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Abstract
The Asian hornet is an invasive predator of honey bees in Western Europe. The Asian hornet-related risk of bee colony mor-
tality has motivated the development of biological and physical control methods over the past years. Although the technical 
cost–benefit ratio has been established for most of these control methods, it is still unclear whether such methods can reduce 
the detrimental effects of the Asian hornet on European honey bees. In this study, we investigated the potential benefits of a 
biodiversity-friendly control method, the beehive muzzle. We observed the flight activity of bees and the predation behaviour 
of the Asian hornets at the beehive entrance of 22 pairs of honey bee colonies, each with one muzzle-equipped colony and 
one control colony without muzzle, in France. We measured HF (bee homing failure due to hornet predation of bees) and 
FP (foraging paralysis: the stop of flight activity in beehives due to hovering hornets), and estimated the mortality prob-
ability of the colonies using a mechanistic modelling approach. The beehive muzzle did not reduce the hornet-related HF, 
but drastically reduced FP. Moreover, the muzzle increased the survival probability of hornet-stressed colonies up to 51% in 
context of high abundance of Asian hornets based on theoretical simulations. These results suggest that installing beehive 
muzzles can mitigate the detrimental effect of the Asian hornet on European honey bees. This low-cost technique does not 
lead to any environmental impacts and could therefore be recommended to beekeepers as an effective biodiversity-friendly 
method of Asian hornet control.

Keywords Apis mellifera · Biological invasion · Control methods · Predator–prey interaction · Yellow-legged hornet

Key message

• The Asian hornet is an invasive threat for honey bees in 
Western Europe

• This predator affects bee foragers’ homing failures, forag-
ing paralysis, and colony survival

• We tested whether the beehive muzzle can mitigate the 
Asian hornet’ impacts on honey bees

• Beehive muzzles are physical devices with biodiversity-
friendly control method approach

• Beehive muzzles support the foraging activity and sur-
vival probability of hornet-stressed colonies

Introduction

In Western Europe, the invasion of Vespa velutina nigritho-
rax (called Asian hornet hereafter) greatly concerns bee-
keepers and governmental policies, as this predator of honey 
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bees (Apis mellifera L.) may represent an additional risk 
factor involved in the mortality of currently declining bee 
colonies (Leza et al. 2019; Requier et al. 2019). The Asian 
hornet was introduced in Southwest France in 2004 from 
China (Haxaire et al. 2006; Arca et al. 2015) and has rapidly 
spread across most of France (Robinet et al. 2017; Rome and 
Villemant 2018). Between 2010 and 2017, it also established 
successively in Spain, Portugal, Belgium, Italy, Germany, 
the UK, and the Netherlands (Grosso-Silva and Maia 2012; 
Witt 2015; Bertolino et al. 2016; Garigliany et al. 2017; 
Keeling et al. 2017; López et al. 2011; Rome and Villemant 
2018). In these European regions, beekeepers already suffer 
high rates of honey bee colony mortality in winter (Neu-
mann and Carreck 2010; Potts et al. 2010; van der Zee et al. 
2012; Gray et al. 2019), likely related to a combination of 
multiple stressors including parasites, pesticides, and lack 
of flowers (Potts et al. 2010; 2016; Goulson et al. 2015; 
Steinhauer et al. 2018). The Asian hornet captures foraging 
bees at the entrance of the colony and affects the latter in 
two ways. (1) The predation of adult bees leads to homing 
failure (HF) of the bees (Monceau et al. 2013; Requier et al. 
2019). Translated at colony level, this loss of bees by preda-
tion reduces the population size of the honey bee colonies 
(Requier et al. 2019). (2) The presence of Asian hornets 
hovering (for predation) in front of the beehives disturbs the 
flight activity of the bee colony (Monceau et al. 2018; Req-
uier et al. 2019). In response to the presence of Asian hor-
nets in front of beehives, bee colonies express a behavioural 
symptom of foraging paralysis (FP) consisting in the stop of 
the flight activity (Monceau et al. 2018; Requier et al. 2019). 
Given the predation activity of the Asian hornet occurs dur-
ing the critical pre-wintering season for honey bee colonies 
in Western Europe, the hornet-related impacts decrease the 
winter survival probability of the colonies (Requier et al. 
2019).

