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Abstract

Organ size control is of particular importance for developmental biology and agriculture, but

the mechanisms underlying organ size regulation remain elusive in plants. Meristemoids,

which possess stem cell-like properties, have been recognized to play important roles in leaf

growth. We have recently reported that the Arabidopsis F-box protein STERILE APETALA

(SAP)/SUPPRESSOR OF DA1 (SOD3) promotes meristemoid proliferation and regulates

organ size by influencing the stability of the transcriptional regulators PEAPODs (PPDs).

Here we demonstrate that KIX8 and KIX9, which function as adaptors for the corepressor

TOPLESS and PPD, are novel substrates of SAP. SAP interacts with KIX8/9 and modulates

their protein stability. Further results show that SAP acts in a common pathway with KIX8/9

and PPD to control organ growth by regulating meristemoid cell proliferation. Thus, these

findings reveal a molecular mechanism by which SAP targets the KIX-PPD repressor com-

plex for degradation to regulate meristemoid cell proliferation and organ size.

Author summary

Organ size is coordinately regulated by cell proliferation and cell expansion; however, the

mechanisms of organ size control are still poorly understood. We have previously demon-

strated that the Arabidopsis F-box protein STERILE APETALA (SAP)/SUPPRESSOR OF

DA1 (SOD3) controls organ size by promoting meristemoid proliferation. SAP functions

as part of a SKP1/Cullin/F-box (SCF) E3 ubiquitin ligase complex and modulates the sta-

bility of the transcriptional regulators PEAPODs (PPDs) to control organ growth. Here

we show that KIX8 and KIX9 are novel substrates of SAP. KIX8 and KIX9 have been

shown to form a transcriptional repressor complex with PPD and TOPLESS (TPL) to
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regulate leaf growth. We found that SAP interacts with KIX8/9 in vitro and in vivo, and

modulates their protein stability. Further analyses indicate that SAP acts in a common

pathway with KIX8/9 and PPD to control meristemoid proliferation and organ growth.

These findings reveal that SAP regulates organ size by targeting the KIX-PPD repressor

complex for degradation.

Introduction

How plants control final organ size is an intriguing question in developmental biology. Organ

size is also important for plant yield and biomass. Previous studies suggest that the developing

organs possess intrinsic signals to control their final size, although plant growth is affected by

various environmental factors[1–5]. However, how plants determine their organ size is still

unclear.

Cell proliferation and cell expansion play a predominant role in determining plant organ

growth. Leaf development in Arabidopsis provides a good model system for analyzing the

coordination of these two important processes[6, 7]. After the leaf primordium is initiated,

cells in the primordium divide continuously to generate new cells with small size. In the tip

region of the leaf, cell division gradually ceases and cells begin to differentiate and expand.

Then this cell differentiation domain spreads down, forming a cell-cycle arrest front that

moves toward the leaf base[8, 9]. While most cells behind this cell-cycle arrest front exit cell

division, the meristemoid cells that possess stem cell-like properties divide a few rounds and

then form stomata or epidermal pavement cells [10, 11]. This proliferation of meristemoid

cells is specific for dicot plants [12]. In Arabidopsis, meristemoid cells generate about 48% of

all pavement cells in leaves[13], indicating that the amplifying division of these meristemoid

cells contributes significantly to leaf size.

Several key factors have been revealed to influence leaf size by regulating cell division

rate[14–16], the duration of cell division[17–29], or cell expansion[30–37]. However,

how plants determine organ growth through meristemoid cell proliferation is largely

unknown. PEAPOD1 (PPD1) and PPD2 were the first two genes identified to regulate leaf

size by limiting meristemoid cell proliferation[8]. The tandemly repeated PPD1 and PPD2
genes encode two plant specific transcriptional regulators. Knock-out or down-regulation of

PPD genes results in large and dome-shape leaves due to the prolonged proliferation of meris-

temoids[8, 12]. A recent study shows that PPD proteins interact with KIX8 and KIX9, which

act as adaptors to recruit the transcription repressor TOPLESS (TPL)[12]. Thus, PPD, KIX

and TPL may function as a repressor complex to control meristemoid proliferation and leaf

growth[12].

We have recently reported that the F-box protein STERILE APETALA (SAP)/SUPPRES-

SOR OF DA1 (SOD3) positively regulates leaf growth by promoting meristemoid cell prolifer-

ation[38]. SAP promotes organ growth by targeting PPD proteins for degradation. The ppd
mutant partially suppresses the organ growth phenotypes of sod3-1, suggesting that SAP may

also target other proteins for degradation to control organ growth. Here we report that KIX8

and KIX9 are two novel targets of SAP. SAP interacts with KIX8 and KIX9 and modulates

their protein stability. We further demonstrate that SAP acts with KIX and PPD in a common

genetic pathway to control meristemoid cell proliferation and organ growth. These results

reveal a novel genetic and molecular mechanism in which SAP targets the KIX-PPD repressor

complex for degradation to control organ growth.

SAP modulates the stability of KIX8/9 to control organ size
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Results

SAP interacts with KIX8 and KIX9 in vitro and in vivo
To identify novel components involved in SAP-mediated organ size control, we carried out a

yeast two-hybrid screen for SAP-interacting proteins. KIX8 and KIX9 were found to interact

with SAP in this screen. KIX8 and KIX9 have been shown to form a repressor complex with

TOPLESS and control meristemoid cell proliferation[12], suggesting that KIX8 and KIX9 are

good candidates for SAP-interacting proteins. We confirmed that SAP can interact with full-

length KIX8 and KIX9 in yeast cells (Fig 1A). To analyze which domain of KIX proteins is

responsible for the interaction with SAP, we used different truncations of KIX proteins in the

yeast two-hybrid assays. However, none of these truncations showed an interaction with SAP

in yeast cells, indicating that full length of KIX proteins is required for the interaction (S1 Fig).

