
V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Yu, K., Van Geel, M., Ceulemans, T., Geerts, W., Ramos, M. M., Serafim, C., Sousa, N., Castro,
P. M. L., Kastendeuch, P., Najjar, G., Ameglio, T., Ngao, J., Saudreau, M., Honnay, O., Somers,

B. (2018). Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in
urban soils. Environmental Pollution, 243, 1912-1922. , DOI : 10.1016/j.envpol.2018.09.053

Accepted Manuscript

Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in 
urban soils

Kang Yu, Maarten Van Geel, Tobias Ceulemans, Willem Geerts, Miguel Marcos 
Ramos, Cindy Serafim, Nadine Sousa, Paula M.L. Castro, Pierre Kastendeuch, 
Georges Najjar, Thierry Ameglio, Jérôme Ngao, Marc Saudreau, Olivier Honnay, 
Ben Somers

PII: S0269-7491(18)32356-X

DOI: 10.1016/j.envpol.2018.09.053

Reference: ENPO 11595

To appear in: Environmental Pollution

Received Date: 26 May 2018

Revised Date: 7 September 2018

Accepted Date: 9 September 2018

Please cite this article as: Yu, K., Van Geel, M., Ceulemans, T., Geerts, W., Ramos, M.M., Serafim, C., 
Sousa, N., Castro, P.M.L., Kastendeuch, P., Najjar, G., Ameglio, T., Ngao, Jéô., Saudreau, M., Honnay, 
O., Somers, B., Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in urban 
soils, Environmental Pollution (2018), doi: https://doi.org/10.1016/j.envpol.2018.09.053.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo 
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please 
note that during the production process errors may be discovered which could affect the content, and all 
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.envpol.2018.09.053


V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Yu, K., Van Geel, M., Ceulemans, T., Geerts, W., Ramos, M. M., Serafim, C., Sousa, N., Castro,
P. M. L., Kastendeuch, P., Najjar, G., Ameglio, T., Ngao, J., Saudreau, M., Honnay, O., Somers,

B. (2018). Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in
urban soils. Environmental Pollution, 243, 1912-1922. , DOI : 10.1016/j.envpol.2018.09.053

M
ANUSCRIP

T

 

ACCEPTE
D



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Yu, K., Van Geel, M., Ceulemans, T., Geerts, W., Ramos, M. M., Serafim, C., Sousa, N., Castro,
P. M. L., Kastendeuch, P., Najjar, G., Ameglio, T., Ngao, J., Saudreau, M., Honnay, O., Somers,

B. (2018). Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in
urban soils. Environmental Pollution, 243, 1912-1922. , DOI : 10.1016/j.envpol.2018.09.053

M
ANUSCRIP

T

 

ACCEPTE
D

Vegetation reflectance spectroscopy for biomonitoring of heavy metal 
pollution in urban soils  

Kang Yua,*, Maarten Van Geelb, Tobias Ceulemansb, Willem Geertsb, 
Miguel Marcos Ramosc, Cindy Serafimc, Nadine Sousac, Paula M.L. Castroc,
Pierre Kastendeuchd, Georges Najjard, Thierry Ameglioe, Jérôme Ngaoe, 
Marc Saudreaue, Olivier Honnayb and Ben Somersa 

aDepartment of Earth & Environmental Sciences, KU Leuven, 3001, Heverlee, 
Belgium; E-mails: kang.yu@kuleuven.be; ben.somers@kuleuven.be 
bDepartment of Biology, KU Leuven, 3001, Heverlee, Belgium. E-mails: 
maarten.vangeel@kuleuven.be; tobias.ceulemans@kuleuven.be; 
willem.geerts@student.kuleuven.be; olivier.honnay@kuleuven.be  
cUniversidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química 
Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto 
Lobão Vital, 172, 4200-374 Porto, Portugal. E-mails: mmramos@porto.ucp.pt; 
nsousa@porto.ucp.pt; plcastro@porto.ucp.pt  
dLaboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie, 
Strasbourg University, Illkirch, France. E-mails: kasten@unistra.fr; 
georges.najjar@unistra.fr  
eUniversité Clermont Auvergne, INRA, PIAF, F-63000 Clermont Ferrand, 
France. E-mails: thierry.ameglio@inra.fr; jerome.ngao@inra.fr; 
marc.saudreau@inra.fr  

*Correspondence:
Kang Yu
E-mail: kang.yu@kuleuven.be
Division of Forest, Nature and Landscape
Department of Earth and Environmental Sciences
KU Leuven
Celestijnenlaan 200e - box 2411
3001 Leuven, Belgium



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Yu, K., Van Geel, M., Ceulemans, T., Geerts, W., Ramos, M. M., Serafim, C., Sousa, N., Castro,
P. M. L., Kastendeuch, P., Najjar, G., Ameglio, T., Ngao, J., Saudreau, M., Honnay, O., Somers,

B. (2018). Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in
urban soils. Environmental Pollution, 243, 1912-1922. , DOI : 10.1016/j.envpol.2018.09.053

M
ANUSCRIP

T

 

ACCEPTE
D

2 

Abstract 1 

Heavy metals in urban soils may impose a threat to public health and may 2 

negatively affect urban tree viability. Vegetation spectroscopy techniques 3 

applied to bio-indicators bring new opportunities to characterize heavy metal 4 

contamination, without being constrained by laborious  soil sampling and lab-5 

based sample processing. Here we used Tilia tomentosa trees, sampled 6 

across three European cities, as bio-indicators i) to investigate the impacts of 7 

elevated concentrations of cadmium (Cd) and lead (Pb) on leaf mass per area 8 

(LMA), total chlorophyll content (Chl), chlorophyll a to b ratio (Chla:Chlb) and 9 

the maximal PSII photochemical efficiency (Fv/Fm); and ii) to evaluate the 10 

feasibility of detecting Cd and Pb contamination using leaf reflectance spectra. 11 

