol. Rev, vol.12, pp.224-242, 1999.

M. E. Melish and L. A. Glasgow, Staphylococcal scalded skin syndrome: the expanded clinical syndrome, J. Pediatr, vol.78, pp.958-967, 1971.

S. Nurk, Assembling single-cell genomes and mini-metagenomes from chimeric MDA products, J. Comput. Biol, vol.20, pp.714-737, 2013.

M. Galardini, E. G. Biondi, M. Bazzicalupo, and A. Mengoni, CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes, Source Code Biol. Med, vol.6, p.11, 2011.

V. C. Piro, FGAP: an automated gap closing tool, BMC Res. Notes, vol.7, p.371, 2014.

R. K. Aziz, The RAST Server: rapid annotations using subsystems technology, BMC Genomics, vol.9, p.75, 2008.

S. C. Soares, Genomic island prediction software, J. Biotechnol, vol.232, pp.2-11, 2016.

K. Rutherford, Artemis: sequence visualization and annotation, Bioinformatics, vol.16, pp.944-945, 2000.

Y. Zhou, Y. Liang, K. H. Lynch, J. J. Dennis, D. S. Wishart et al., A Fast Phage Search Tool, Nucleic Acids Res, vol.39, pp.347-352, 2011.

P. Siguier, J. Perochon, L. Lestrade, J. Mahillon, and M. Chandler, ISfinder: the reference centre for bacterial insertion sequences, Nucleic Acids Res, vol.34, pp.32-36, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00021179

J. Hawkey, ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data, BMC Genomics, vol.16, p.667, 2015.

A. R. Wattam, Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center, Nucleic Acids Res, vol.45, pp.535-542, 2017.

O. Yamasaki, Clinical Manifestations of Staphylococcal Scalded-Skin Syndrome Depend on Serotypes of Exfoliative Toxins, J. Clin. Microbiol, vol.43, pp.1890-1893, 2005.

K. Ishii, Characterization of autoantibodies in pemphigus using antigen-specific enzyme-linked immunosorbent assays with baculovirus-expressed recombinant desmogleins, J. Immunol, vol.159, pp.2010-2017, 1997.

K. Tsunoda, Induction of pemphigus phenotype by a mouse monoclonal antibody against the amino-terminal adhesive interface of desmoglein 3, J. Immunol, vol.170, pp.2170-2178, 2003.

T. Hashimoto, Human desmocollin 1 (Dsc1) is an autoantigen for the subcorneal pustular dermatosis type of IgA pemphigus, J. Invest. Dermatol, vol.109, pp.127-131, 1997.

K. Nishifuji, Cloning of swine desmoglein 1 and its direct proteolysis by Staphylococcus hyicus exfoliative toxins isolated from pigs with exudative epidermitis, Vet. Dermatol, vol.16, pp.315-323, 2005.

K. Nishifuji, M. Amagai, T. Ota, T. Nishikawa, and T. Iwasaki, Cloning of canine desmoglein 3 and immunoreactivity of serum antibodies in human and canine pemphigus vulgaris with its extracellular domains, J. Dermatol. Sci, vol.32, pp.181-191, 2003.

K. Arnold, L. Bordoli, J. Kopp, and T. Schwede, The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling, Bioinformatics, vol.22, pp.195-201, 2006.

L. Bordoli, Protein structure homology modeling using SWISS-MODEL workspace, Nat. Protoc, vol.4, pp.1-13, 2009.

M. Biasini, SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res, vol.42, pp.252-258, 2014.

G. C. Van-zundert, The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes, J. Mol. Biol, vol.428, pp.720-725, 2016.

Y. Hanakawa, Molecular mechanisms of blister formation in bullous impetigo and staphylococcal scalded skin syndrome, J. Clin. Invest, vol.110, pp.53-60, 2002.

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph, vol.14, pp.33-38, 1996.