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Abstract

Climate change is a major threat to global biodiversity that will produce a range of new

selection pressures. Understanding species responses to climate change requires an

interdisciplinary perspective, combining ecological, molecular and environmental

approaches. We propose an applied integrated framework to identify populations under

threat from climate change based on their extent of exposure, inherent sensitivity due

to adaptive and neutral genetic variation and range shift potential. We consider

intraspecific vulnerability and population-level responses, an important but often

neglected conservation research priority. We demonstrate how this framework can be

applied to vertebrates with limited dispersal abilities using empirical data for the bat Ple-

cotus austriacus. We use ecological niche modelling and environmental dissimilarity anal-

ysis to locate areas at high risk of exposure to future changes. Combining outlier tests

with genotype–environment association analysis, we identify potential climate-adaptive

SNPs in our genomic data set and differences in the frequency of adaptive and neutral

variation between populations. We assess landscape connectivity and show that chang-

ing environmental suitability may limit the future movement of individuals, thus affect-

ing both the ability of populations to shift their distribution to climatically suitable areas

and the probability of evolutionary rescue through the spread of adaptive genetic varia-

tion among populations. Therefore, a better understanding of movement ecology and

landscape connectivity is needed for predicting population persistence under climate

change. Our study highlights the importance of incorporating genomic data to deter-

mine sensitivity, adaptive potential and range shift potential, instead of relying solely on

exposure to guide species vulnerability assessments and conservation planning.

K E YWORD S

bats, conservation genomics, genotype–environment associations, global change, landscape

genetics, range shifts

1 | INTRODUCTION

Climate change is a major threat to global biodiversity (IPCC, 2013).

Increased periods of drought, thermal stress and extreme climatic

events are likely to produce a range of new selection pressures

(Hoffmann & Sgr�o, 2011). The ability of populations to respond to

these changes depends on the rate and magnitude of climate change

and individual adaptive capacity based on physiological sensitivity to
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change, phenotypic plasticity, genetic diversity and dispersal ability

(Dawson, Jackson, House, Prentice, & Mace, 2011). Many species

are already affected by climate change and, as a result, have dis-

played a variety of responses, including shifting their ranges and

changes to phenotypes, genotypes, growth, phenology and ecological

relationships (Pe~nuelas et al., 2013). Hence, understanding how bio-

diversity responds to climate change requires an interdisciplinary

perspective, combining ecological, molecular and environmental

approaches, and an integrated assessment of exposure to changing

climatic conditions, adaptive potential and movement ability. Yet

while exposure is commonly used to assess species vulnerability to

climate change, the other aspects of vulnerability, sensitivity and

adaptive potential have been largely neglected, thus precluding accu-

rate estimations of species-specific vulnerability (Butt et al., 2016).

Ecological niche models (ENMs), also known as species distribution

models, offer an effective tool for forecasting how climate change may

alter future species distributions and patterns of diversity (Elith, Kear-

ney, & Phillips, 2010). ENMs have been used extensively to identify

species vulnerable to future changes (Pacifici et al., 2015) and predict

global patterns of extinction risk (Urban, 2015). Their popularity is

attributed to the availability of fine-scale climate change scenarios, the

relative simplicity of the modelling procedures and the lack of detailed

physiological and life history data necessary for parameterizing more

complex mechanistic or demographic models (Guisan & Thuiller, 2005;

Thuiller et al., 2013). However, predictive modelling studies have been

criticized for being oversimplistic because they rarely address evolu-

tionary processes (Thuiller et al., 2013) or integrate genetic data to

support and validate predictions (Gotelli & Stanton-Geddes, 2015).

The study of local adaptations to current climatic gradients can con-

tribute to understanding the ability of populations to persist or adapt to

rapid environmental change (Fournier-Level et al., 2011). Intraspecific

variation in climatic tolerance will result in different responses to climate

change below the species level, and therefore, geographic areas that are

most sensitive can be identified through mapping spatial patterns of

local adaptations (Fitzpatrick & Keller, 2015). Recent technological

advances and theoretical developments enable investigation of the

genetic basis of adaptations and mechanisms of adaptive responses in

wild populations (Andrews, Good, Miller, Luikart, & Hohenlohe, 2016;

Orsini, Andrew, & Eizaguirre, 2013). Studies researching patterns of

genome variation demonstrated how adaptations to climatic conditions

can shape the spatial distribution of variation in plants (Arabidopsis thali-

ana, Fournier-Level et al., 2011) and humans (Hancock et al., 2011).

However, most research to date has focused mainly on model organ-

isms and on genes thought to be involved in adaptations to current

environmental conditions, rather than predicting responses to future

conditions (Manel & Holderegger, 2013).

While some populations can persist through available genetic varia-

tion or their adaptive capacity, the persistence of many individuals

depends on their ability to track suitable conditions in space through

dispersal or by shifting to different habitats (Bellard, Bertelsmeier, Lead-

ley, Thuiller, & Courchamp, 2012). Understanding dispersal is important

for predicting species responses to environmental change because it

determines both the rate of distributional shifts and the rate of

evolutionary adaptation to changing conditions through the spread of

adaptive alleles among populations (Travis et al., 2013). Landscape

genetics, the study of the effects of environmental heterogeneity on

the spatial distribution of genetic variation (Manel, Schwartz, Luikart, &

Taberlet, 2003), can help identify barriers to dispersal that are likely to

limit species ability to respond to climate change through tracking

changes to their environmental niche (Scoble & Lowe, 2010). A further,

yet unexplored, application is to infer the effect of landscape connectiv-

ity on the probability of evolutionary adaptation through the spatial

spread of adaptive variation between populations. Despite its potential

as a predictive tool, thus far landscape genetics has been primarily

applied in a descriptive manner (Manel & Holderegger, 2013).