For the latter, we used a partial-least-squares discriminant analysis (PLS-DA) 12 

to train spectral-based models for the classification of Cd and/or Pb 13 

contamination. We show that elevated soil Pb concentrations induced a 14 

significant decrease in the LMA and Chla:Chlb, with no decrease in Chl. We 15 

did not observe pronounced reductions of Fv/Fm due to Cd and Pb 16 

contamination. Elevated Cd and Pb concentrations induced contrasting 17 

spectral changes in the red-edge (690~740 nm) region, which might be 18 

associated with the proportional changes in leaf pigments. PLS-DA models 19 

allowed for the classifications of Cd and Pb contamination, with a 20 

classification accuracy of 86% (Kappa=0.48) and 83% (Kappa=0.66), 21 

respectively. PLS-DA models also allowed for the detection of a collective 22 

elevation of soil Cd and Pb, with an accuracy of 66% (Kappa=0.49). This 23 
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study demonstrates the potential of using reflectance spectroscopy for 24 

biomonitoring of heavy metal contamination in urban soils. 25 

Keywords: soil heavy metal contamination; leaf functional trait; vegetation 26 

reflectance spectroscopy; red-edge position; bio-indicator 27 

Capsule 28 

Applying leaf reflectance spectroscopy to urban trees allows for biomonitoring 29 

of heavy metal pollution and the classification of pollutants in urban soils. 30 
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Introduction 31 

Soil contamination is a widely spread problem across Europe 32 

(European Commission, 2006). Among the most frequent soil pollutants are 33 

heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper 34 

(Cu), mercury (Hg), lead (Pb), zinc (Zn), antimony (Sb), cobalt (Co) and 35 

nickel (Ni), which accumulate on the soil surface and transfer to  deeper soil 36 

layers where they can infiltrate into the groundwater (Vince et al., 2014). 37 

Plants growing on heavy metal polluted soils passively take up heavy metals, 38 

jeopardizing their growth and negatively affecting other organisms feeding 39 

on the plants (Panagos et al., 2013; Tóth et al., 2016). Furthermore, 40 

elevated concentrations of these heavy metals in agricultural or urban soils 41 

endanger food safety and public health (Poggio et al., 2009; Tóth et al., 42 

2016).  43 

 Urban soils typically contain elevated concentrations of Cd, Cu, Zn 44 

and Pb, originating from anthropogenic activities such as traffic and industrial 45 

emissions (Gallagher et al., 2008; Li et al., 2001; Poggio et al., 2009; 46 

Pourkhabbaz et al., 2010; Vince et al., 2014). Cd and Pb are the most 47 

common heavy metals resulting from road traffic, which is attributed to the 48 

historical use of Pb as a gasoline additive  (Kovarik, 2005) and Cd 49 

accumulation which is mainly due to abrasion of tires (Andersson et al., 2010; 50 

Vince et al., 2014).  Cd and Pb are toxic for plants, animals and humans  51 

(Pandit et al., 2010; Poggio et al., 2009). Cd accumulates in human body 52 

and can cause nephropathy, pulmonary lesions and lung cancer after long 53 

period of exposure (Poggio et al., 2009). Pb increases blood pressure and 54 
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damages liver, kidney and fertility, and most severely it reduces brain 55 

functioning and induces hyperactivity and hearing loss in children (Poggio et 56 

al., 2009). Therefore, it is vital to detect elevated concentrations of Cd and 57 

Pb in urban soils. 58 

Measuring heavy metals is typically based on the collection of soil or 59 

road dust samples, which is labor intensive and costly, especially when 60 

monitoring heavy metal contamination at larger spatial scales (Wei and Yang, 61 

2010). In European countries, the estimated total annual cost related to 62 

monitoring and remediating soil contaminants is 17.3 billion euros (European 63 

Commission, 2006), and around  81% of the expenditures is spent on 64 

remediation measures (Liedekerke et al., 2014). Consequently, only up to 15% 65 

is available to be spent on site investigations (Liedekerke et al., 2014), 66 

implying that there is a need for more cost-effective investigation methods to 67 

evaluate spatial and temporal heterogeneity of soil pollution. Soil near-68 

infrared (NIR) spectroscopy has been applied for the detection of heavy 69 

metals at relatively low cost. However, this method  requires intensive soil 70 

sampling (Pandit et al., 2010; Shi et al., 2014). Therefore, a spatially explicit 71 

characterization of heavy metal contamination at large scales is constrained 72 

by the capacity of sampling and sample processing, especially in urban areas 73 

characterized by sealed soil surfaces and highly heterogeneous land-use 74 

types. 75 

Bio-indicators are living organisms that can be used to assess the 76 

quality of the environment (Holt and Miller, 2010; Parmar et al., 2016). 77 

Urban vegetation can be used as bio-indicators for monitoring air and soil 78 
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pollution (Ho, 1990; Khavanin Zadeh et al., 2013; Sawidis et al., 2011). 79 

Plants concentrate metal elements in their above ground parts, which are 80 

indicative of elevated soil heavy metal concentrations. Furthermore, heavy 81 

metals can inhibit plant growth (Giulia et al., 2013; Horler et al., 1980), and 82 

decrease chlorophyll content and biomass productivity (Gallagher et al., 2008; 83 

Manios et al., 2003). Cd and Pb often limit plant growth by altering leaf 84 

internal structures (Giulia et al., 2013; Pourkhabbaz et al., 2010). For 85 

instance, Cd can reduce cell wall extensibility and relative water content 86 

(Barceló and Poschenrieder, 1990). Pb can reduce not only the leaf 87 

expansion but also the total chlorophyll content and efficiency of PSll electron 88 

transport (Kastori et al., 1998). Overall, heavy metal toxicity causes multiple 89 

direct and indirect effects on various physiological functions and on the 90 

morphology of plants (Barceló and Poschenrieder, 1990), reflected in 91 

changes of leaf functional traits. 92 

Metal induced morphological and physiological changes can further 93 

alter vegetation absorbance and reflectance characteristics (Horler et al., 94 

1980). Typically, heavy metal contamination induces most notable changes 95 

in the visible and NIR spectral regions, and thus reflectance spectroscopy 96 

holds great promise for evaluating the impact of heavy metal contamination 97 

on vegetation (Clevers et al., 2004; Kooistra et al., 2004, 2003; Rosso et al., 98 