The Asian hornet-related risk of colony mortality has 
motivated the development of biological and physical con-
trol methods over the past years (Supporting Information 
ESM 1). The most widely applied technique consists in trap-
ping hornets at the beehives location, using simple passive 
traps with homemade syrup or poisoned (with insecticide) 
baits (Turchi and Derijard 2018). However, this technique 
cannot sustainably reduce the populations of V. velutina 
(Beggs et al. 2011; Monceau et al. 2014; Turchi and Deri-
jard 2018) and might not efficiently reduce the hornet-related 
impacts of HF and FP (Requier et al. 2019). Moreover, such 
traps have important environmental impacts due to their 
absence of species-specificity, remaining a threat to numer-
ous species of the local entomofauna (Rome et al. 2011; 
Rojas-Nossa et al. 2018, Rodríguez-Flores et al. 2019). 
Thus, more species-specific trapping systems, based on sex 
pheromone attraction (Couto et al. 2014; Cheng et al. 2017; 
Gévar et al. 2017; Wen et al. 2017), are in the process of 

development, however not yet evaluated and available for 
stakeholders (Turchi and Derijard 2018). The location and 
destruction of the Asian hornet nests is also a well-estab-
lished control technique applied in the field. Nests may be 
located by simple triangulation methods (Turchi and Deri-
jard 2018) or more complex approaches using tracking 
devices such as harmonic radar and radio-telemetry (Milane-
sio et al. 2016; Kennedy et al. 2018) or drones (Reynaud and 
Guérin-Lassous 2016). While the technology-based methods 
are still under development and mostly dedicated to research 
purposes, traditional triangulation is very time-consuming 
for stakeholders and leads to rather inefficient results at 
large spatial scale (Turchi and Derijard 2018). Moreover, 
nest location per se is insufficient as a control method if not 
combined with nest destruction. The most established tech-
nique to destroy the nest is biocide injection, e.g. injecting 
permethrin (but also see nests gunshot destruction methods 
for a similar non-biodiversity-friendly method, Turchi and 
Derijard 2018). In France, authorities have implemented 
such action plans involving location and destruction of nests 
in several of the hornet-invaded departments, with very little 
success in terms of biological control and for an economic 
expense of 150 k€/year on average per department (Turchi 
and Derijard 2018). Thus, these field-applied techniques pre-
sent well-known environmental, economic, and/or develop-
ment time costs (ESM 1), and unfortunately, it is still unclear 
whether such methods can reduce the detrimental effects of 
the Asian hornet on European honey bees.

In this study, we tested whether the use of beehive muz-
zles can mitigate the Asian hornet’s impacts on honey bees. 
A beehive muzzle is a low-cost (ESM 1) and non-lethal 
control method that does not aim to collect or poison any 
organism (Turchi and Derijard 2018). This thus called bio-
diversity-friendly control method consists in a mesh device 
placed around the entrance of the beehive that allows the in-
and-out activity of the bees but keeps hornets away from this 
entrance (Turchi and Derijard 2018). This physical control 
method does not aim to prevent the hornet’s predation action 
per se, but to reduce the stress provided by the presence of 
hornets hovering in the vicinity of the beehive entrance (the 
so-called FP syndrome that can lead to a complete stop of 
the foraging activity) and therefore to help bees maintain 
their foraging activity even in the presence of the predator. 
Indeed, the FP has been established as the main risk factor 
for colony mortality related to the Asian hornet (Requier 
et al. 2019). The overarching objective of this study was to 
assess the effectiveness of the beehive muzzle as a control 
method of the Asian hornet’s impacts on honey bees. For 
that, we monitored the predator–prey interactions at 22 pairs 
of honey bee colonies, consisting in one muzzle-equipped 
colony and one control colony without muzzle, throughout 
the invaded French territory. We first measured the hornet-
related HF and FP based on field observations of the flight 
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activity of bees and the predation activity of the Asian hor-
nets at the beehives’ entrance. We then estimated the mortal-
ity probability of the colonies using the BEEHAVE model 
(Becher et al. 2014)—a mechanistic model predicting honey 
bee colony dynamics which has been evaluated and sup-
ported by the European Food Safety Authority (EFSA 2015). 
Finally, we statistically tested whether the hornet-related 
HF, FP, and colony survival probability differed between 
muzzle-equipped and control colonies.

Materials and methods

Study sites and experimental design

The experiment was performed in 22 sites under Asian hor-
net pressure in France between 2013 and 2016 (Fig. 1a, more 
details in Supporting Information ESM 2). All sites had con-
firmed the presence of Asian hornets from at least 4 years 
before the start of the experiment (Rome and Villemant 
2018). The sites consisted in established apiaries of 2–10 
honey bee colonies (Apis mellifera) which were managed by 
local beekeepers. In each site, two colonies that were set at 
least 5 m apart or at both ends of the apiary were selected, 
totalising 44 colonies. The two colonies were selected based 
on similar colony structure (population size and amount of 
honey reserve) and hive type (Dadant hives with same col-
our). Two weeks before the first observation (the time span 
for bee colony adaptation to the muzzle), one colony was 
equipped with a beehive muzzle (Fig. 1b) and the second 
one was used as a control colony (without muzzle). All the 
observations were done on the same equipped–control pairs 
of colonies on each site and over time, without any colony 

change or replacement. The beehive muzzle consisted of a 
metal wire mesh of 6 mm square shape fixed using a ply-
wood backing around the flight board of the beehive; it 
allows for a protection distance of 25 cm in front of the hive 
as honey bees can crawl through the mesh but not the hornets 
(Fig. 1b; see ESM 3 for the detailed design of the physical 
control tool).