To examine their interactions in vitro, we performed pull-down assays using His-tagged KIX8

and KIX9 and GST-tagged SAP proteins expressed in E. coli. As shown in Fig 1B, His-KIX8

and His-KIX9 bound to GST-SAP but not the GST-GUS control, indicating that SAP directly

interacts with KIX8 and KIX9 in vitro.

We then tested whether SAP could interact with KIX8 and KIX9 in planta using split lucif-

erase complementation assays. Nicotiana benthamiana leaves cotransformed with SAP-nLUC

Fig 1. SAP interacts with KIX8 and KIX9. (A) SAP interacts with full length KIX8 and KIX9 in yeast cells. Transformants were

selected on media -2 (SD/-Leu/-Trp), and interactions were tested on media -4 (SD/-Ade/-His/-Leu/-Trp) using a serial dilution of

the transformants mixtures (1, 10−1 and 10−2). (B) SAP binds KIX8 and KIX9 in vitro. His-KIX8 and His-KIX9 were incubated with

GST-SAP and pulled down by glutathione sepharose. The interactions were detected by immunoblotting with an anti-His antibody.

GST-GUS was used as a negative control. (C) The split luciferase complementation assays show that SAP associates with KIX8/9 in

N. benthamiana. SAP-nLUC and cLUC-KIX8/9 were co-expressed inN. benthamiana leaves. Luciferase activity was detected 24

hours after infiltration. The pseudocolor bar represents the range of luminescence intensity in each image. (D) SAP interacts with

KIX8 and KIX9 in Arabidopsis. GFP-Trap-A beads were incubated with total protein extracts of 35S:GFP;35S:Myc-KIX8, 35S:

GFP-SAP;35S:Myc-KIX8, 35S:GFP;35S:Myc-KIX9 and 35S:GFP-SAP;35S:Myc-KIX9 transgenic plants, respectively. The interactions

were analyzed by immunoblot with anti-Myc or anti-GFP antibodies.

https://doi.org/10.1371/journal.pgen.1007218.g001
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and cLUC-KIX8 or cLUC-KIX9 constructs showed luciferase activity, whereas the negative con-

trol did not have luciferase activity, indicating that SAP associates with KIX8 and KIX9 in vivo
(Fig 1C). To confirm the interaction of SAP with KIX8/9, we generated Arabidopsis transgenic

lines expressing 35S:Myc-KIX8 and 35S:Myc-KIX9, and crossed them with 35S:GFP-SAP or

35S:GFP to obtain 35S:Myc-KIX8/9 in 35S:GFP-SAP background and the 35S:GFP background,

respectively. Co-immunoprecipitation analysis showed that GFP-SAP associated with Myc-

KIX8/9 in Arabidopsis (Fig 1D). Taken together, these data demonstrate that SAP can form a

protein complex with KIX8/9 in Arabidopsis.

SAP regulates the stability of KIX8 and KIX9 proteins

As SAP functions in an SKP1/Cullin/F-box (SCF) E3 ubiquitin ligase complex to mediate protea-

some-dependent degradation of substrate proteins[38], we further investigated whether SAP

could influence the stability of KIX8 and KIX9. We first tested whether the levels of KIX8 and

KIX9 proteins could be affected by the ubiquitin-proteasome system. 35S:Myc-KIX8 or 35S:Myc-
KIX9 transgenic plants were treated with the proteasome inhibitor MG132, and Myc-KIX8 and

Myc-KIX9 proteins were then detected by immunoblot analysis. The amounts of Myc-KIX8 and

Myc-KIX9 proteins were accumulated during MG132 treatment (Fig 2A and 2B), suggesting that

the stability of KIX8 and KIX9 proteins is influenced by the ubiquitin-proteasome pathway.

Next, we checked whether overexpression of SAP could affect the protein levels of KIX8

and KIX9. Two independent lines of 35S:Myc-KIX8 or 35S:Myc-KIX9were crossed with 35S:

GFP-SAP (SAP-OX) or 35S:GFP (control) to generate 35S:Myc-KIX8/9 in SAP-OX background

and 35S:GFP (control) background, respectively. Protein extracts of ten-day-old seedlings

were subjected to immunoblot analysis. As shown in Fig 2C and 2D, the protein levels of Myc-

KIX8 and Myc-KIX9 were obviously decreased in 35S:GFP-SAP lines (SAP-OX) compared

with those in 35S:GFP lines (Control), while the transcription levels of KIX8 and KIX9were

not affected by overexpression of SAP, as shown by quantitative real-time PCR analysis (Fig

2C and 2D). These results indicate that overexpression of SAP causes the degradation of KIX8

and KIX9 proteins in Arabidopsis.
To analyze whether mutations in SAP could cause the accumulation of KIX8 and KIX9 in

Arabidopsis, we crossed two independent lines of 35S:Myc-KIX8 and 35S:Myc-KIX9 with the

sod3-1mutant that has a loss-of-function mutation in SAP and obtained 35S:Myc-KIX8/9 in

sod3-1 background. The sod3-1mutant had higher levels of Myc-KIX8 and Myc-KIX9 proteins

than the wild type, whereas the transcription levels of KIX8 and KIX9were not affected by the

sod3-1mutation (Fig 2E and 2F). These data reveal that SAP regulates KIX8/9 protein stability

in Arabidopsis.
Previously we showed that SAP modulates the protein stability of PPD proteins to regulate

organ growth [38]. Therefore, we further asked whether SAP-mediated degradation of PPD is

dependent of KIX8/9. We then transiently expressed Myc-PPD and GFP-SAP in the mesophyll

protoplasts of either the wild type or kix8-1 kix9-1. In the wild type, the protein stability of

PPD was decreased by overexpression of SAP, whereas in kix8-1 kix9-1 the protein stability of

PPD was not affected by SAP (Fig 2G). These results suggest that KIX8/9 is required for SAP-

mediated degradation of PPD. By contrast, SAP promotes KIX degradation in either wild type

or ppd2 (Fig 2H).