2005). By applying reflectance spectroscopy to monitoring candidate bio-99 

indicators located at multiple sites in urban areas, researchers have been 100 

able to detect polluted sites (Khavanin Zadeh et al., 2013). Previous studies 101 

have investigated the effect of individual metals on vegetation spectral 102 
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responses, e.g., canopy reflectance in response to manipulated pot-soil Cd 

changes (Rosso et al., 2005). However, different metals may induce similar 

or contrasting spectral responses (Amer et al., 2017; Horler et al., 1980; 

Manios et al., 2003). Some studies have focused on spectral response in 

specific spectral bands such as the red-edge region (690~740 nm), which 

has been used to estimate plant chlorophyll variations under stress due to 

heavy metals (Clevers et al., 2004; Rosso et al., 2005). The red-edge 

position (REP) is defined as the position generating the maximum slope 

(inflection point) of the reflectance spectra (or maximum first derivative 

reflectance) in the red-edge region (Clevers et al., 2004; Horler et al., 1983), 

and has been found to be negatively related to soil Pb concentration (Clevers 

et al., 2004; Kooistra et al., 2004). Overall, associating soil heavy metal 

pollution with a range of plant functional and reflectance characteristics 

provides a cost-effective method for assessing heavy metal pollution. 

However, there is still a lack of vegetation reflectance spectroscopy studies 

that bio-monitor Cd and Pb contamination across a variety of urban 

environments, especially for monitoring contamination due to multiple metals. 

Here we tested Tilia tomentosa as a bio-indicator for elevated soil Cd 

and Pb concentrations. Selecting 187 study trees cross three European cities 

(Leuven, Porto and Strasbourg), our objectives were: i) to assess the 

impacts of elevated concentrations of Cd and Pb on leaf mass per area (LMA), 

total chlorophyll content (Chl), chlorophyll a to b ratio (Chla:Chlb) and the 

maximal PSII photochemical efficiency (Fv/Fm); and ii) to investigate the 

7 

125 
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feasibility of using leaf reflectance spectroscopy and partial-least-squares 126 

discriminant analysis for biomonitoring soil Cd and Pb contamination. 127 

Materials and Methods 128 

Sampling of leaf and soil and heavy metal measurements 129 

We conducted soil and leaf sampling in summer 2017 and randomly selected 130 

19 sites and 187 T. tomentosa trees across three medium sized cities 131 

(Leuven (Belgium): n = 64; Porto (Portugal), n = 67; Strasbourg (France): n 132 

= 56). We randomly selected trees for sampling, and the trunk diameter 133 

ranged 5-130 cm. For each tree, we sampled the top soils (0–10 cm) at three 134 

random locations surrounding the trunk, and the three locations are mixed 135 

for metal measurements. We sampled 15 leaves at three random positions in 136 

each tree and stored the leaf samples in a cool box with ice. We performed 137 

soil sampling once, while leaf sampling was performed multiple times 138 

throughout the growing season for a subset of trees in Leuven and 139 

Strasbourg. 140 

Heavy metal concentrations in the soil were measured by digesting 50 141 

mg of dried and sieved soil with 7.5 ml concentrated hydrochloric acid and 142 

2.5 ml concentrated nitric acid. The digested solution was diluted to 10 ml 143 

and measured with ICP-OES. For quality control of soil metal analysis, an 144 

internal soil standard was run parallel with the soil samples, which deviated 145 

less than 5% of the known composition. In this study, we focused on Cd and 146 

Pb, as these were the heavy metals that reached the toxicity thresholds 147 

(Table 1). 148 
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Identification of contamination based on soil heavy metal thresholds  149 

Soil heavy metal contamination levels were identified based on published 150 

threshold standards (Tóth et al., 2016) released by the Ministry of the 151 

Environment, Finland (MEF, 2007). We grouped the samples into two classes 152 

- non-contaminated and contaminated, subjected to individual metals (Table153 

1). Soil samples and corresponding leaf spectral observations (section 2.3) 154 

were grouped into four classes according to Pb contamination following the 155 

MEF standard (MEF, 2007). The four classes included class 0 being non-156 

contaminated (Pb < 60 mg/kg), class 1 of low contamination (60 ≤ Pb < 200 157 

mg/kg), class 2 of medium contamination (200 ≤ Pb < 750 mg/kg) and class 158 

3 of high contamination (Pb ≥ 750 mg/kg). 159 

We also defined four contamination classes subjected to both Cd and 160 

Pb contamination by re-grouping of the Cd and Pb binary classes (Table S1), 161 

i.e., four CdxPb classes including the non-contaminated (class 0), Cd162 

contaminated only (class 1), Pb contaminated only (class 2) as well as when 163 

both Cd and Pb are over the thresholds (class 3).  164 

Leaf reflectance and functional traits 165 

Leaf reflectance was measured using an ASD FieldSpec 3 spectroradiometer 166 

(ASD Inc., Longmont, CO, USA) connected to a Plant Probe and Leaf Clip 167 

Assembly (ASD Inc., Longmont, CO, USA). It allows for reflectance 168 

measurement in a spectral range of 350 – 2500nm with a band width of 1 169 

nm. Next, we measured the leaf maximal PSII photochemical efficiency 170 

(Fv/Fm, ratio of the variable fluorescence to the maximal fluorescence) using 171 
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a chlorophyll fluorescence meter (Handy PEA, Hansatech Instruments Ltd., 172 