We propose an applied framework that integrates ecological,

molecular and environmental approaches to identify populations under

threat from global climate change. Unlike previous climate change vul-

nerability assessments (e.g., Pacifici et al., 2015; Pearson et al., 2014),

we consider the intraspecific level because populations will go extinct

long before species, and it is populations, not species, that are the

focus of conservation management. Our framework aims to address

the lack of emphasis on sensitivity and adaptive capacity in vulnerabil-

ity assessments used to inform conservation planning under climate

change (Butt et al., 2016). We assess exposure to changing climatic

conditions using predictive ENMs and spatial environmental data, sen-

sitivity to climate change using genomic data to identify climate-driven

genetic adaptations, and range shift potential using a predictive land-

scape genetics approach (Figure 1). This framework is aimed at organ-

isms that are unlikely to genetically adapt fast enough through the

spread of novel mutations in the population to keep pace with future

changes due to their relatively long lifespans, long generation times

and small population sizes (i.e., most vertebrates; Hoffmann & Sgr�o,

2011). Therefore, instead of emphasizing general adaptive capacity,

like previous conceptual frameworks have done (e.g., Dawson et al.,

2011), we focus on the ability to track future climatic suitability (range

shift potential) and evolutionary adaptation through the spread of

adaptive genetic variation among populations.

We apply our integrated framework to the grey long-eared bat,

Plecotus austriacus, a European bat species with relatively limited dis-

persal ability that is of conservation concern at the northern parts of

its range (Van der Meij et al., 2015). We selected this species

because its geographic distribution is limited by climate and its cur-

rent patterns of genetic variation were shaped by past climatic

changes (Razgour et al., 2013). Bats possess a number of traits that

make them vulnerable to climate change, including low reproductive

output, ecological specialization and high trophic positions (Jones &

Rebelo, 2013). High surface-to-volume ratios due to large membra-

nous, noninsulated wings, mean that evaporative water loss is higher

in bats than in other small mammals (Webb, Speakman, & Racey,

1995). As a result, bats may require specific physiological adapta-

tions to cope with increased temperatures and aridity (Mu~noz-Garcia

et al., 2016). We aim to identify P. austriacus populations vulnerable

to future climate change based on their extent of exposure to

changing climatic conditions, sensitivity due to adaptive and neutral

genetic variation and range shift potential. We use this case study to
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demonstrate how our integrated framework can inform conservation

management under global environmental change.

2 | MATERIALS AND METHODS

2.1 | Sampling design

We collected nonlethal tissue samples (wing biopsies) from Plecotus

austriacus bats, sampled between 2009 and 2013 from across the

Iberian Peninsula (Iberia) and the south of England. These areas rep-

resent the species’ southern and northern range limits, as well as the

centre and margin of the species’ ecological niche, respectively. We

included 10 populations (eight from Iberia, two from England) that

had at least eight individuals with sufficiently high DNA quantity and

quality (N = 94). These populations represent different geographic

areas and combinations of climatic conditions (Figure 2; Table 1). All

populations were located more than 90 km apart, exceeding the

maximum recorded dispersal distance in this species (62 km; Riede,

2001).

2.2 | Assessing exposure: environmental changes
and ecological niche modelling

ENMs were generated using the maximum entropy modelling

approach MAXENT v3.3.3 (Phillips, Anderson, & Schapire, 2006) to pre-

dict changes to the distribution of suitable conditions for P. austria-

cus under future climate change projections. Model extent was set

as the whole of Europe to account for the full range of environmen-

tal conditions experienced by the species. Model resolution was set

at ~1 km to match the resolution of the climatic data used in the

sensitivity analysis. ENMs were built using 142 genetically confirmed

nonclustered location records (Razgour et al., 2013) and included six

climatic variables with future projections for 2070, a static topo-

graphic variable, slope and a land cover variable with no fine-scale

future projections (Table S1). We included land cover because such

nonclimatic variables can greatly improve ENM predictive

performance, even in the absence of future projections (Stanton,

Pearson, Horning, Ersts, & Res�it Akc�akaya, 2012). Future projections

were carried out using the HadCM3_ES General Circulation Model

(www.worldclim.org) and the IPCC5 + 8.5 W/m2 Representative

Concentration Pathways scenario (IPCC 2013), representing the

“worst-case” scenario, whereby human consumption of fossil fuels is

expected to remain the same as at present (Appendix S1 for further

details on variable selection and model parameterization).

The predictive power of the ENMs was evaluated from ten

cross-validations, using the area under the receiver operator curve

(AUC) criteria. Climatic suitability was determined based on pre-

dicted relative probability of occurrence and was averaged across

the four cells adjacent to the population location to cover the colony

home range (Razgour, Hanmer, & Jones, 2011). To calculate changes

in range suitability within Iberia, continuous occurrence probability

model outputs were reclassified into binary maps using the thresh-

olding method that maximizes the sum of sensitivity and specificity

(as recommended by Liu, White, & Newell, 2013).

Maximum temperatures and summer rainfall (Bio5 and Bio18,

downloaded from WorldClim, www.worldclim.org) were used to test

for environmental dissimilarity between current and future (2070)

conditions. These variables represent climatic conditions that are

predicted to change under future projections for Iberia (Diffenbaugh

& Field, 2013) and are likely to affect bats. Increased aridity and pro-

longed droughts around the Mediterranean are predicted to affect

insect prey availability during the summer (Frampton, Van Den Brink,

& Gould, 2000), and thus decrease reproductive success in bats

(Adams, 2010; Amorim, Matta, Beja, & Rebelo, 2015). In addition,

bat survival in warmer and more arid conditions requires physiologi-

cal adaptations to reduce evaporative water loss (Mu~noz-Garcia

et al., 2016).