As KIX, PPD and TPL form a protein complex [12], and SAP modulates the protein stabil-

ity of both KIX and PPD, we further asked whether SAP also affects the protein stability of

TPL. We then transiently expressed Myc-TPL and GFP-SAP in protoplasts. However, we did

not detect an obvious decrease of the protein level of Myc-TPL when overexpressing GFP-

SAP, suggesting that SAP may not promote TPL degradation (S2 Fig).

SAP modulates the stability of KIX8/9 to control organ size
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Fig 2. SAP regulates the stability of KIX8 and KIX9. (A-B) The proteasome inhibitor MG132 stabilizes KIX8 (A) and

KIX9 (B). Ten-day-old 35S:Myc-KIX8 or 35S:Myc-KIX9 seedlings were incubated with 50 μM MG132 (+) or DMSO control

(-) for 0, 4, 8 and 16 hours. Myc-KIX8 and Myc-KIX9 were detected by immunoblot with anti-Myc antibody. Immunoblot

analysis using anti-RPN6 antibody was used as loading controls. Two independent lines of 35S:Myc-KIX8 (#2 and #5) and

35S:Myc-KIX9 (#3 and #7) were analyzed. (C-D) The amounts of KIX8 and KIX9 proteins were decreased in plants

overexpressing SAP. 35S:Myc-KIX8 (#2 and #5) and 35S:Myc-KIX9 (#3 and #7) transgenic lines were crossed with 35S:GFP
(Control) and 35S:GFP-SAP (SAP-OX), respectively. The amounts of Myc-KIX8 or Myc-KIX9 in 35S:GFP;35S:Myc-KIX8
(Control), 35S:GFP-SAP;35S:Myc-KIX8 (SAP-OX), 35S:GFP;35S:Myc-KIX9 (Control), and 35S:GFP-SAP;35S:Myc-KIX9
(SAP-OX) was analyzed with anti-Myc antibody. Immunoblot analysis using anti-RPN6 antibody was used as loading

controls. Relative transcription levels of KIX8 and KIX9 in each line were shown at the bottom. (E-F) The amounts of KIX8

and KIX9 proteins were increased in the sod3-1mutant. Two independent lines of 35S:Myc-KIX8 (#2 and #5) and 35S:Myc-
KIX9 (#3 and #7) were crossed with sod3-1, respectively. The amounts of Myc-KIX8 or Myc-KIX9 in 35S:Myc-KIX8, 35S:

Myc-KIX8;sod3-1, 35S:Myc-KIX9, 35S:Myc-KIX9;sod3-1 seedlings were analyzed by immunoblot using anti-Myc antibody.

Immunoblot analysis using anti-RPN6 antibody was used as loading controls. Relative transcription levels of KIX8 and KIX9
in each line were shown at the bottom. Myc-KIX8 and Myc-KIX9 protein levels in (A) to (F) were quantified by the ImageJ

program, and relative levels of Myc-KIX8 and Myc-KIX9 were shown blow the blots. (G) SAP-mediated degradation of PPD

is dependent of KIX8/9. Myc-PPD1/2 and GFP-SAP or GFP control were co-expressed in Col-0 or kix8-1 kix9-1 protoplasts,

and the amounts of PPD proteins were detected by immunoblot using anti-Myc antibody. EOD1-Flag was used as a control

for protoplast transformation. Triplicate transformation evens were performed and representative results were shown. (H)

The ppd2-1mutation did not affect SAP-mediated degradation of KIX8 and KIX9. Myc-KIX8/9 and GFP-SAP or GFP

control were co-expressed in Col-0 or ppd2 protoplasts, and the amounts of KIX proteins were detected by immunoblot

using anti-Myc antibody. EOD1-Flag was used as a control for protoplast transformation. Triplicate transformation evens

were performed and representative results were shown.

https://doi.org/10.1371/journal.pgen.1007218.g002
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To investigate whether KIX8 and KIX9 affects the expression of PPD genes, we analyzed the

transcript levels of PPD genes in the kixmutants. The expression of PPD2 was slightly

increased in the kix8-1 kix9-1mutant (S3 Fig), indicating a feed back regulation of this protein

complex in transcription level.

SAP genetically interacts with KIX8 and KIX9 to control organ growth

As SAP associates with KIX8 and KIX9 and regulates their stability, we investigated whether

KIX8 and KIX9 could function with SAP in a common pathway to control organ size. The

kix8-1 kix9-1 double mutant showed large and dome-shaped leaves[12], whereas the sod3-1
mutant had decreased organ size [38]. We crossed sod3-1with kix8-1 kix9-1 to generate sod3-1
kix8-1 kix9-1 triple mutant. As shown in Fig 3, the small leaf and flower phenotypes of sod3-1
were partially suppressed by kix8-1 kix9-1. The area of cells in sod3-1, kix8-1 kix9-1 and sod3-1
kix8-1 kix9-1 leaves and petals was comparable to that in wild-type leaves and petals, suggest-

ing that SAP and KIX control organ growth by influencing cell proliferation (Fig 3F and 3H).