Pentney, UK), combined with a leaf clip that allows for dark adaption (25 173 

min). Then, we measured the leaf area using a flatbed scanner, followed by 174 

oven dry for 3 days, allowing to determine leaf mass per area (LMA). In total, 175 

aggregated per tree and sampling time, collected leave samples allowed for 176 

further statistical analysis on a sample size of 333 for reflectance and 177 

functional traits. The 333 observations of reflectance spectra and functional 178 

traits were grouped into their contamination classes subjected to the soil 179 

heavy metal contamination classes as defined in the Section 2.2.  180 

A random subset of the leaf samples (n=53) were used to determine 181 

the total chlorophyll (Chl) and carotenoid (Car) content. Leaf round discs with 182 

a diameter of 28.6 mm were punched from the leaf samples using a paper 183 

punch. Chla, Chlb and Car were extracted with a mortar and pestle in 80% 184 

acetone and their concentrations determined by measuring the solution 185 

absorbance (A) at wavelengths 470, 646.8 and 663.2 nm using a UV-VIS 186 

spectrophotometer (Shimadzu 1650 PC, Kyoto, Japan) according to Eqs. (1-3) 187 

(Lichtenthaler, 1987).  188 

�ℎ�� = 12.25 ∗ ���.� − 2.79 ∗ ����.�#�1�

�ℎ�� = 21.50 ∗ ����.� − 5.10 ∗ ���.�#�2�

��� =
1000 ∗ ���� − 1.82 ∗ �ℎ�� − 85.02 ∗ �ℎ��

198
#�3�
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For quality control of chlorophyll analysis, we performed parallel 189 

measurements in 12 samples, and the average standard error was lower 190 

than 5%.  191 

Spectral and statistical analysis 192 

To highlight the metal-induced spectral variations, we calculated the 193 

reflectance relative differences between group means for the contaminated 194 

and non-contaminated classes subjected to Cd and Pb contamination. We 195 

also applied first derivatives to the reflectance, focusing mainly on the red-196 

edge region, to derive the red-edge inflection point (REIP) and evaluate the 197 

metal induced red-edge shifts (Clevers et al., 2004).  198 

Partial least squares (PLS) regression is a multivariate method for 199 

relating two data matrices, X and Y, i.e., explanatory and response matrices, 200 

by extracting latent variables (components) to model the variations of both 201 

matrices (Wold et al., 2001). The PLS regression can reduce high 202 

dimensional data (e.g. hyperspectral) to a small number of latent variables 203 

which serve as new predictors on which the response variable is regressed 204 

(Rosipal and Krämer, 2006). Partial least squares discriminant analysis (PLS-205 

DA) is a variant used when the response variable is categorical. We used 206 

PLS-DA for the classification of metal contamination classes. PLS-DA models 207 

were applied to four types of data, (i) the original reflectance spectral, and 208 

three pre-processed spectral data including (i) first derivative (ii), standard 209 

normal variate SNV and (iii) continuum removal (CR) precede applying the 210 

PLS-DA models. PLS-DA model calibration was first initiated on the entire 211 

dataset for the full spectrum with 10 components. The initial model was 212 
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trained using a 10-fold cross-validation with 99 times of permutations, 213 

allowing for determination of the optimal number of components and the 214 

spectral bands yielding a variable importance in projection (VIP) ≥ 0.8.  215 

For an independent validation, the entire dataset was randomly split 216 

into the training and test subsets, with a sample size being 2/3 (n=215) and 217 

1/3 (n=118) of the total observations (n=333), respectively. The VIP ≥ 0.8 218 

spectral bands were then used to train and test models on the two subsets, 219 

respectively. 220 

PLS-DA Model classification accuracy was evaluated using the overall 221 

accuracy (Eq. 4) and kappa coefficient (Eq. 5), as well as for assessing the 222 

classification for individual classes using the producer’s (Eq. 7) and user’s 223 

accuracies (Eq. 8), 224 

������� = �!" + !$� �!" + !$ + %" + %$�⁄ #�4�

(�))� =
)* − )+

1 − )+
#�5�

)+ =
�!$ + %"� × �!$ + %$� + �%$ + !"� × �%" + !"�

�!" + !$ + %" + %$��
#�6�

"�./��0�	������� = !"/�!" + %"�#�7�

340�	������� = !"/�!" + %$�#�8�

where the letters T and F denote true and false, respectively, and P and N 225 

denote positive and negative, respectively, )* is the actual agreement 226 

(identical to accuracy), whereas )+ is the expected agreement by chance 227 

(random accuracy) that can be calculated as Eq. (6).  228 
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We used linear mixed models to test whether elevated soil heavy 229 

metals affect the leaf functional traits. We defined the metal contamination 230 

classes, i.e., binary or multi-class, as the fixed effect factor and defined city 231 

and sampling site as random effect factors in the mixed models. All analyses 232 

were performed in the R programming environment (R Core Team, 2016). 233 

The R package ‘lme4’ (Bates et al., 2015) was used for running the mixed 234 

models, and the package ‘lsmeans’ (Lenth, 2016) was used for post-hoc 235 

analysis of pairwise comparisons between the contaminated classes based on 236 

Tukey's test. PLS-DA was implemented using the package ‘mixOmics’ (Rohart 237 

et al., 2017).  238 

Results and Discussion 239 

Heavy metal effects on leaf functional traits 240 

Elevated Pb and Cd concentrations had a significant effect on LMA of T. 241 

tomentosa trees (Table 2). Soil Cd contamination did not induce significant 242 

changes in LMA (Fig. 1a), whereas Pb contamination significantly decreased 243 

LMA (Fig. 1b). Generally, Cd and Pb stress leads to damages to chloroplasts 244 

and thylakoid membranes in plants (Shen et al., 2016; Wu et al., 2014), 245 

which often causes reduced leaf growth such as small leaf size and small 246 

stomata (Shi and Cai, 2009), as well as thin cuticles of leaf surfaces 247 

(Pourkhabbaz et al., 2010). Therefore, elevated Pb concentrations could have 248 

reduced leaf thickness and thus decreased LMA. Cd also induces changes in 249 

leaf structural properties, while Cd concentrations measured in this study 250 

might still be below the threshold that induces significant inhibition of leaf 251 

expansion.  252 
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Elevated soil Pb induced significant changes in leaf total Chl content, 253 