2.3 | Assessing sensitivity: genomic data analysis

We generated a genomic data set containing thousands of anony-

mous genetic loci from across the P. austriacus genome using the

F IGURE 1 The integrated framework to identify populations under threat from future climate change, including the approaches and
methods used to assess the different framework components
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reduced-representation genome sequencing method double digest

restriction-site-associated DNA sequencing, ddRADseq (Miller, Dun-

ham, Amores, Cresko, & Johnson, 2007; Peterson, Weber, Kay,

Fisher, & Hoekstra, 2012; library construction and sequencing proto-

cols outlined in Appendix S1). Bioinformatics of the high-throughput

sequencing data was carried out using the STACKS pipeline

(Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013; details in

Appendix S1). To improve robustness of the data set, only RAD loci

that contained fewer than three SNPs and were genotyped in at

least 70% of the samples (67 individuals) were considered for analy-

sis. The SNP data set was processed in PLINK v1.9 (Purcell et al.,

2007) to remove individuals that had more than 50% missing data

and loci with more than 30% missing data and minor allele frequen-

cies below 0.03 (alleles present in less than three individuals). We

also removed close relatives (based on identity-by-state distances, PI

HAT >0.5) and loci that were out of Hardy–Weinberg equilibrium

(p < .01) in more than two populations. Population-level analyses

were carried out on populations containing a minimum of seven indi-

viduals to ensure an adequate representation of allele frequencies

(Willing, Dreyer, & van Oosterhout, 2012).

Genetic population structure was determined using individual-

based Bayesian assignment tests, implemented in the program

STRUCTURE v2.3.4 (Pritchard, Stephens, & Donnelly, 2000)

(Appendix S1 for STRUCTURE running procedures). The significance of

genetic differences between populations and geographic regions

(England vs. Iberia) was determined based on a multilocus analysis

of molecular variance (AMOVA) implemented in the R package GSTUDIO

(Dyer, 2009).

F IGURE 2 Plecotus austriacus
populations included in the study
presented over maps of maximum
temperatures and summer rainfall
(www.worldclim.org)

TABLE 1 Plecotus austriacus populations included in the final genomic data set with location, region, geographic area within the region, GPS
coordinates (WGS1984), number of individuals and average population SNP data set coverage

Population Year Region Area Latitude Longitude Number of individuals Average coverage (%)

Lisboa 2013 Iberia West 38.764 �9.250 10 91.2

Bizkaia 2013 Iberia North 43.331 �2.782 10 99.0

Girona 2013 Iberia Northeast 42.323 3.166 9 95.0

Granada 2013 Iberia South 37.109 �4.170 8 85.0

Albacete 2013 Iberia Centre–East 39.296 �2.069 9 97.2

Valladolid 2013 Iberia Centre–North 41.581 �4.586 10 98.3

Valencia 2013 Iberia East coast 39.409 �0.960 9 98.6

Vila Real 2009 Iberia Northwest 41.300 �7.800 3 73.4

Devon 2011–2013 England Southwest 50.552 �3.550 8 90.3

Dorset 2011 England South–Centre 50.645 �2.315 7 71.7
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2.3.1 | Identifying a signature of climate-driven
adaptations

To identify a signature of climate-driven local adaptations, we com-

bined population genomics and ecological approaches. Outlier tests,

as implemented in the programs Bayescan (Foll & Gaggiotti, 2008)

and LOSITAN (FDist, Antao, Lopes, Lopes, Beja-Pereira, & Luikart,

2008), were used to identify SNPs potentially under directional

selection, or linked with genes under selection, based on higher

levels of genetic differentiation among populations relative to

expected neutral distributions (Appendix S1 for test parameters).

Allele frequencies of SNPs identified as outliers were correlated

against environmental variables (maximum temperature and summer

rainfall) using logistic regressions (glm function in R), as described by

Schoville, Widmer, Deschamps-Cottin, and Manel (2013).

We carried out a genotype–environment association analysis to

test for associations between allele frequencies and local environ-

mental variables (maximum temperature and summer rainfall). We

used the latent factor mixed model (LFMM) Frichot, Schoville, Bou-

chard, and Francois (2013) approach, implemented in the R package

LEA (Frichot & Franc�ois, 2015). We corrected for population struc-

ture through including the number of populations (K) identified by

STRUCTURE assignment tests as latent factors in the models. We per-

formed five LFMM repetition runs with 1,000,000 iterations and

500,000 iterations for burn-in. Z-scores of multiple runs were com-

bined using the median value, and p-values were adjusted for

expected FDR of 0.05 (following the procedures in Frichot &

Franc�ois, 2015; Appendix S2 for LFMM R script). SNPs that were

found to be both under directional selection based on outlier tests

and statistically associated with climatic variables based on the

genotype–environment association analysis were classified as poten-

tially associated with climate-adaptive genetic variation, that is with

adaptations to local climatic conditions. However, it is important to

note that these SNPs may represent genomic regions linked to

genes under selection rather than specific climate-adaptive genes.

Genotype–environment associations between SNPs and climatic

variables were investigated at two scales, across the whole study

area (England and Iberia) and within Iberia, to account for clines in

allele frequencies at neutral loci due to genetic drift and allele surf-

ing during population expansion (Excoffier & Ray, 2008). The Iberian

Peninsula acted as the main glacial refugium for P. austriacus, where

a stable population was maintained across glacial cycles (Razgour

et al., 2013). Hence, SNPs identified as potentially under selection

within this area likely reflect true climate-driven adaptations rather

than artefacts of neutral processes that occurred during post-glacial

range expansion.

2.3.2 | Patterns of neutral genetic variation

Neutral genetic diversity was estimated based on levels of heterozy-

gosity in the population after excluding SNPs identified as outliers

(under selection) by Bayescan. We used the –het function in Plink to

compare observed and expected individual levels of homozygosity.