Furthermore, the silique length of triple mutant sod3-1 kix8-1 kix9-1 was significantly

increased in comparison with that of sod3-1, although kix8-1 kix9-1 siliques showed similar

length to wild-type siliques (Fig 3C and 3I). These genetic data indicate that kix8-1 kix9-1 is

partially epistatic to sod3-1with respect to organ size, suggesting that SAP functions with

KIX8/9 in a common genetic pathway to control organ growth.

We have previously reported that 35S:GFP-SAP plants have large flowers, dome-shaped

leaves and short siliques [38]. By contrast, 35S:Myc-KIX8 and 35S:Myc-KIX9 plants showed

decreased organ size (S4 Fig). The phenotypes of 35S:GFP-SAPwere partially rescued by 35S:

Myc-KIX (S5 Fig), further suggesting that SAP and KIX8/9 may function in a common genetic

pathway to control organ size.

Fig 3. SAP genetically interacts with KIX8 and KIX9 to control organ growth. (A) Thirty-day-old plants of Col-0, sod3-1,

kix8-1 kix9-1 and sod3-1 kix8-1 kix9-1 (from left to right). (B-D) The fifth leaves (B), siliques (C) and flowers (D) of Col-0, sod3-
1, kix8-1 kix9-1 and sod3-1 kix8-1 kix9-1 (from left to right). (E-I) Fifth leaf area (LA), leaf cell area (LCA), petal area (PA), petal

cell area (PCA), and silique length (SL) of Col-0, sod3-1, kix8-1 kix9-1 and sod3-1 kix8-1 kix9-1. Values in (E)-(I) are given as

mean±s.e. relative to the respective wild-type values, set at 100%. 10 leaves, 300 cells from 10 leaves, 70 petals, 450 cells from 15

petals, and 20 siliques were used to measure LA, LCA, PA, PCA and SL, respectively. The yellow columns indicate the expected

LA, PA and SL if sod3-1 and kix8-1 kix9-1 have additive effects [expected value = (kix8-1 kix9-1 value) × (% sod3-1 value)].

Different lowercase letters above the columns indicate statistically different groups (P<0.01). Scale bars, 5 cm in (A), 5mm in

(B), 3mm in (C) and 1mm in (D).

https://doi.org/10.1371/journal.pgen.1007218.g003
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SAP acts upstream of the KIX-PPD complex to control organ growth

We have previously shown that SAP associates with PPD proteins and regulates their stability

to control organ growth[38]. SAP acts genetically with PPD to regulate organ growth[38]. It

has been reported that PPD proteins physically interact with KIX8 and KIX9 [12], although

their genetic interactions remain unknown so far. We therefore asked whether SAP, KIX8,

KIX9 and PPD could act in a common genetic pathway to control organ size. The Δppdmutant

(Ler ecotype) showed large and dome-shape leaves due to the deletion of both PPD1 and PPD2
genes [8]. In Columbia ecotype (Col-0), ppd2-1 and ami-ppd showed large and dome-shape

leaves, like those observed in the Δppdmutant [8, 12, 38]. As sod3-1 and kix8-1 kix9-1mutants

are in Col-0, we conducted a cross between sod3-1 kix8-1 kix9-1 and ppd2-1 to generate the

quadruple mutant sod3-1 kix8-1 kix9-1 ppd2-1. As shown in Fig 4, the leaf, petal and silique

phenotypes of sod3-1 kix8-1 kix9-1 triple mutant were partially suppressed by ppd2-1 (Fig 4). It

was shown that KIX8 and KIX9 interact with PPD[12], and SAP modulates the stability of

both PPD and KIX8/9. Thus, it is possible that SAP may act upstream of the KIX-PPD complex

to control organ growth.

The SAP-KIX-PPD module regulates meristemoid cell proliferation

To analyze how the SAP-KIX-PPD module regulates meristemoid cell proliferation, we per-

formed dental resin imprints of the leaf epidermis to follow the fate of meristemoid cells from

12 to 14 days after germination (DAG). Meristemoids are small triangular cells originating

from asymmetric division of meristemoid mother cells. A meristemoid undergoes limited

rounds of asymmetric divisions before it becomes a guard mother cell or a stoma[11, 13, 39].

We investigated how many meristemoid cells become guard mother cells and stomas or

Fig 4. SAP, KIX and PPD act in a common genetic pathway to control organ growth. (A-D) Thirty-day-old plants (A), the fifth leaves

(B), siliques (C) and flowers (D) of Col-0, sod3-1 kix8-1 kix9-1, ppd2-1, and sod3-1 kix8-1 kix9-1 ppd2-1 (from left to right). (E-I) Fifth leaf

area (LA), leaf cell area (LCA), petal area (PA), petal cell area (PCA), and silique length (SL) of Col-0, sod3-1 kix8-1 kix9-1, ppd2-1, and sod3-
1 kix8-1 kix9-1 ppd2-1. Values (E-I) in are given as mean±s.e. relative to the respective wild-type values, set at 100%. 10 leaves, 300 cells from

