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Plants grow continuously, forming new meristem-derived organs and tissues throughout their
post-embryonic life. As sessile organisms, plants need to constantly integrate and reflect
environmental fluctuations in their growth and development, which can translate into high level of
developmental plasticity in response to environmental changes (Gaillochet and Lohmann, 2015).
Alternatively, variable environments can select for robustness, where organisms function across a
wide range of conditions with little change in phenotype. Plant growth is then governed by complex
interplay of phytohormone signaling, chromatin structure remodeling and gene expression
reprogramming. How these regulatory levels are interconnected remains largely enigmatic, but
mechanistic evidence of crosstalk between phytohormone signaling and chromatin organization
is emerging.

Here we review (1) evidences of molecular mechanisms that mediate the crosstalk between
phytohormone signaling, chromatin structure and gene expression (2) how this crosstalk may
link to plant developmental plasticity and robustness and finally (3) why meristems may represent
central places for this crosstalk allowing plasticity and environmental memory.

CROSSTALK MECHANISMS: A CHICKEN-AND-EGG SITUATION

Phytohormone and epigenetic regulation can interact on multiple levels (Figure 1): (1)
phytohormone signaling directly affects expression or activity of key chromatin modifiers, (2)
chromatin machinery target genes of the phytohormone metabolic/signaling pathways, (3) both
players interact on genes involved in developmental or stress responses.

Several examples show that components of phytohormone signaling pathways directly control
the activity of key chromatinmodifiers such as POLYCOMBREPRESSIVE COMPLEX (PRC) 1 and
2 with histone-methyltransferase activity playing a major role in transcriptional regulation during
development (Bratzel et al., 2010; Chen et al., 2010, 2016; Ikeuchi et al., 2015; Mozgová et al., 2017).
For example, the brassinosteroid (BR) signaling TFs BRASSINAZOLE-RESISTANT 1 (BZR1)
recruits the H3K27me3-demethylase EARLY FLOWERING (ELF) 6 to antagonize the H3K27me3-
activity of PRC2, a chromatin modifier, at the flowering repressor FLOWERING LOCUS C
(FLC), preventing precocious floral transition (Yu et al., 2008; Li et al., 2018). Additionally,
chromatin complexes can be post-translationally modified by components of phytohormone
signaling pathways that influence their activity. For example, abscisic acid (ABA) signaling
induces SnRK-mediated phosphorylation of the chromatin remodeling ATPase BRAHMA (BRM),
inhibiting its repressive activity at ABA-responsive genes (Peirats-Llobet et al., 2016). These
examples demonstrate that activity of chromatinmodifiers can be directed to specific loci or directly
modulated by phytohormone signaling cascades.
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FIGURE 1 | Schematic model of phytohormones and chromatin crosstalk during plant developmental plasticity and robustness. Stem cell niches in SAM, RAM, or

cambium are center of morphogenesis giving rise to the aerial and root systems or wood formation in perennials and plasticity in response to various environmental

cues. Environmental signals are perceived directly or indirectly by meristems and could affect hormonal balance and/or chromatin structure in a complex crosstalk: (1)

hormones can alter chromatin structure and modifiers or (2) chromatin can regulate hormones signaling/biosynthesis. These two mechanisms could then interact

separately (3 and 4), jointly or successively (5) affecting genes expression and /or TEs mobilization. Thus, the hormone/chromatin crosstalk can participate in

developmental choice (Robustness vs. Plasticity) by controlling cell gene identity in meristems, hormone balance integration, or chromatin stabilization of gene

expression. While most of these changes are transient (resetting of hormonal and chromatin modifications) allowing the plant to be respond to new environmental

conditions, chromatin states could be maintained through cell division allowing an epigenetic memory and a potential priming of new meristem-derived-organs.

Another possibility is that changes in chromatin structure
control phytohormone biosynthesis, signaling and response.
Variation in DNA methylation in response to water availability
in poplar or among Arabidopsis epigenetic recombinant
inbred lines (epiRILs) is associated with changes in jasmonic
(JA), salicylic acid (SA) and ethylene responses (Latzel et al.,
2012; Lafon-Placette et al., 2018). Similarly, rice plants with
reduced H3K27me3 exhibit significant differences in the auxin
indole-3-acetic acid (IAA), gibberellin (GA), ABA, JA, and SA
content (Liu et al., 2016). Nevertheless, these effects may be
pleiotropic and may reflect altered general physiological states.
As more direct evidence, PRC2 activity in Arabidopsis seed
coat is downregulated by fertilization-dependent auxin, and is
required for repressing GA production prior to fertilization,
mediating the crosstalk between two phytohormonal pathways

(Figueiredo et al., 2015, 2016; Figueiredo and Köhler, 2018).
PRC2 also represses auxin biosynthesis and signaling genes in the
SAM and leaves of Arabidopsis (Lafos et al., 2011). Conversely,
in the RAM, the expression of the auxin efflux carrier-encoding
PIN-FORMED (PIN) genes is positively regulated by BRM
establishing local auxin maxima and stimulating the expression
of the RAM-specifying PLETHORA genes PLT1 and PLT2 (Yang
et al., 2015). BRM also binds to GA-related genes to stimulate
GA biosynthesis and signaling (Archacki et al., 2013).