Heterozygosity was calculated as 1 � (mean population F), F being

the coefficient estimation of observed (Obs) versus expected (Exp)

homozygosity (Hom):

F ¼ ðObs Hom� Exp HomÞ=ðTotal� Exp HomÞ:

2.4 | Assessing range shift potential: landscape
genetics analysis

Genetic distances between pairs of populations were estimated sep-

arately for the neutral SNP data set and for SNPs identified as a

potentially under climate-driven selection, using the Fst measure of

genetic differentiation in the R package DIVERSITY (Keenan, McGinnity,

Cross, Crozier, & Prod€ohl, 2013). Geographic (Euclidean) distances

between populations were calculated in ARCGIS v10 (ESRI). The analy-

sis included landscape variables and resistance costs that were previ-

ously shown to affect functional connectivity in P. austriacus

(Razgour, 2015; Razgour et al., 2014): habitat suitability measured

through ENMs, forest cover variables, altitude and slope. We did not

include landscape variables that were highly correlated with other

variables or geographic distance (R2 > .70) because they can lead to

the identification of spurious inferences (Cushman, Wasserman,

Landguth, & Shirk, 2013).

Landscape variables were converted to resistance cost surfaces

in ARCGIS and were assigned resistance costs ranging from one (no

resistance to movement) to 100 (strong barrier to movement). The

sea was assigned a resistance cost of 200 to reflect the lower

likelihood of bats crossing large expanses of water than land

because previous studies have found limited gene flow across seas

in this species (Razgour et al., 2014). We tested the effect of

decreasing the resistance costs of crossing the sea to 120. We

tested how changing the resistance costs of the different land-

scape variables and converting continuous into categorical vari-

ables affected the strength of the model associations with genetic

differentiation (Appendix S1 for generating resistance cost sur-

faces).

CIRCUITSCAPE v4.0.5 (McRae, 2006) was used to calculate resis-

tance distance matrices between populations and estimate potential

movement pathways across the landscape based on the cumulative

cost of movement due to landscape resistance. We used the nine

populations as our focal nodes and selected the “pairwise” modelling

mode (iterating across all population pairs in focal node file). Move-

ment pathways (cumulative current maps) were generated based on

present and future (2070) conditions to assess the future movement

potential of individuals and adaptive genetic variation among popula-

tions.

We used multiple regressions on distance matrices (MRDM in

the R package ecodist; Goslee & Urban, 2007) with 10,000 permuta-

tions to test for the effect of landscape variables on genetic differ-

entiation (as a surrogate for gene flow and individual movement)

between population pairs. We ran MRDM between Fst and all land-

scape variables and their different resistance costs to select the

resistance cost combinations that showed the strongest correlations.
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Following Dyer, Nason, and Garrick (2010), we accounted for the

effect of geographic distance using a stepwise approach. We first

ran MRDM between Fst and geographic distance and then used the

residuals from the regression as the response variable in subsequent

MRDM models to test for associations with landscape variables. The

best-fit model was selected based on highest R2 values and signifi-

cant p values for all variables (p < .05). MRDM was also used to test

whether genetic differentiation (Fst) between populations in climate-

adaptive SNPs was a function of environmental dissimilarity (differ-

ences in maximum temperature and summer rainfall) between loca-

tions (isolation by environment).

2.5 | Identifying level of risk

We developed a quantitative approach to identify the level of risk to

populations from future climate change based on our three frame-

work components, exposure, sensitivity and range shift potential.

Assigned levels of risk aim to guide conservation prioritization and

inform management decisions through highlighting which aspects

should be the focus of conservation action.

Exposure was ranked from low (1) to high (4) based on changes

in climatic suitability as predicted by the ENMs (reduction in relative

probability of occurrence and changes from suitable to unsuitable

conditions) and the extent of environmental dissimilarity between

present and future conditions (Table 2).

Sensitivity was determined based on the frequency of alleles in

SNPs identified as potentially associated with warmer and drier cli-

matic conditions (adaptive sensitivity), as well as overall levels of

neutral genetic diversity (neutral sensitivity). Levels of adaptive sen-

sitivity were determined based on the frequency of potential cli-

mate-adaptive alleles in the population, looking at both overall mean

frequencies across all loci (high [++ or +] <0.50; medium [0]–low [�]

>0.50), and number of adaptive alleles present at particularly low fre-

quencies (<0.25) in the population (Table 3). Levels of neutral sensi-

tivity were assessed based on the potential contribution of neutral

genetic diversity to future adaptive potential (� low sensitivity due

to high levels of neutral genetic diversity; 0 medium sensitivity; +

high sensitivity due to relatively low levels of genetic diversity). The

two measures were combined together to give a single measure of

overall sensitivity.

Range shift potential was determined according to the degree of

connectivity to other populations under future conditions or to areas

predicted to be climatically suitable, as estimated based on Cir-

cuitscape movement density (cumulative current) maps. Populations

were deemed to have low range shift potential if they were predicted

to become isolated (low connectivity) under future conditions, or only

connected to adjacent populations and climatically unsuitable areas.

The three framework components were combined together to

determine the level of risk to Iberian populations of P. austriacus,

ranging from low to high risk. When combining the three compo-

nents, we placed higher weights on exposure to future changes in

climatic conditions (Table 4).