Chla to Chlb ratio (Chla:Chlb) and Fv/Fm, whereas Cd and other metals did 254 

not yield significant changes (Table 2). Decrease in leaf Chl content is often 255 

associated with photoinhibition and reduction of the photosynthetic capacity 256 

(Shen et al., 2016). Chla:Chlb decreased significantly along with the increase 257 

in soil Pb concentration (Fig. 2), suggesting that Chla was more suppressed 258 

compared to Chlb (Nie et al., 2016). Similarly, a significant reduction of 259 

Chla:Chlb has been found in Torreya grandis (Shen et al., 2016) and Typha 260 

latifolia plants (Manios et al., 2003) treated with a high concentration of Cd 261 

and Pb, suggesting increases in chlorophyll hydrolysis due to the toxic effect 262 

(Manios et al., 2003). Results may differ for different plant species, for 263 

instance in a greenhouse environment, Horler et al. (1980) observed a 264 

significant decrease of Chla:Chlb in pea leaves due to elevated Cd 265 

concentrations, but no changes following elevated Pb (Horler et al., 1980). 266 

Cd and Pb contamination induced a decrease in Fv/Fm (Fig. 3a, b), 267 

whereas Fv/Fm appeared to be not sensitive to low-level Pb contamination 268 

(Fig. 3d), suggesting that Cd and Pb stress may induce photosynthesis 269 

inhibition. Similarly, Cd was found to affect Fv/Fm in the wetland plant 270 

species Salicornia virginica (Rosso et al., 2005) and in the turf grass species 271 

Festuca arundinacea Schreb (Huang et al., 2017). Generally, the observed 272 

decrease in Fv/Fm in plants subjected to Cd/Pb stress is associated with the 273 

photoinhibition of PSII, as a result of the overproduction of reactive oxygen 274 

species (ROS) (Huang et al., 2017; Shen et al., 2016). However, a significant 275 

decrease in Fv/Fm may not always be observable if Cd/Pb concentration does 276 
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al. (2013) found that a high soil Pb concentration did not decrease Fv/Fm in 

Q. ilex plants, and they argued that these metals may not significantly alter 

functionality of the photosynthetic apparatus. Similarly, Shi and Cai (2009) 

reported that Fv/Fm was not affected in peanut plants treated with a high 

concentration of Cd. Therefore, the effect of heavy metals on Fv/Fm might 

depend largely on metal type, concentration and plant species. 

Mixed models for multi-class CdxPb and Pb contamination showed 

much more pronounced effects on LMA and Chla:Chlb than on Fv/Fm and leaf 

total Chl content (Table 3), which suggests that heavy metals induced more 

structural changes and proportional changes in leaf biochemicals than the 

quantity changes of individual components. An increase in leaf total Chl 

content and Fv/Fm was observed at a relative low-level Pb or Cd×Pb 

contamination (Table 3), suggesting that heavy metals impose complicated 

effects on photosynthesis and that Cd and Pb may increase the PSII quantum 

yield within a certain range of low concentrations (Ouyang et al., 2012; Shen 

et al., 2016).  

 The effect of soil heavy metals on leaves or the content of heavy metal 

accumulation in the leaves might be related to the age of trees (Doganlar et 

al., 2012). To test whether tree age difference affect the observed effects of 

Cd and Pb on leaf functional traits in this study, we used trunk diameter as a 

proxy of tree age and added it as an additional random factor in the mixed 

models (Table S2 and Table S3). Results suggest that the observed effects of 
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Cd and Pb on T. tomentosa leaves was not significantly influenced by tree 300 

age.  301 

Reflectance and first derivatives in response to heavy metals 302 

Elevated soil Cd concentrations yielded relatively large variations in leaf 303 

reflectance centered at the 500, 680 and 720 nm bands (Fig. 4a), whereas 304 

elevated Pb yielded large variations at the 550 and 700 nm bands (Fig. 4b). 305 

In the red-edge region, Cd had a large effect on reflectance at the red-edge 306 

center (~720 nm), whereas Pb had a large effect on reflectance ranging from 307 

the red absorption to the beginning of the red-edge bands (680~700 nm). 308 

Over the full spectrum, soil Pb contamination induced larger variations 309 

(±10%, Fig. 4b) compared to Cd contamination (±5%) (Fig. 4a), which 310 

might be attributed to the fact that Pb contamination was severer than Cd in 311 

this study. Cd concentration was slightly higher than the threshold (1 mg/kg), 312 

but was much lower than the ‘low guideline’ of contamination level (10 313 

mg/kg) at which ecological or health risks present (Tóth et al., 2016).  314 

The decrease in the NIR region (750~1400 nm) was associated with 315 

elevated Cd and Pb concentrations. This might be attributed partly to the 316 

decreased LMA because contaminated trees often have a much thinner outer 317 

epidermal layer and thus thinner leaves (Pourkhabbaz et al., 2010), although 318 

the effect of Cd on LMA observed in this study was marginal (Fig. 1). Metal-319 

induced decreases in leaf NIR reflectance might be associated mainly with 320 

the changes in leaf internal structural properties which decrease the internal 321 
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light scattering and increase the transmittance of leaves (Horler et al., 1980; 322 