Field observations of the prey–predator interaction

Visual observations were performed at the beehive entrance 
of the equipped–control pairs of colonies to quantify the 
foraging paralysis (FP, we observed in the field the foraging 
activity—the number of returning bees—to then calculate 
FP) and the homing failure (HF) associated with the hor-
net predation behaviour. A total of 388 observations were 
performed from July to December (194 observations on the 
22 muzzle-equipped colonies and 194 on the 22 control 
colonies; ESM 2). Each observation consisted in 17 min of 
visual observation from a distance of 3–5 m of the beehive 
entrances. The first 15 min were dedicated to record the 
maximum number of hornets hovering simultaneously in 
front of the beehive (being careful to not double count the 
same individual) and the number of successful predations, 
i.e. the catch of a honeybee forager by a hornet. The two last 
minutes were dedicated to evaluate the flight activity of the 
bee colonies by counting the number of returning bees (more 
details in ESM 2). These observation durations (i.e. 15 and 
2 min) were preliminary determined as the best trade-off 
between achievable sampling effort (not too time-consum-
ing) and tractable accuracy for quantifying the numbers of 
hornets and honey bees, both at low or high densities. In par-
ticular, we performed an a priori statistical power analysis 

(a)

(b)

Fig. 1  Location of the study area in France with a 22 pairs of monitored honey bee colonies. b Beehive muzzle consists in a 6 × 6 mm mesh 
device placed at the entrance of the beehive that allows the in-and-out activity of the bees but block hornets out of this entrance
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for assessing the ability of the study design to detect a poten-
tially significant effect between treatments with a one-way 
analysis of variance (Sokal and Rohlf 1994). Given the 
observed coefficients of variation of honey bee (70.9%) and 
hornet (87.3%) visual counts, the power analysis revealed 
that the actual sample size (194 observations per treatment) 
would allow for the detection of effect sizes as small as 20% 
and 25% of the mean between treatments, respectively, with 
a satisfactory statistical power (1 − β = 0.8).

Those observations were performed randomly during the 
daily flight activity of bees and hornets (ranged from 9.30 
am to 6.30 pm). We systematically performed the two obser-
vations (i.e. equipped colony and control colony) within the 
same hour. The FP was estimated as the relative flight activ-
ity of bee colonies compared to their maximum of flight 
activity (see statistical analysis). The HF was estimated for 
a 15-min slot as the ratio between number of bees caught 
(i.e. number of successful predations) and the total number 
of returning bees (previously multiplied by a factor of 7.5 for 
time match given that the flight activity of the bee colonies 
was observed on 2 min).

Modelling the muzzle effect on the hornet‑stressed 
colony dynamics

We used the mechanistic BEEHAVE model (Becher et al. 
2014) to assess the survival probability of honey bee colo-
nies stressed by the Asian hornet predation. We performed 
200 simulations to predict the daily colony growth of a bee 
colony population from the beginning of January to the end 
of May of the following year. This time period was cho-
sen to include a complete winter season. The model was 
calibrated following Becher et al.’s (2014) initial colony set-
tings, for which four key colony parameters were modified 
to increase stochasticity in the predictions and to improve 
representativeness of real field-condition variability (Req-
uier et al. 2019). This stochasticity improvement includes 
random variations of the four key parameters: (1) the maxi-
mal egg-laying rate of the queen, (2) the initial adult popu-
lation size, (3) the initial Varroa destructor infestation, and 
(4) the prevalence of virus-infected mites. We also enabled 
usual beekeeping management practices using the ad-hoc 
options, including Varroa treatments and honey harvests. 
To implement the Asian hornet predation impacts into the 
model, we followed Requier et al.’s (2019) procedure con-
sisting in modifying the two parameters “forager mortality” 
and “maximal foraging distance allowed for the colony”, 
from the day 240 (August 28) to the day 310 (November 6) 
(ESM 4). These parameters mimic the Asian hornet-related 
disturbances of HF and FP, respectively.