3 | RESULTS

3.1 | Exposure to climate change

ENMs had high discrimination and predictive abilities

(AUCtrain = 0.892, ACUtest = 0.821). The main variables affecting

habitat suitability for Plecotus austriacus were winter and summer

temperatures, summer rainfall and land cover (Fig. S1). Future

TABLE 2 Variables and categories used to assess level of exposure to future changing climatic conditions. Formula indicates whether all
variables were combined together or only one or two needed to be true. ENM refers to the outputs of the ecological niche model—continuous
output for changes in relative occurrence probability, or binary output for changes in climatic suitability. Temperature and rainfall dissimilarity
refer to differences between present and future (2070) conditions

Level of Exposure Formula ENM Temperature dissimilarity Rainfall dissimilarity

1 (low) ENM + Temp + Rain Change in relative occurrence

probability <25%

Low: <6°C increase Low: <25% decrease

Area remains climatically suitable

2 (medium–low) ENM + (Temp OR Rain) Change in relative occurrence

probability >25%

Medium: 6–8°C increase Medium: 25–50% decrease

Area remains climatically suitable

3 (medium–high) ENM OR Temp OR Rain Area changed from climatically

suitable to unsuitable

High: >8°C increase High: >50% decrease

4 (high) ENM + (Temp OR Rain) Area changed from climatically

suitable to unsuitable

High: >8°C increase High: >50% decrease

TABLE 3 Assessment of sensitivity based on the frequency of
alleles identified as potentially associated with climate-adaptive
genetic variation in the population

Level of Sensitivity
Mean frequency
across all adaptive loci

No. adaptive alleles at
frequency <0.25

Very high (++) <0.5 More than a third

High (+) <0.5 Less than a third

Medium (0) ≥0.5 At least one

Low (�) >0.5 None
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models predicted 66.3% reduction in the suitable range of P. austria-

cus within Iberia. Under present conditions, 54.8% of Iberia was pre-

dicted to be climatically suitable, but only 18.5% was predicted to

remain suitable by 2070. All populations were found within climati-

cally suitable areas under present conditions. Under future condi-

tions, five Iberian populations were predicted to occur either in

climatically unsuitable areas (Albacete, Valencia and Girona) or in

small isolated fragments of suitable habitats (Granada and Valladolid).

Habitat suitability was predicted to increase slightly in England and

around the north Iberian coast (Figure 3).

Analysis of environmental dissimilarity between current and

future conditions predicted that the central and eastern populations

(Valladolid, Albacete and Valencia) will experience the greatest

increase in maximum temperatures (>7°C) and the greatest propor-

tional reduction in summer rainfall (48–55%; Table 5). Based on

ENM-predicted changes in climatic suitability and the extent of envi-

ronmental dissimilarity between present and future conditions, two

populations were assigned high exposure values (Albacete and

Valencia), two medium–high (Girona and Valladolid), one medium–

low (Granada) and two low (Lisboa and Bizkaia; Table 6).

3.2 | Assessing sensitivity to climate change

From the high-throughput sequencing, we identified 39,825,843

demultiplexed, paired-end reads, from which Stacks resolved 11,116

RAD tags that were present in at least 70% (n = 67) of all individuals

screened and contained a maximum of three SNPs (average of

7719 � 2474 tags per individual). After excluding individuals and

SNPs with low coverage and removing SNPs with low minor allele fre-

quencies, the final genotype data set contained 6067 SNPs scored

from 83 individuals, belonging to 10 populations, with a total genotyp-

ing rate of 0.919. All populations had an average coverage >70%

(Table 1). The population with the oldest samples, Vila Real, only con-

tained three individuals with high enough coverage and was therefore

removed from population-level analyses, but the three individuals

were retained in individual-level analyses (STRUCTURE and LFMM).

3.2.1 | Adaptive genetic variation

Bayescan identified 24 outlier SNPs potentially under selection.

LOSITAN identified 224 SNPs as potentially under directional

selection, which included 20 of the outlier SNPs also identified by

Bayescan. Allele frequencies in 13 outlier SNPs were significantly

correlated with either maximum temperatures (11 SNPs) or summer

rainfall (10 SNPs). Significant correlations were also identified within

Iberia between five SNPs and maximum temperatures and seven

SNPs and summer rainfall (Table S2).

STRUCTURE assignment tests divided the full data set into two main

genetic clusters, separating the English and Iberian samples. The Ibe-

rian cluster was further divided into two clusters, separating the two

northern populations, Bizkaia and Girona (Fig. S2). Therefore, LFMM

was run with three latent factors for the full data set and two for

Iberia. LFMM detected 93 outlier SNPs associated with maximum tem-

peratures and 129 SNPs with summer rainfall across the study area.

In the Iberia-only data set, 177 SNPs were associated with maximum

temperatures and 278 with summer rainfall. We identified eight

SNPs potentially associated with climate-adaptive genetic variation

that were supported by all methods (Bayescan, LFMM and logistic

regressions; Table S3). The spatial distribution of genetic variation in

SNPs identified as potentially climate-adaptive indicates a lower fre-

quency of warm and dry adaptive alleles in the north and eastern

Iberian populations (Bizkaia, Girona and Valencia; Fig. S3; Table S4),

and therefore, these populations were classified as having high adap-

tive sensitivity to climate change.

Genetic differentiation in SNPs identified as potentially associ-

ated with climate-adaptive genetic variation was high overall (mean

Fst = 0.245 � 0.15), but was substantially lower among the north

and eastern Iberian populations and among the southern and west-

ern populations. Highest levels of differentiation were found

between one English population (Devon) and most other popula-

tions, apart from the north Iberian populations (Table S5). Genetic

differentiation in these climate-adaptive SNPs was related to envi-

ronmental dissimilarity between locations. Across the study area,

genetic differentiation was correlated with dissimilarity in both maxi-

mum temperatures (MRDM: R2 = .173, F = 7.1, p = .01) and summer

rainfall (R2 = .137, F = 5.4, p = .023), while within Iberia it was cor-

related with summer rainfall (R2 = .228, F = 5.6, p = .028; Fig. S4).