10 leaves, 70 petals, 450 cells from 15 petals, and 20 siliques were used to measure LA, LCA, PA, PCA, and SL, respectively. The yellow

columns indicate the expected LA, PA and SL if sod3-1 kix8-1 kix9-1 and ppd2-1 have additive effects [expected value = (sod3-1 kix8-1 kix9-1
value) × (% ppd2-1 value)]. Different lowercase letters above the columns indicate statistically different groups (P<0.01). Scale bars, 5cm in

(A), 5mm in (B), 3mm in (C) and 1mm in (D).

https://doi.org/10.1371/journal.pgen.1007218.g004

SAP modulates the stability of KIX8/9 to control organ size

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007218 February 5, 2018 7 / 16

https://doi.org/10.1371/journal.pgen.1007218.g004
https://doi.org/10.1371/journal.pgen.1007218


undergo asymmetric division and still maintain the meristemoid functions over time. In the

sod3-1mutant, the proportion of asymmetric dividing meristemoids was decreased compared

with that in the wild type between 12 and 13 DAG (3% versus 13%) and between 13 and 14

DAG (6%versus 15%) (Figs 5A and S6). By contrast, more meristemoids in sod3-1 became

guard mother cells or stomata than those in the wild type (Fig 5A). These results indicate that

meristemoid division in sod3-1 arrests earlier than that in the wild type. In contrast, the kix8-1
kix9-1mutant and the ppd2-1mutant showed more amplifying division of meristemoid cells

than the wild type (Fig 5A), which is consistent with previous studies[8, 12]. The sod3-1 kix8-1
kix9-1 triple mutant showed an increased proportion of asymmetric dividing cells and a

decreased proportion of meristemoids becoming guard mother cells or stomata compared

with the sod3-1 single mutant, indicating that kix8 kix9 partially suppresses the arrested prolif-

eration of meristemoids in sod3-1 (Fig 5A). Furthermore, more meristemoids in the sod3-1
kix8-1 kix9-1 ppd2-1 quadruple mutant underwent asymmetric division than those in the sod3-

Fig 5. The SAP-KIX-PPD module controls meristemoid cell proliferation. (A) Proportion of cell types (meristemoid after

asymmetric division, guard mother cell, stoma, or meristemoid) originating from meristemoids were followed from 12 to 14

DAG by making daily dental resin imprints of the abaxial epidermis of leaves. Representative images of dental resin imprints of

the abaxial epidermis of leaves at 12 to 14 DAG used to estimate the proportion of cell types originating from the meristemoid

division were shown in S1 Fig. (B) Relative expression levels of CYCD3;2 and CYCD3;3 in the first pair of leaves of 12-d-old Col-

0, sod3-1, kix8-1 kix9-1, sod3-1 kix8-1 kix9-1, ppd2-1, and sod3-1 kix8-1 kix9-1 ppd2-1 seedlings. �P<0.05, ��P<0.01 compared

with the wild type (Student’s t-test). (C) A genetic and molecular framework for SAP, KIX and PPD-mediated regulation of

meristemoid cell proliferation and organ size. The PPD-KIX-TPL complex controls organ growth by restricting meristemoid

proliferation. SAP promotes meristemoid proliferation by targeting KIX and PPD proteins for degradation.

https://doi.org/10.1371/journal.pgen.1007218.g005

SAP modulates the stability of KIX8/9 to control organ size

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007218 February 5, 2018 8 / 16

https://doi.org/10.1371/journal.pgen.1007218.g005
https://doi.org/10.1371/journal.pgen.1007218


1 kix8-1 kix9-1 triple mutant. These results suggest that SAP functions genetically with KIX8,

KIX9 and PPD2 to control meristemoid cell proliferation.

The SAP-KIX-PPD module regulates the expression of PPD target genes

The PPD proteins have been reported to associate with the promoter of their target genes such

as CYCD3;2 and CYCD3;3 and repress their expression[12]. KIX8 and KIX9 form the complex

with PPD and are required for the repression of PPD target genes[12]. As SAP controls meris-

temoid proliferation and organ growth by targeting PPD and KIX for degradation, we investi-

gated whether SAP could influence the expression of PPD target genes. We analyzed the

mRNA levels of CYCD3;2 and CYCD3;3 in the first pair of leaves at 12 DAG. As shown in Fig

5B, expression levels of CYCD3;2 and CYCD3;3were higher in the kix8-1 kix9-1 and the ppd2-
1mutants than those in the wild type, which is consistent with the previous study[12] (Fig 5B).

By contrast, expression of CYCD3;2 and CYCD3;3was down-regulated in the sod3-1mutant,

suggesting that SAP positively influences the expression of these two genes (Fig 5B). In accor-

dance with the organ size phenotypes, kix8-1 kix9-1 partially suppressed the reduced expres-

sion levels of CYCD3;2 and CYCD3;3 in sod3-1. Similarly, expression levels of CYCD3;2 and

CYCD3;3 in sod3-1 kix8-1 kix9-1 ppd2-1were higher than those in sod3-1 kix8-1 kix9-1. Thus,

these results suggest that SAP acts upstream of the KIX-PPD complex to regulate the expres-

sion of PPD target genes. In addition, expression levels of several other PPD-regulated genes

related to cell proliferation and organ growth were also suppressed in the sod3-1mutant back-

ground, and the suppression was partially released by kix8-1 kix9-1 and ppd2-1 (S7 Fig). These

data further support that the SAP-KIX-PPD module regulates the expression of common

downstream genes to regulate organ growth.