Kumar et al., 2001).  323 

The first derivative reflectance in the visible-to-NIR bands showed two 324 

major peaks centered at 530 and 720 nm (Fig. S1). In the red-edge spectral 325 

region, Cd contamination induced a shift of absorbance features towards the 326 

shorter wavelengths (Fig. S1a). In contrast, Pb contamination induced a red-327 

edge shift to the longer wavelengths (Fig. S1b). In addition to the red-edge 328 

bands, Pb contamination also yielded large variations in the first derivative 329 

reflectance at the green bands, suggesting a more pronounced change of the 330 

overall shape of reflectance (cf. Fig. 4). As shown in the first derivative 331 

reflectance, Pb contamination also induced a shift in the green edges (both 332 

sides of the green peak) compared to Cd contamination. This might explain 333 

the observed decrease in the Chla:Chlb ratio (Fig. 2), since absorption at the 334 

green edge bands is related to Chlb variations (Kumar et al., 2001). 335 

The extracted REIP showed contrasting changes in the Cd and Pb 336 

contaminated trees, with decreasing and increasing trends, respectively (Fig. 337 

S2), which confirms the contrasting effects of Cd and Pb contamination on 338 

the red-edge reflectance. Heavy-metal induced REIP changes, or red-edge 339 

shifts, have been found to depend to some degree on plant species and 340 

sampling sites (Kooistra et al., 2004). Normally, a decreased REIP can be 341 

observed when plant stress induces a reduction in leaf total Chl content 342 

(Horler et al., 1983). However, here we did not observe obvious Chl 343 

reduction associated with Cd or Pb contamination. Therefore, the REIP 344 
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variations observed here were more likely associated with the proportional 345 

changes in the Chla:Chlb ratio, in combination with changes in leaf structures. 346 

PLS-DA model calibration for binary and multi-class classifications  347 

In the binary classifications, the PLS-DA calibration models for Cd-348 

contamination classification yielded a total accuracy of 84.1~86.5% (kappa = 349 

0.46~0.49, Table S4). PLS-DA models for Pb contamination yielded a total 350 

accuracy of 72.7~77.8% (kappa = 0.46~0.57). For the multi-class 351 

classification of CdxPb-mixed contamination, PLS-DA models yielded a total 352 

accuracy of 43.2~66.1% (kappa = 0.24~0.49, Table S4). PLS-DA models for 353 

the multi-class classification of Pb yielded a total accuracy of 52.0~64.0% 354 

(kappa = 0.29~0.43). The best classifications for individual metals are 355 

illustrated in confusion-matrix plots (Fig. 5).  356 

The best model for Cd correctly classified the Cd class 0 with a 357 

producer and use accuracy of 86% and 97%, respectively, and were 77% 358 

and 43% for the Cd class 1 (Fig. 5a). The producer and use accuracy for the 359 

Pb class 0 were  88% and 67%, respectively, and 77% and 90% for the Pb 360 

class 1 (Fig. 5b). The best model for Cd×Pb yielded a relatively low user 361 

accuracy in predicting the classes 1 and 3 (Fig. 5c), which however, accounts 362 

for a very small proportion of the total observations. The best model for 363 

multi-class Pb contamination yielded a relatively high producer accuracy for 364 

the classes 0 and 3 (Fig. 5d), with 80% and 100%, respectively. In contrast, 365 

the model yielded a higher user accuracy for the classes 0 and 1 than for the 366 

classes 2 and 3. The low user accuracy for the Pb classes 2 and 3 was mainly 367 
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due to the small sample size of high Pb concentrations, which consists of only 368 

17 and 4 observations for the classes 2 and 3, respectively. 369 

Overall, the high producer accuracy, paired with relatively low user 370 

accuracy for a relatively high metal concentration was rather encouraging, 371 

since our models slightly tended to overestimate the observed contamination 372 

rather than underestimate the elevated contamination. This implies a high 373 

probability of detecting the elevated concentrations of soil heavy metals. 374 

PLS-DA model validation using full spectrum and VIP-bands 375 

Compared to model calibration accuracies, model validation based on the full 376 

spectrum produced comparable accuracies (Table S5). In binary 377 

classifications, models for Pb contamination yielded higher kappa coefficients 378 

than the models for Cd contamination. In multi-class classifications, model 379 

validation showed improved total accuracies and kappa coefficients (Table 380 

S5), suggesting the potential of using calibrated PLS-DA models for detecting 381 

elevated soil Cd and Pb concentrations.  382 

Validation of models trained with the VIP (≥ 0.8) bands showed 383 

slightly improved kappa values and total accuracies compared to the full use 384 

of bands (Table S5). The importance of individual spectral bands in the 385 

classification is indicated by the VIP scores for individual metals (Fig. 6). Cd 386 

contamination yielded relatively high VIP scores at the red-edge (730 nm) 387 

and SWIR bands (1300 nm, 1650 nm) compared to Pb contamination, 388 

suggesting unique spectral responses to elevated soil Cd in these bands (Fig. 389 

6). Pb contamination yielded higher VIP scores at the green (530 nm) and 390 
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the beginning of red-edge (700 nm), suggesting that Pb contamination 391 

induced more pronounced responses in the visible bands. For the binary 392 

classifications, VIP-based PLS-DA models yielded higher accuracies for Pb-393 

contamination classification (kappa = 0.66) than for Cd (kappa= 0.39, Table 394 

S5). For multi-class classifications, the VIP-based PLS-DA models yielded 395 

comparable accuracies by using a much less amount of bands compared to 396 

the use of full spectral bands.  397 

Model validation results showed that selecting a set of influential bands 398 

(VIP ≥ 0.8) allowed for maintaining classification accuracy and improving 399 

model-use and computational efficiencies. Within a limited number of 400 

observations, by randomly dividing independent training and testing subsets 401 

of observations, our results suggest that spectrally calibrated PLS-DA models 402 

have great potential of applying to future scenarios for monitoring heavy 403 

metals.  404 

Comparison between reflectance pre-processing methods 405 

The kappa coefficient is a balanced measure compared to the use of the 406 

producer-, user- and total accuracies, especially when the observations in 407 

difference classes are highly imbalanced such as in this study. Hence, we 408 

evaluated the three spectra-preprocessing methods according to the kappa 409 

values. Model calibration and validation both showed that the first derivatives 410 

yielded the highest kappa values compared to the use of the original and 411 

SNV reflectance data (Table S4 and Table S5). 412 
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Using a different number of components might induce some degree of 413 

variation in model accuracies, although we used the cross-validation (CV) 414 

procedure. In addition to the CV-optimized number of components, model 415 

calibration and validation were repeated by using a fixed number of 416 

components (Table S6, Table S7 and Table S8). Results showed that the first 417 

derivative reflectance yielded the highest kappa coefficients, followed by the 418 