3.2.2 | Neutral genetic variation

Genetic differentiation between populations based on the neutral

data set ranged between 0.024 and 0.106 (mean

TABLE 4 Integrating measures of exposure (Table 2), sensitivity (Table 3) and range shift potential to assess overall level of risk. Formula
indicates whether all measures were combined together or only two needed to be true (Exp—Exposure, Sen—Sensitivity, Range—Range shift
potential)

Risk Level Formula Exposure Sensitivity Range shift

Low Exp + (Sen OR Range) 1 Low (�) High (+)

Low Exp + Sen + Range 2 Low (�) High (+)

Medium Exp + (Sen OR Range) 2 Mid (0)–high (+) Low (�)

Medium Exp + Sen + Range 3 Low (�)–mid (0) High (+)

Medium–high Exp + (Sen OR Range) 3–4 High (+/++) Low (�)

High Exp + Sen + Range 3–4 High (+/++) Low (�)

24 | RAZGOUR ET AL.



Fst = 0.056 � 0.03), with highest values between the English popu-

lations and all Iberian populations (Table S4). Genetic differences

between populations (multilocus AMOVA: R2 = .490, p < .001) and

regions (R2 = .245, p < .001) were highly significant. Differences

between populations remained significant within Iberia (R2 = .279,

p < .001).

Levels of neutral genetic diversity were lowest in the English

populations, especially Dorset (heterozygosity = 0.664). Iberian pop-

ulations had generally high levels of heterozygosity, with relatively

lower levels in Granada (0.844) and Lisboa (0.885), and highest levels

in Valencia, Bizkaia and Valladolid (all >0.95). Relative neutral genetic

diversity was ranked from low (heterozygosity<0.75) to medium

(0.75–0.9) and high (>0.9) (Table S6).

3.3 | Determining range shift potential

Genetic differentiation in neutral markers across the study area was

positively related to geographic distance (MRDM: R2 = .649,

F = 63.1, p = .0001) and to landscape resistance due to decreasing

habitat suitability, as measured by the ENM (R2 = .842, F = 180.7,

p = .0001), decreasing forest cover (R2 = .588, F = 48.6, p = .0001),

increasing altitude (R2 = .299, F = 14.5, p = .0004) and increasing

slope (R2 = .667, F = 68.2, p = .0001). The ENM showed the stron-

gest correlations with genetic differentiation and was the only land-

scape variable that remained significant after accounting for

geographic distance (R2 = .197, F = 8.3, p = .005; Table S7). We

obtained identical results when decreasing the resistance costs of

dispersal over sea to 120 (Table S8).

Under present conditions, all Iberian populations showed high

levels of landscape connectivity. Particularly high density of move-

ment was predicted along the east coast of Iberia, connecting the

southern and northeastern populations, and across the east-to-west

central axis of the peninsula. Overall density of movement was pre-

dicted to decrease under future conditions, resulting in reduced con-

nectivity between most populations and geographic areas. In

particular, eastern (Valencia), central (Albacete and Valladolid) and

southern (Granada) populations were predicted to become isolated

and were therefore assigned low range shift potential. However,

F IGURE 3 Predicted distribution of
suitable conditions for Plecotus austriacus
based on environmental niche models for
present (a) and future (2070, b) conditions,
and predicted movement density maps
between populations based on landscape
resistance due to present (c) and future (d)
habitat suitability
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landscape connectivity was predicted to increase across the Pyre-

nees between the two northern populations and along the north

Atlantic coast. Movement out of Iberia appears to be limited both

under present and future conditions, but Iberia is predicted to

become isolated under future conditions due to decreased habitat

suitability in southern France (Figure 3).

3.4 | Identifying populations under threat

When combining the effect of the three framework components, we

identified one Iberian population (Valencia, east coast) at high risk

due to high changes in climatic suitability (from suitable to unsuitable

and high increases in maximum temperatures and reductions in sum-

mer rainfall), low frequency of SNPs identified as associated with cli-

mate-adaptive genetic variation and limited future landscape

connectivity. We identified two additional populations in the central

regions (Albacete and Valladolid) that are of medium–high risk

because despite high exposure to future changes and limited future

connectivity, they have a relatively high frequency of adaptive

genetic variation and high levels of neutral genetic diversity. In

contrast, populations along the Atlantic coast (north and northwest

of the peninsula) are likely to be of lower risk due to more limited

changes in climatic suitability and either high future landscape con-

nectivity or lower sensitivity (Table 6).

4 | DISCUSSION

We propose an applied integrated framework to identify wildlife

populations under threat from future climate change based on their

extent of exposure to changing climatic conditions, inherent sensitiv-

ity due to identified signatures of adaptive and neutral genetic varia-

tion and range shift potential (Figure 1). Our framework aims to

address an important challenge hampering conservation planning for

species under climate change, the lack of inclusion of measures of

sensitivity and adaptive capacity in assessments of vulnerability,

which currently mainly focus on climate exposure (Butt et al., 2016).

While previous studies discussed the importance of including sensi-

tivity and adaptive capacity when assessing climate change vulnera-

bility (e.g., Dawson et al., 2011; Pearson et al., 2014; Williams, Shoo,

Isaac, Hoffmann, & Langham, 2008), this is the first study to directly

incorporate empirical genomic data to quantify sensitivity and assess

adaptive potential through the spread of adaptive genetic variation

among populations. Moreover, unlike previous studies, we consider

intraspecific vulnerability and population-level responses to global

climate change, an important but often neglected research priority in

conservation biology.

4.1 | Exposure to changing climatic conditions

To assess exposure to future climate change, we combined ENMs

with a comparison of environmental dissimilarity between current

and future conditions in key climatic variables that are likely to

affect bat survival and reproductive success. This helped identify pri-

ority areas that are predicted to experience the greatest magnitude

of change, the central regions and the Mediterranean coast.