Discussion

How plants determine their organ size is an interesting part of developmental biology. Meris-

temoids, which possess stem cell-like activity, have been recognized to regulate organ growth

in Arabidopsis. However, only a few factors have been described to regulate organ growth

through meristemoid cell proliferation. We have previously demonstrated that SAP promotes

organ growth by increasing meristemoid cell proliferation. SAP mediates the degradation of

PPD1 and PPD2 [38], two negative regulators of meristemoid cell proliferation[8]. In this

study, we identify KIX8 and KIX9 as two novel targets of SAP. SAP directly interacts with

KIX8 and KIX9, and modulates their protein stability. Genetic analyses suggest that SAP func-

tions with KIX8 and KIX9 in a common pathway to regulate organ growth through meriste-

moid cell proliferation. Our results reveal a novel molecular mechanism that SAP targets the

KIX-PPD complex for degradation to control meristemoid cell proliferation and organ

growth.

In Arabidopsis leaves, meristemoid cell division gives rise to almost half of the total number

of pavement cells, thereby contributing significantly to the final leaf size[9, 10]. The PPD pro-

teins were the first two identified factors that control organ size by restricting meristemoid cell

proliferation in Arabidopsis[8]. The ppdmutants showed large and dome-shaped leaves due to

increased meristemoid cell proliferation. The KIX8 and KIX9 have been recently shown to

recruit the transcription repressor TPL and form a repressor complex with PPD[12]. The kix8-
1 kix9-1mutant exhibited similar organ growth phenotypes to ppdmutants, although their

genetic interactions remain unknown. We have recently revealed that SAP/SOD3, an F-

box protein, modulates the stability of PPD to control organ growth by influencing meriste-

moid cell proliferation[38]. Considering that the ppdmutant only partially suppressed the

organ growth phenotypes of sod3-1[38], it is possible that SAP may target other substrates for
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degradation as well. Supporting this idea, we demonstrate that SAP interacts with KIX8 and

KIX9 and targets them for degradation. Overexpression of SAP resulted in the destabilization

of KIX8 and KIX9 proteins, while KIX8 and KIX9 proteins were accumulated in the sod3-1
mutant compared with those in the wild type. Interestingly, SAP-mediated degradation of

PPD proteins is dependent of KIX8 and KIX9, indicating that SAP may target PPD-KIX com-

plex for degradation. Genetic analyses showed that kix8-1 kix9-1 partially suppressed the organ

growth and meristemoid proliferation phenotypes of sod3-1, suggesting that SAPmay act in a

common pathway with KIX8 and KIX9 to control organ growth by regulating meristemoid cell

proliferation. In addition, overexpression of KIX8 or KIX9 decreases organ size, and 35S:Myc-
KIX8 or 35S:Myc-KIX9 can partially rescue the organ size phenotypes of 35S:GFP-SAP, rein-

forcing the genetic interaction of SAP and KIX. These results support that KIX8 and KIX9 are

two novel substrates of SAP, and SAP targets the KIX-PPD complex for degradation in Arabi-
dopsis. Consistent with this conclusion, the simultaneous disruptions of both KIX8/9 and

PPD2 suppressed the organ growth and meristemoid proliferation phenotypes of sod3-1 better

than the disruption of either KIX8/9 or PPD2.

It has been shown that the PPD-KIX complex represses the expression of D-type cyclins

and other target genes. Loss-of-function of PPD or KIX results in up-regulation of PPD

target genes. Interestingly, we found that PPD target genes, such as CYCD3;2 and CYCD3;3,

were down-regulated in the sod3-1mutant (Fig 5B), suggesting that SAP positively influences

the expression of PPD target genes. The expression levels of CYCD3;2 and CYCD3;3 in sod3-1
were partially rescued by kix8-1 kix9-1, and further restored by kix8-1 kix9-1 ppd2-1 (Fig 5B),

suggesting that SAP functions with the KIX-PPD complex in a common pathway to regulate

the expression of PPD target genes. Thus, it is possible that SAP may release the transcriptional

repression of PPD target genes by targeting the KIX-PPD repressor complex for degradation

(Fig 5C). Notably, in sod3-1 ppd2-1 kix8 kix9, the expression levels of CYCD3;2 and CYCD3;

3 are still decreased compared to the wild type, which is consistent with the observation

that the organ size of sod3-1 ppd2-1 kix8 kix9 is decreased compared to the wild type. This

indicates that SAP may target other substrates which also regulate the expression of CYCD3;

2 and CYCD3;3. We have shown that SAP medicates the degradation of PPD1, which func-

tions redundantly with PPD2 in organ size control [38]. Besides, SAP may target other uniden-

tified substrates, including KIX8/9 homologues, for degradation. In sod3-1 ppd2-1 kix8 kix9,

PPD1 and other SAP targets may accumulate and repress the expression of CYCD3;2 and

CYCD3;3.

Organ size is an important agronomic trait that influences biomass and yield. Leaves or

seeds are usually harvested as the main products in crops. Thus, the increased production of

plant organs would be valuable for crop producers. The ppd and kixmutants produced large

organs, and overexpression of SAP increased organ size in Arabidopsis. Interestingly, themtbs-
1mutant, which contains a mutation in the PPD homolog, has been recently reported to pro-

duce large leaves, seed pods and seeds inMedicago truncatula[40]. Down-regulation of the

PPD homolog can also increase seed size and quality in soybean[40]. In addition, a recent

study showed that allelic variation in the intron of SAP homolog contributes to flower size in

Capsella[41]. These studies suggest that the SAP-KIX-PPD module have conserved functions

in different plant species. As homologs of SAP, KIX and PPD are found in eudicot genera[8,

12, 38], SAP, KIX and PPD homologs in dicots (e.g soybean and oilseed rape) could be manip-

ulated to increase seed and organ size in crops. During breeding programs, breeders have

already selected important yield related traits, such as seed and organ size and seed shape.