CR reflectance and the original reflectance (Fig. S3). The SNV reflectance did 419 

not yield improvement compared to the original reflectance data, suggesting 420 

that the SNV process may mask subtle spectral responses subjected to 421 

individual metals. Overall, PLS-DA models based on the first derivative 422 

reflectance produced the best classifications, which also suggests that heavy 423 

metals have induced complicated effects on leaf biochemical and structural 424 

properties that lead to light absorption changes/shifts over the full spectrum. 425 

First derivative spectra of leaves have been proven to be effective in 426 

eliminating background signals and for resolving overlapping spectral 427 

features (Demetriades-Shah et al., 1990), which is useful to detect plant 428 

stresses or estimate pigment changes (Rundquist et al., 1996; Smith et al., 429 

2004). Also, first derivative reflectance has better discrimination power 430 

compared to the original reflectance by characterizing the rate of change of 431 

reflectance with respect to wavelengths (Bao et al., 2013; Lassalle et al., 432 

2018; Smith et al., 2004). Typically, derivative analysis may facilitate the 433 

detection of changes that might be masked in the original spectra by the 434 

presence of plant intrinsic co-variations (Horler et al., 1983). For instance, 435 

derivative spectra in the visible region may enable to detect subtle changes 436 
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types (Bandaru et al., 2016; Demetriades-Shah et al., 1990; Pu, 2011). 

 Derivative analysis can be particularly useful for remotely 

biomonitoring heavy metal using reflectance spectra measured from above 

the vegetation canopy (Wang et al., 2018). Canopy spectra first derivatives 

eliminate the additive noises (baseline shifts) induced by illumination 

instability, canopy structural or soil background influences (Demetriades-

Shah et al., 1990; Gnyp et al., 2014; Kochubey and Kazantsev, 2012; Pu, 

2011), thereby improving the accuracy for quantification of canopy 

biochemical or physiological changes (Jin and Wang, 2016; O’Connell et al., 

2014). Moreover, PLS modeling further facilitates the use of features of the 

full derivative spectrum for the characterization of vegetation undergoing 

changes or stresses.  

Apparently, PLS-DA models for Pb-contamination classifications 

exclusively produced higher kappa values than for Cd contamination 

classifications, across different cases of spectra-preprocessing methods, 

model calibration (Fig. S3a) and validation (Fig. S3b), as well as when using 

a subset of VIP-bands (Fig. S3c). This can be attributed to the data 

imbalance between the Cd- and Pb-contamination levels, which, however, 

shows a great promise of the proposed approach for spectroscopic detection 

of elevated soil heavy metals, given that a diverse set of observations are 

used for model calibration. 

22 
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Conclusions 459 

This study used T. Tomentosa trees growing in three European cities as bio-460 

indicators of soil heavy metal contamination, and evaluated whether tree 461 

spectra responses were able to reflect the elevated metal concentrations. 462 

Results showed that elevated soil Cd and Pb concentrations led to decrease in 463 

the leaf mass per area (LMA) and the chlorophyll a to b ratio (Chla:Chlb), 464 

while no significant reduction in leaf total chlorophyll (Chl) and the maximal 465 

PSII photochemical efficiency (Fv/Fm). Soil Pb contamination was severer 466 

and showed more pronounced effect on LMA, Fv/Fm, Chl and Chla:Chlb than 467 

did the Cd contamination in the studied sites.  468 

Cd and Pb contamination induced specific changes in leaf reflectance 469 

and the reflectance first derivatives, particularly in the red-edge spectral 470 

region. Partial least squares discriminant analysis (PLS-DA) models calibrated 471 

using leaf reflectance showed promise for detecting soil Cd and Pb 472 

contamination in urban areas. PLS-DA models based on reflectance first 473 

derivatives allowed for the best classification of Cd and Pb contamination. 474 

This study shows that elevated soil heavy metals can be monitored by 475 

measuring leaf spectra of trees. This holds great potential for mapping urban 476 

heavy metal contamination by measuring urban vegetation using high-477 

resolution spectrometers onboard airborne or drone platforms. Future work 478 

should investigate whether our findings can be extrapolated to broader scales 479 

by using canopy level reflectance data and a diverse set of plant species as 480 

bio-indicators. Multi-temporal investigations of the quantitative relationships 481 

between the practical content of heavy metals in leaves and reflectance 482 
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spectroscopic measures are also needed to understand metal translocation 483 

from soil to vegetation and for dynamic biomonitoring of heavy metal 484 

contamination.    485 
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Figure Captions 

Fig. 1. Boxplots with the leaf mass per area (LMA) differences between the 
binary classes (0 = non-contaminated, 1 = contaminated) of (a) Cd and (b) 
Pb contamination, as well as among multiple classes of (c) Cd×Pb and (d) Pb 
contamination. Significance levels are indicated according to the post-hoc 
Tukey’s test of the applied mixed models. 

Fig. 2. Boxplots with the leaf chlorophyll a to b ratio (Chla:Chlb) differences 
between the binary classes (0 = non-contaminated, 1 = contaminated) of (a) 
Cd and (b) Pb contamination, as well as among multiple classes for (c) 
Cd×Pb and (d) Pb contamination. Significance levels are indicated according 
to the post-hoc Tukey’s test of the applied mixed models. 