TABLE 5 Changes in climatic conditions (Tmax=maximum temperatures, Rain=summer rainfall) and climatic suitability (based on the
ecological niche model (ENM)-predicted occurrence probability) for Plecotus austriacus populations in Iberia and England. Locations where the
greatest changes are predicted to occur (>8°C increase in maximum temperatures, >50% decrease in summer rainfall and change from suitable
to unsuitable areas) are highlighted in grey

Population Tmax (°C) Rain (mm)
ENM (climatic
suitability) 2070 Tmax (°C)

2070
Rain (mm) 2070 ENM

Change
Tmax (°C)

Change
Rain (mm)

% Change
Rain

% Change
ENM

Lisboa 25.3 36 100 28.6 28 80 +3.3 �8 �22.2 �20.0

Bizkaia 23.6 225 38 29.9 120 40 +6.3 �105 �46.7 +5.3

Girona 25.6 159 76 32.1 90 7 +6.5 �69 �43.4 �90.8

Granada 30.0 45 80 36.9 39 37 +6.9 �6 �13.3 �52.5

Albacete 31.6 61 34 40.4 27 17 +8.8 �34 �55.7 �50.0

Valladolid 29.3 65 56 38.4 34 41 +9.1 �31 �47.7 �26.8

Valencia 28.5 87 44 35.6 42 5 +7.1 �45 �51.7 �88.6

Devon 19.8 171 90 25.5 107 95 +5.7 �64 �37.4 +5.6

Dorset 20.8 164 60 27.4 98 63 +6.6 �66 �40.2 +5.0

TABLE 6 Identified level of risk to Iberian populations of Plecotus
austriacus based on their extent of exposure to climate change
(1 = low; 2 = medium; 3 = medium–high; 4 = high), overall
sensitivity (+ high; 0 medium; � low), with sensitivity based on
climatic adaptations and neutral genetic diversity in brackets, and
range shift potential (+ high future connectivity; � low connectivity)

Population Exposure
Sensitivity
(adaptive; neutral)

Range
shift Risk level

Lisboa 1 � (�; 0) + Low

Bizkaia 1 + (++;�) + Low

Granada 2 � (�; 0) � Medium

Girona 3 0 (+;�) + Medium

Valladolid 3 � (�;�) � Medium–high

Albacete 4 � (�;�) � Medium–high

Valencia 4 + (++;�) � High

26 | RAZGOUR ET AL.



However, it is important to note that apart from north and north-

west Atlantic coast areas, all Iberian populations are projected to

experience maximum temperatures outside the current thermal

range of the species. Indeed, the entire Iberian Peninsula is recog-

nized as being under high threat from the effects of future climate

change, and Mediterranean ecosystems are predicted to experience

the greatest biodiversity changes in Europe due to the combined

effect of climate and land use changes (Sala et al., 2000). In line with

previous studies (Razgour et al., 2013), the ENM analysis predicts

range contractions for P. austriacus across the southern part of its

range, accompanied by expansion into more northern latitudes. The

inclusion of land cover variables and finer-scale resolution in the

ENMs resulted in less severe projections of future range losses in

Iberia, but greater projected losses in France, which will isolate the

Iberian Peninsula.

Our assessment of exposure disregards the role of phenotypic

plasticity or genetic adaptations in enabling populations to persist in

areas predicted to experience climatic conditions outside the species’

current environmental niche (Hoffmann & Sgr�o, 2011). However,

evidence of niche conservatism in climatic tolerance suggests that

this species may be unable to survive in climatically unsuitable areas

in the future (Razgour et al., 2013).

4.2 | Sensitivity due to adaptive and neutral genetic
variation

Understanding adaptive genetic responses to environmental change

in wild populations is essential for biodiversity conservation under

global change. Monitoring adaptive responses can help identify pop-

ulations and species that are not able to evolve fast enough to per-

sist in rapidly changing environments, and suitable donor populations

that can help increase adaptive potential through evolutionary res-

cue (Hansen, Olivieri, Waller, & Nielsen, 2012). Yet even though it is

recognized that genetic variability is essential for the ability of spe-

cies to adapt to environmental changes, genetic components are

often neglected in future climate change studies (Pauls, Nowak,

B�alint, & Pfenninger, 2013) and the genetic basis of evolutionary

responses to climate change is still poorly understood (Franks &

Hoffmann, 2012).

Advances in sequencing technologies have enabled genomic

research on nonmodel organisms and wild populations and opened

the door to identifying genetic features underlying local adaptations,

thus advancing our understanding of natural selection and evolution

(Hoban et al., 2016). However, sequencing costs are still pro-

hibitively expensive when sampling a large number of individuals,

particularly when a reference genome is not available (Narum, Buer-

kle, Davey, Miller, & Hohenlohe, 2013). Alternative approaches, such

as ddRADseq, offer an affordable way of obtaining a genomewide

perspective by targeting only a fraction of the genome, rendering

them particularly suitable for answering ecological and conservation

questions (Andrews et al., 2016). Such reduced-representation tech-

niques only sequence a small fraction of the genome, and therefore

only offer an indication of available adaptive genetic variation

(Lowry et al., 2017). Nevertheless, because RADseq provides a ran-

dom sample of the genome, it is a powerful and efficient approach

to study selection in natural populations and test for evidence of

adaptive differentiation and its geographic distribution (Catchen

et al., 2017).

Bats have been the subjects of several recent genomic studies,

shedding light on the evolution of flight (Zhang et al., 2013) and

echolocation (Parker et al., 2013). However, this is the first study

to identify a signature of climate-driven selection in bats. By com-

bining population genomics and ecological approaches, we identi-

fied eight SNPs representing genomic regions that are potentially

associated with climate-adaptive genetic variation. While genetic

differentiation in neutral SNPs was related to the effect of the

landscape matrix on movement between populations, differentia-

tion in climate-adaptive SNPs was correlated with environmental

dissimilarity between locations, indicating a pattern of isolation by

environment as a result of local adaptations (Wang & Bradburd,

2014).