Thus, it will be interesting to investigate whether natural allelic variations of SAP, KIX and

PPD homologs have been selected by crop breeders in the future.
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Methods

Plant materials and growth conditions

The suppressor of da1-1 (sod3-1), ppd2-1 (SALK_142698), 35S:GFP-SAP, 35S:GFP, and kix8-1
kix9-1 plants were described previously[12, 38]. All transgenic plants and mutants were in the

Arabidopsis thaliana Col-0 ecotype. Plants were grown in greenhouse under the long-day con-

ditions (16 hrs light/8 hrs dark) at 22˚C.

Constructs and plant transformation

The primers used for all the constructs were listed in S1 Table. The coding sequences (CDS) of

KIX8 and KIX9were cloned into pCAMBIA1300-221-Myc to construct 35S:Myc-KIX8/9. The

plasmids were transformed into Arabidopsis plants using Agrobacterium tumefaciens GV3101.

MS medium supplemented with hygromycin (30 μg ml−1) was used to screen transformants.

T2 seeds with a typical 3:1 segregation ratio for hygromycin-resistant versus hygromycin-sen-

sitive were used for protein stability analysis.

Morphological and cellular analysis

To measure leaf area, petal area and silique length, we photographed leaves, petals (stage 14)

and siliques and used ImageJ software to analyze the images. To measure cell size, leaves and

petals were treated with the clearing solution [38] and then photographed under a differential

interference contrast (DIC) microscope (Leica DM2500). The middle region of adaxial side of

petals and the palisade parenchyma cells in the middle region of the leaves were used for cell

size measurement.

Dental resin imprints were performed as described before[13]. The dental resin imprints

were taken daily from the abaxial surface of the first leaves from DAG (day after germination)

12 to DAG 14. The surface of the epidermis was copied with Vinyl Polysiloxane impression

material. The Vinyl Polysiloxane impression surface was further copied by covering with clear

nail polish, and the nail polish copies were observed by scanning electron microscopy.

Quantitative Real Time -PCR (RT-PCR) analysis

The primers used for quantitative RT-PCR analysis were listed in S1 Table. Total RNA extrac-

tion and quantitative RT-PCR analysis were performed as described before [38]. ACTIN2 was

used as a control for normalization. Relative amounts of mRNA were calculated using the

Cycle threshold (Ct) method as described previously[38].

Yeast assays

For yeast two-hybrid analysis, the bait construct pGBKT7-SAP described before[38] was used

to screen for SAP interacting proteins using the Matchmaker Gold Yeast Two-Hybrid system

(Clontech). The CDS of KIX8 and KIX9were cloned into pGADT7 to confirm the interaction

of KIX8/9 with SAP. The primers used to construct pGADT7-KIX8/9were listed in S1 Table.

Transformation of yeast cells was performed according to the user manual (Clontech). Trans-

formation of the bait vector pGBKT7with KIX8-AD and KIX9-AD and the prey vector

pGADT7with SAP-BD was used as the negative control.

Arabidopsis protoplast isolation and transformation

Protoplasts were isolated from Arabidopsis leaves and the transformation was performed as

described before [42]. EOD1-FLAG was used as a control for protoplast transformation to
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indicate that transformation efficiency was comparable between different transformations.

After transformation, protoplasts were cultured for 16 hours at 22˚C in the dark and then total

proteins were isolated for Western blot analysis.

In vitro protein-protein interaction

The primers used to constructHis-KIX8/9 were listed in S1 Table. The coding sequences of

KIX8 and KIX9were cloned into pET-28a(+). GST-SAP and GST-GUS were described before

[38]. Pull-down assay was performed as described previously[27], and the precipitates were

analyzed by immunoblot with anti-GST (Abmart) and anti-His (Abmart) antibodies.

Split luciferase complementation assay

The primers used to construct cLUC-KIX8/9 and SAP-nLUC were listed in S1 Table. The CDS

of KIX8 and KIX9were cloned into the vector pCAMBIA-split_cLUC, and the CDS of SAPwas

cloned into the vector pCAMBIA-split_nLUC. The plasmids were transformed into A. tumefa-
ciensGV3101 and transiently expressed in N. benthamiana leaves as described previously[27].

The luciferin (0.5 mM) was sprayed on leaves and incubated 3 min before luminescence detec-

tion by NightOWL II LB983 imaging apparatus.

In vivo co-immunoprecipitation

To prevent protein degradation, seedlings were pre-treated with MG132 before co-immuno-

precipitation experiments. Co-immunoprecipitation was performed as described before [27].

The immunoprecipitates were detected by immunoblot analysis with anti-Myc (Abmart) and

anti-GFP (Abmart) antibodies, respectively.

MG132 treatment and protein stability analysis

Ten-day-old seedlings were incubated in liquid MS medium with 50 μM MG132 or DMSO

control for 16 h. Total protein were extracted and analyzed by immunoblot using anti-RPN6

(Enzo) and anti-Myc (Abmart) antibodies, respectively. Myc-KIX8 and Myc-KIX9 protein lev-

els were quantified by ImageJ software.

Accession numbers

Sequence data from this article can be found in the EMBL/GenBank data libraries under acces-

sion numbers: AT5G35770 (STERILE APETALA [SAP]), AT4G14713 (PEAPOD1 [PPD1]),

AT4G14720 (PEAPOD2 [PPD2]), AT3G24150 (KIX8), and AT4G32295 (KIX9).