Apart from biosynthesis and signaling, phytohormone-
response genes are under direct control of chromatin modifiers.
Initially described as involved in auxin homeostasis (Sorin et al.,
2005), the ARGONAUTE protein AGO1, guided by small RNAs
and associating with SWI/SNF complexes, was recently described
to bind genes activated upon JA, auxin, and SA stimuli in
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Arabidopsis (Liu C. et al., 2018). ABA-responsive genes in
Arabidopsis are repressed by histone deacetylation (Perrella et al.,
2013) through the action of MULTICOPY SUPRESSOR OF IRA
(MSI) 1 recruiting the HISTONE DEACETYLASE (HDA)19
(Alexandre et al., 2009; Mehdi et al., 2016) and also by BRM-
mediated chromatin remodeling (Han et al., 2012). Significantly,
expression of 80% GA–responsive genes relies on the chromatin
remodeler PICKLE (PKL) (Park et al., 2017). Consequently,
plants with reduced MSI1, HDA19, or BRM levels are more
sensitive to ABA, display ABA-dependent growth defects and
higher tolerance to drought, and absence of PKL results in GA-
reversible root swelling and embryonic lipid accumulation (Ogas
et al., 1997) demonstrating the developmental importance of
chromatin modifiers in phytohormone-mediated responses.

HORMONE SIGNALING AND CHROMATIN
CROSSTALK CAN PARTICIPATE IN
PLASTICITY AND ROBUSTNESS

Hormone signaling and chromatin crosstalk can participate in
developmental paths by distinct ways: (1) control of cell identity
genes in meristems, (2) chromatin-mediated stabilization of gene
expression beyond the hormonal initial signal, (3) chromatin-
governed integration of separate hormone signaling pathways.

Chromatin-modifying complexes target key phytohormone-
regulated genes that specify meristem cell identity and whose
ectopic expression can result in cell reprogramming and
homeosis (Zuo et al., 2002; Galinha et al., 2007). For example,
the SAM-organizing homeobox gene WUSCHEL (WUS) is
regulated by cytokinin signaling, DNA methylation, H3K27me,
or chromatin remodeling (Kwon, 2005; Dodsworth, 2009; Cao
et al., 2015; Liu H. et al., 2018), and loss of DNA methylation in
WUS promoter is connected to in-vitro shoot initiation induced
by cytokinin (Li et al., 2011). Other stem cell niche-defining
TFs such as WOX4, WOX5, PLT1, or PLT2 are potential PRC2
targets (Oh et al., 2008; Lafos et al., 2011). Co-expression of
these TFs can be triggered by environmental and hormone cues
or ectopically induced in PRC2-depleted plants, resulting in cell
reprogramming (Chanvivattana et al., 2004; Barrero et al., 2007;
Ikeuchi et al., 2015; Mozgová et al., 2017). Increased or dispersed
expression of cell identity-defining TFs and change and/or loss
of cell identity also occurs in mutants of chromatin modifiers
such as the repressive H2A-ubiquitinase complex PRC1 (Xu and
Shen, 2008; Bratzel et al., 2010; Chen et al., 2010, 2016), histone
deacetylases HDA6 and HAD19 (Tanaka et al., 2008; Pi et al.,
2015), PKL (Ogas et al., 1999) or replication-dependent H3/H4
chaperone CHROMATIN ASSEMBLY COMPLEX (CAF)-1
(Kaya et al., 2001). Thus, chromatin structure appears to restrict
expression of developmental genes to retain cell identities.
Similarly, repression of ABA response by several chromatin
modifiers (MSI1, HDA19, BRM) could act to prevent an ectopic
stress response in favorable environmental conditions.

Chromatin structure may stabilize gene expression state
beyond the duration of the environmental or phytohormone
stimulus. An example is the cold-induced establishment of
H3K27me3 at FLC during vernalization that is stable through

mitosis, providing an in-cis memory system of FLC repression
even after transfer to warmth (Berry et al., 2015; Hepworth
and Dean, 2015). Persistent H3K4me2/3, H3/H4ac or local
nucleosome depletion are found at genes primed for biotic or
abiotic stress responses including priming by phytohormones
or their analogs (Jaskiewicz et al., 2011; Lämke and Bäurle,
2017; Laura et al., 2018; Liu H. C. et al., 2018) demonstrating
that also “accessible” chromatin structure contributes to mitotic
memory (Figure 1).

Chromatin-modifying proteins may also serve as integrators
defining the final outcome of interplay of various hormone
signaling pathways. Phytohormone-induced change of
chromatin structure may rely on multiple different chromatin
modifiers as is exemplified by modulators of ABA signaling. A
single chromatin modifier can also be implicated in responses to
different hormones, as is exemplified by BRM (Sarnowska et al.,
2016). Chromatin can thus provide a robust hub integrating
different incoming cues while potentiating the persistence of
the gene expression patterns through its stability during mitotic
cell divisions.