Fig. 3. Boxplots show the chlorophyll fluorescence Fv/Fm differences between 
the binary classes (0 = non-contaminated, 1 = contaminated) of (a) Cd and 
(b) Pb contamination, as well as among multi-class classifications of (c)
Cd×Pb and (d) Pb contamination. Significance levels are indicated according
to the post-hoc Tukey’s test of the applied mixed models.

Fig. 4. Leaf mean reflectance of the contaminated (1) and non-contaminated 
(0) trees subjected to (a) Cd and (b) Pb, and their reflectance relative
difference ((X1-X0)/X0) between the contaminated and non-contaminated
leaves.

Fig. 5. Predicted versus observed classes for (a) Cd binary classification, (b) 
Pb binary classification, (c) Cd×Pb classification and (d) Pb multi-class 
classification. Here the first derivative reflectance data were used for (a), (b) 
and (c), the original reflectance were used for (d). Numbers indicate the 
confusion matrix of classification. 

Fig. 6. The variable importance in projection (VIP) scores for the spectral-
based PLS-DA models for binary classification for Cd and Pb contamination, 
and for multi-class classification of Pb and CdxPb contamination. VIP ≥ 0.8 

highlights the spectral bands contributing significantly to the PLS-DA models. 
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Tables 

Table 1. Measured soil heavy metal content and the threshold values for 

classification of contamination. Cd and Pb were the major contaminates in 
this study, and Pb was the only metal that reached the highline and thus Pb 
contamination was classified into three sub-classes.  

Metal Range (mg/kg) Threshold (mg/kg) 
Number of observations (n) 

Class 0 Class 1/Pb 1 Pb 2 Pb 3 

Cd 0-3.9 1 294 39 

Pb* 0-2170.8 60 132 201/180 17 4 

Co 0-15.9 20 333 0 

Cr 0-120.9 100 327 6 

Cu 0-159.1 100 330 3 

Ni 0-76.8 50 331 2 

Zn 10-265.8 200 329 4 

*, Pb contamination sub-levels: 

1) Low contamination (60 ≤ Pb < 200 mg/kg);

2) Medium contamination (200 ≤ Pb < 750 mg/kg);

3) High contamination (Pb ≥ 750 mg/kg).
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ACCEPTED MANUSCRIPT

Table 2. Results of mixed models for testing the effect of soil heavy metals 
on leaf functional traits, including the leaf mass per area (LMA), Fv/Fm, total 
chlorophyll content (Chl) and Chla:Chlb ratio. Modeled random effects were 
city and sites. Chlorophyll data were only available for a subset of the 
samples, where only Cd and Pb reached the thresholds of contamination. 

Mixed Model Tukey's Test Class 0 – 1 

Trait Metal F-value P-value Estimate P-value 

LMA Cd 1.11 0.292 0.249 0.292 

Cr 6.68 0.010 -1.319 0.010 

Cu 0.16 0.691 0.284 0.691 

Ni 0.23 0.632 0.425 0.632 

Pb 67.08 <0.001 1.284 <0.001 

Zn 0.70 0.404 0.521 0.404 

Fv/Fm Cd 0.02 0.901 -0.0013 0.901 

Cr 0.01 0.905 0.0027 0.905 

Cu 0.01 0.911 0.0034 0.911 

Ni 0.08 0.772 -0.0109 0.772 

Pb 5.84 0.016 -0.0162 0.016 

Zn 0.08 0.784 -0.0074 0.784 

Chl Cd 2.31 0.138 18.091 0.138 

Pb 6.78 0.013 -9.238 0.013 

Chla:Chlb Cd 0.45 0.509 0.181 0.509 

Pb 23.58 <0.001 0.331 <0.001 
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Table 3. Mixed models for testing the effect of multi-level Cd×Pb and Pb contamination on leaf functional traits,
including the leaf mass per area (LMA), Fv/Fm, total chlorophyll content (Chl) and Chla:Chlb ratio. The modeled

random effects are city and site. Chlorophyll data were only available for a subset of the samples, where only Cd
and Pb reached the threshold of contamination.

Mixed model 
Tukey's Test 

Class 0 – 1 Class 0 - 2 Class 0 - 3 Class 1 - 2 Class 1 - 3 Class 2 – 3 

Trait Metal F-value P-value  estimate p estimate p estimate p estimate p estimate p estimate P

LMA Cd×Pb 23.74 <0.001 0.025 1.000 1.256 <0.001 1.722 <0.001 1.231 0.006 1.698 0.001 0.466 0.246 

Pb 26.29 <0.001 1.21 <0.001 1.831 <0.001 2.444 <0.001 0.621 0.104 1.234 0.104 0.613 0.731 

Fv/fm Cd×Pb 2.42 0.066 -0.0211 0.661 -0.0184 0.044 -0.0143 0.713 0.0028 0.999 0.0069 0.987 0.0041 0.987

Pb 2.00 0.113 -0.0168 0.070 -0.0109 0.863 -0.0106 0.980 0.0059 0.971 0.0062 0.996 0.0003 1.000 

Chl Cd×Pb 5.86 0.006 -10.275 0.014 12.558 0.495 22.834 0.108 

Pb 6.40 0.004 -8.108 0.057 -32.96 0.012 -24.852 0.070 

Chla:Chlb Cd×Pb 11.47 <0.001 0.332 <0.001 0.319 0.319 -0.012 0.998 

Pb 12.01 <0.001 0.323 <0.001 0.495 0.072 0.172 0.709 
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• Cd and Pb pollution in urban soils reduces the leaf mass per area of Tilia trees

• Soil Cd and Pb pollution reduces the leaf chlorophyll a to b ratio of Tilia trees

• Soil Cd and Pb pollution alters leaf spectral properties in the red-edge region

• PLS-DA models based on leaf spectra allow for the detection of Cd and Pb pollution