Adaptation to local environmental conditions is thought to

involve subtle changes in allele frequencies because gene flow

between populations can counteract local adaptations and the fixa-

tion of adaptive alleles (Rellstab, Gugerli, Eckert, Hancock, &

Holderegger, 2015). These subtle changes, that is soft selective

sweeps, are harder to detect by genome scans for outlier loci, espe-

cially when selection has not had sufficient time to substantially shift

allele frequencies (Stapley et al., 2010). Approaches that are driven

by ecological hypotheses (genotype–environment association analy-

sis) are better able to detect ecologically relevant loci with small

effects involved in local environmental adaptations (Joost et al.,

2013). Because only population genomic approaches can detect

complete selective sweeps, while ecological approaches are better

suited for detecting subtle changes, combining both approaches is

essential for obtaining a complete perspective on climate-driven

genetic adaptations. Ideally, where possible, these approaches should

be combined with experimental testing and functional validation of

fitness or a trait in the absence of the putative adaptive alleles,

although such validation is still impossible for most experimental sys-

tems (Hoban et al., 2016).

Our framework focuses on an assessment of sensitivity to

changes in climate based on genomic data. Sensitivity can also be

assessed using experimental evolutionary approaches. Experimental

studies measuring heritability of climate-related traits in various plant

species and Drosophila exposed to simulated climatic changes found

that rates of evolution may be too slow to match predicted rates of

future climate change (reviewed in Jump & Pe~nuelas, 2005). More

recently, studies, primarily of plants, have combined genomic and

experimental approaches to identify local adaptations and genes

under climate-driven selection based on differential fitness of geo-

graphically diverse ecotypes raised under common garden experi-

ments (e.g., Fournier-Level et al., 2011; Savolainen, Lascoux, &

Meril€a, 2013). However, such experimental approaches are not feasi-

ble for long-lived organisms with long generation time and for many

species of conservation concern, and results from such experiments
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may not always be relevant for natural populations (Bailey & Batail-

lon, 2016). Even in cases where an experimental approach was

applied to animals, field common garden studies have largely failed

to successfully incorporate fitness and genomic data (Savolainen

et al., 2013). Therefore, in our framework we focus on the genomic

approach, but acknowledge that sensitivity to climate change can be

assessed using other approaches.

4.3 | Landscape connectivity and range shift
potential

Our framework applies primarily to relatively long-lived vertebrates

with long generation times and small population sizes, in which the

rate of emergence and spread of novel adaptive alleles in popula-

tions through de novo mutations is likely to be too slow to respond

to rapid future climate changes (Hoffmann & Sgr�o, 2011). Therefore,

we emphasize the role of landscape connectivity as an important

component influencing the ability of populations to respond to

future changes through the spread of adaptive alleles between popu-

lations.

Through combining landscape genetics with ENMs, we deter-

mined the effect of landscape connectivity on movement patterns

and the ability of P. austriacus to respond to climate change by

tracking changes to its environmental niche. We found that habitat

suitability is the main barrier to movement across the western part

of this species’ range. Using a predictive landscape genetics

approach, we showed how changing niche suitability is likely to limit

the future movement of individuals both within and out of Iberia.

Species movement patterns are not only a function of external fac-

tors like landscape connectivity, but also of internal factors, like spe-

cies’ movement capacity (Nathan et al., 2008). The maximum

recorded dispersal distance in P. austriacus, 62 km (Riede, 2001), is

insufficient for individuals from most Iberian populations to reach cli-

matically suitable areas. Therefore, range shifts are more likely to be

a gradual stepping stone process, involving the establishment of pop-

ulations followed by further dispersal events. This highlights the

importance of the availability of suitable habitats for range shifts in

limited dispersal species.

Restricted future landscape connectivity will limit the movement

of individuals between populations and consequently reduce the rate

of evolutionary adaptation to changing conditions through reducing

the spread of adaptive alleles among populations. Therefore, evolu-

tionary rescue is unlikely without assisted translocation of individuals

into populations with a low frequency of alleles associated with

warm and dry conditions. However, even under high dispersal or

translocation scenarios, evolutionary rescue in spatially structured

populations may be impeded by local adaptations to heterogeneous

environments that reduce the fitness of migrants carrying climate-

adaptive alleles (Schiffers, Bourne, Lavergne, Thuiller, & Travis,

2013). This further strengthens the urgent need for an integrated

framework to identify populations at high risk and suitable donor

populations based on patterns of adaptation to local environmental

conditions.

5 | CONCLUSIONS

We developed an integrated framework to assess vulnerability to

future climate change. We demonstrate how our framework can be

applied to vertebrates with relatively limited dispersal abilities

through combining genomic data with ENMs, spatial analysis and a

predictive landscape genetics approach under a risk assessment

framework. Our study highlights the importance of incorporating

ecological and genomic data to predict both the sensitivity of popu-

lations to future changes and their ability to shift their distribution

to track changes in environmental suitability. As evolutionary rescue

in most vertebrates and species of conservation concern is more

likely to occur through the movement of individuals with adaptive

alleles between populations (Vander Wal, Garant, Festa-Bianchet, &

Pelletier, 2013), understanding movement ecology and limits to

future landscape connectivity is essential for predicting the ability of

populations to persist under climate change.

Assigned levels of threat can help prioritize and inform conserva-

tion action under climate change. Conservation management can focus

on either rescuing high-risk populations (through translocation of the

entire population or of individuals with relevant adaptive variation into

the population) or increasing landscape connectivity to facilitate range

shifts and the spread of adaptive genetic variation to reduce threats to

medium- and medium–high-risk populations. As such, our framework

can contribute to transforming conservation management under cli-

mate change from a crisis-driven response to more anticipatory and

predictive measures (Gillson, Dawson, Jack, & McGeoch, 2013).
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