MERISTEMS ARE CENTRAL PLACES FOR
PHYTOHORMONE CHROMATIN
CROSSTALK

The biological significance of the crosstalk in meristems
is supported by (1) their central role in postembryonic
morphogenesis, plasticity and memory, (2) their particularities
for phytohomone signaling and chromatin remodeling, (3) first
evidences reported for this crosstalk in SAM.

The meristems represent major sites of stem cell niches
in plants (Scheres, 2007; Tucker and Laux, 2007; Aichinger
et al., 2012). Apical meristems, together with the secondary
meristem, the cambium, have the capacity to maintain
and self-renew populations of undifferentiated cells,
underlying continuous post-embryonic organ development
modulated by environmental conditions (Figure 1; Gaillochet
and Lohmann, 2015; Pavlovic and Radotic, 2017; Xiao
et al., 2017). The SAM is also the place of epigenetic
memory as reported for vernalization and some priming
effects (Hepworth and Dean, 2015; Lämke and Bäurle, 2017).

Phytohormone and epigenetic pathways play
overlapping/complementary roles in meristem functions
and developmental plasticity or robustness, laying the basis for
a biologically significant crosstalk. Importantly, meristems have
been shown to be the place of epigenetic control for stem cell
pluripotency, differentiation, and reprogramming (Cao et al.,
2015; Gaillochet and Lohmann, 2015; Pi et al., 2015; Morao et al.,
2016; Ojolo et al., 2018) whose epigenetic setup may differ from
the surrounding tissues (Yadav et al., 2009; Baubec et al., 2014).

Major evidence for phytohormone-chromatin crosstalk was
obtained using Arabidopsismutants, or applying phytohormones
or chemical inhibitors of chromatin modifiers in various
developmental processes (Yamamuro et al., 2016; Campos-
Rivero et al., 2017; Wong et al., 2017; Guo et al., 2018;
Ojolo et al., 2018; Wakeel et al., 2018; Zheng et al., 2018).
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Only a few reports highlight potential crosstalk directly in the
meristems as exemplified by PRC2 repressing particular PIN
genes (auxin transporters) in the SAM of Arabidopsis clv3
mutants (Lafos et al., 2011). Recent studies in vernalized sugar
beet (Hébrard et al., 2016) and in poplar under drought or cold
exposure (Conde et al., 2017; Lafon-Placette et al., 2018; Le Gac
et al., 2018) have recently shown that differentially expressed
genes under DNA methylation control in SAM correspond
to a limited developmental gene network mainly involved
in growth and phytohormone pathways such as jasmonate
activators and ethylene repressors. Indeed, Le Gac et al. (2018)
show that hormone-related epigenome reprogramming in the
SAM of poplar hybrids is stable for at least several months
after the stress period in winter-dormant SAM providing
evidence of an environmental epigenetic memory. Recently,
this phenomenon was also described in the SAM of natural
populations of black poplar under drought conditions (Sow
et al., 2018a). Similarly, support for epigenetic memory of
climatic conditions is found in Norway spruce trees grown from
somatic embryos produced at different temperatures (Yakovlev
et al., 2011, 2016). Considering the absence of post-embryonic
organs, the SAM could play a major role in the transmission
of the environmentally-established chromatin states during
early development.

CONCLUSION AND
FUTURE PERSPECTIVES

In conclusion, phytohormone action and chromatin modifiers
seem to be tightly interacting but the extent to which they
act jointly or independently remains unclear (Ojolo et al.,
2018). However, the multi-layered control of local chromatin
structure in response to hormonal cues may provide an
important hub that integrates the incoming cues, conferring
developmental robustness while retaining a sufficient potential
for gene transcription change, stabilization and phenotypic
plasticity (Lachowiec et al., 2016).

Current knowledge leads to the opinion that this crosstalk in
meristems can integrate environmental cues for developmental
outcome. Erasure of this signaling may allow continuous

adjustment to new environmental conditions. Its maintenance
through persistent chromatin states can however stimulate

mitotic memory that could prime later organ formation. How
the balance between erasure and memory is achieved remains
enigmatic (Figure 1).

While the mechanistic events could be more easily deciphered
in well-established model annuals such as Arabidopsis, it is
important to establish perennial models where the impact
of mitotic epigenetic memory is of importance in the
context of climate change. In addition to SAM and RAM,
cambium, whose activity is crucial for environmentally
controlled wood formation, may be an appropriate and
highly relevant model (Wang et al., 2016; Oles et al., 2017;
Figure 1). Deciphering this crosstalk in the meristems requires
improving single-cell methodologies to study the dynamics of
chromatin structure in response to complex phytohormone-
associated environmental and developmental responses
and its memory. Exploiting epigenetic variation and the
potential to derive primed plants from meristem regeneration
or somatic embryos (Achour et al., 2017; Gallusci et al.,
2017; Springer and Schmitz, 2017; Sow et al., 2018b) seems
also promising.
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