Supporting information

S1 Fig. SAP interacts with KIX8 and KIX9 in yeast cells. (A) SAP interacts with full-length

KIX8 and KIX9, but does not interact with the truncations of KIX proteins in yeast cells.

Transformants were selected on media -2 (SD/-Leu/-Trp), and interactions were tested on

media -4 (SD/-Ade/-His/-Leu/-Trp) using a serial dilution of the transformants mixtures (1,

10-1and 10−2). (B) Schematic diagram of KIX8/9 and the derivatives containing specific protein

domains.

(PDF)

S2 Fig. The protein level of TPL is not affected by overexpression of SAP. Myc-TPL and

GFP-SAP or GFP control were co-expressed in Col-0 protoplasts, and the amount of TPL pro-

teins was detected by immunoblot using anti-Myc antibody. EOD1-Flag was used as a control
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for protoplast transformation.

(PDF)

S3 Fig. Expression of PPD in the kix mutants. �P<0.05 compared with the wild type (Stu-

dent’s t-test).

(PDF)

S4 Fig. Organ size phenotypes of 35S: Myc-KIX plants. (A-D) The thirty-day-old plants (A),

fifth leaves (B), siliques (C) and flowers (D) of Col-0, 35S:Myc-KIX8 #2, 35S:Myc-KIX8 #5,

35S:Myc-KIX9 #3, and 35S:Myc-KIX9 #7 (from left to right). (E) Expression of Myc-KIX pro-

teins in the transgenic plants showing by western blot. 1, Col-0, 2, 35S:Myc-KIX8 #2, 3, 35S:

Myc-KIX8 #5, 4, 35S:Myc-KIX9 #3, 5, 35S:Myc-KIX9 #7 (F-J) Fifth leaf area (LA), leaf cell area

(LCA), petal area (PA), petal cell area (PCA), and silique length (SL) of Col-0, 35S:Myc-KIX8
#2, 35S:Myc-KIX8 #5, 35S:Myc-KIX9 #3, and 35S:Myc-KIX9 #7. Values are given as mean±s.e.

relative to the respective wild-type values, set at 100%. 10 leaves, 70 petals, and 20 siliques were

used to measure LA, PA, and SL, respectively. 10 leaves and 15 petals were used to measure

LCA and PCA, respectively. ��P<0.01 compared with the wild type (Student’s t-test). Scale

bars, 5cm in (A), 5mm in (B), 3mm in (C) and 1mm in (D).

(PDF)

S5 Fig. Organ size phenotypes of Col-0, 35S: GFP-SAP, 35S: Myc-KIX8 #2, 35S: GFP-SAP;
35S: Myc-KIX8 #2, 35S: Myc-KIX9 #3, 35S: GFP-SAP; 35S: Myc-KIX9 #3 plants. (A-D) The

thirty-day-old plants (A), fifth leaves (B), siliques (C) and flowers (D) of Col-0, 35S:GFP-SAP,

35S:Myc-KIX8 #2, 35S:GFP-SAP; 35S:Myc-KIX8 #2, 35S:Myc-KIX9 #3, 35S:GFP-SAP; 35S:

Myc-KIX9 #3 (from left to right). (E) Expression of Myc-KIX proteins in different genetic

background showing by western blot. 1, Col-0, 2, 35S:GFP-SAP, 3, 35S:Myc-KIX8 #2, 4, 35S:

GFP-SAP; 35S:Myc-KIX8 #2, 5, 35S:Myc-KIX9 #3, 6, 35S:GFP-SAP; 35S:Myc-KIX9 #3 (F-H)

Fifth leaf area (LA), petal area (PA), and silique length (SL) of Col-0, 35S:GFP-SAP, 35S:Myc-
KIX8 #2, 35S:GFP-SAP; 35S:Myc-KIX8 #2, 35S:Myc-KIX9 #3, 35S:GFP-SAP; 35S:Myc-KIX9
#3. Values are given as mean±s.e. relative to the respective wild-type values, set at 100%. 10

leaves, 60 petals and 20 siliques were used to measure LA, PA and SL, respectively. Different

lowercase letters above the columns indicate statistically different groups (P<0.01). (I) The

expression levels of CYCD3;2 and CYCD3;3 in Col-0, 35S:GFP-SAP, 35S:Myc-KIX8 #2, 35S:

GFP-SAP; 35S:Myc-KIX8 #2, 35S:Myc-KIX9 #3, 35S:GFP-SAP; 35S:Myc-KIX9 #3 plants.
� P<0.05; �� P<0.01 compared with the wild type (Student’s t-test). Scale bars, 5cm in (A),

5mm in (B), 3mm in (C) and 1mm in (D).

(PDF)

S6 Fig. Representative images of dental resin imprints of the abaxial epidermis of first pair

of leaves at 12 to 14 DAG. Meristemoid cells monitored were marked as yellow. Arrows label

the asymmetric division of one meristemoid cell. Bar, 50 μm.

(PDF)

S7 Fig. Relative expression levels of cell proliferation and organ growth-related genes in

the first pair of leaves of twelve-day-old Col-0, sod3-1, kix8-1 kix9-1, sod3-1 kix8-1 kix9-1,

ppd2-1, and sod3-1 kix8-1 kix9-1 ppd2-1 seedlings. �P<0.05, ��P<0.01 compared with the

wild type (Student’s t-test).

(PDF)

S1 Table. List of primers used in this study.

(PDF)
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