We distinguished two sets of 100 simulations to repro-
duce the variation of effect magnitude of the experiment 
(i.e. equipped or without beehive muzzle) given the empiri-
cal HF and FP assessments (see results). The two simula-
tion sets differed in the covariate calibration values of the 
colony flight activity and the forager mortality probabil-
ity. The first set of 100 simulations was parameterized as 
muzzle-equipped colony, for which we gradually decreased 
the maximal daily foraging distance allowed for the colony 
flight activity from the value of 2900 km per day (i.e. 84% 
of the default value of 3450 km per day) down to 2000 km 
(i.e. 76% of the default value), and we increased the forager 
mortality probability from the default value of 1.00e−05 to 
1.35e−05 per second. The second set of 100 simulations was 
parameterized as control colony, for which we followed the 
same procedure decreasing the maximal daily foraging dis-
tance allowed for the colony flight activity from the default 
value down to the minimal theoretical value that does not 
lead to a complete stop of foraging (about 1.7 km), and we 
increased the forager mortality probability from the default 
value of 1.00e−05 to 1.35e−05 per second. Each of these 
simulations reproduced a different level of hornet predation 
pressure, ranging from null (no hornet predating at the bee-
hive entrance) to high (20 hornets simultaneously predating 
at the beehive entrance).

Simulations were further summarized based on their pre-
dicted survival. Colony mortality was defined by the fol-
lowing two thresholds (Becher et al. 2014): (1) simulations 
that predict a population size smaller than 4000 adult bees 
during winter and (2) simulations that predict a total deple-
tion of honey stock during winter. The survival probability 
was averaged per number of hornets simulated (i.e. from 0 to 
20) and per set of “control” versus “muzzle” simulations (i.e. 
100 simulations per set), totalising five replications per hor-
net level and simulated set. We then expressed the survival 
probability as the difference (∆) between control and muzzle 
sets to show the potential effect of this control method on 
colony survival.

Statistical analysis

All statistical analyses were performed using the R Project 
for Statistical Computing version 3.3.3 (R Development 
Core Team 2018).

Muzzle effect on the hornet‑related FP and HF

To evaluate the benefits of the muzzle, we first analysed 
whether this biodiversity-friendly control method affects 
the hornet-related FP. For that, we fitted a generalized 
linear mixed-effects model (GLMM) with Poisson error 
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structure (glmer function in the lme4 R-package) to test 
the correlative links between the number of returning bees 
and (1) maximum number of hornets hovering in front 
of the beehive in the same time as a quantitative predic-
tor, (2) the presence of muzzle as a categorical predictor 
(two levels: yes or no), and (3) interaction between the 
maximum number of hornets and the presence of muzzle 
(model 1 in Table 1). The date and site of observations 
were specified as random variables in a nested design 
(date within site) to account for the spatio-temporal non-
independency of the repeated measurements. The FP was 
then calculated and expressed as the per cent flight activity 
of bees relative to its maximal value (the higher number 
of returning bees predicted by the model). We also evalu-
ated the effectiveness of the muzzle at reducing hornet-
related HF. To do so, we fitted a binomial GLMM with a 
logit-link function to test the correlative link between the 
proportion of HF and (1) the number of returning bees 
as a quantitative predictor, (2) the presence of muzzle as 
a categorical predictor, and (3) the interaction between 
the number of returning bees and the presence of muzzle 
(model 2 in Table 1). Likewise, date and site of observa-
tions were specified as random variables in a nested design 
(date within site) to account for the spatio-temporal non-
independency of the repeated measurements. The model 
residuals were extracted and inspected against fitted values 
(residuals vs. fitted plot and normal Q–Q plot) to ensure 
the residual normality and the homoscedasticity assump-
tions were fulfilled.

Muzzle effect on the survival probability of hornet‑stressed 
colonies

We analysed the potential benefits of this control method 
on the survival probability of hornet-stressed colonies. For 
that, we fitted a linear model (LM) to test the correla-
tion between the control–muzzle difference (∆) in survival 

probability and the number of simulated hornets. Model 
residuals were also extracted and inspected against fitted 
values to check the suitability of the statistics.

Results

Muzzle effect on the hornet‑related FP and HF

The visual observations led to a range of 0–20 hornets 
hovering at beehive entrances independently of the pres-
ence of beehive muzzle that negatively impacted the flight 
activity of the bee colonies (Table 1). The presence of 
the muzzle reduced the flight activity of the bee colonies, 
but in the meanwhile interacted positively with the hornet 
loads (Table 1). Over this positive interaction, the muzzle 
mitigated the FP of the colony related to the presence of 
hornets hovering at beehive entrances (Fig. 2a). Thus, the 
foraging activity in the presence of hornets ranged from 
84 to 76% of its baseline value (i.e. 16–24% of FP, respec-
tively; Fig. 2a) in muzzle-equipped colonies, instead of 
ranging from 100 to 35% in control colonies (i.e. 0–65% 
of FP, respectively; with prediction 95% CI reaching up 
to 76% of FP). The muzzle led to the reduction up to 41% 
in FP. The hornet-related HF was significantly dependent 
on the flight activity of the bee colony but not on the muz-
zles nor on the interaction between both factors (Table 1). 
Thus, the HF is maximal under the condition of very low 
flight activity of the bee colony, and quickly decreases 
with the increase in the flight activity of the bee colony, 
independently of the presence of beehive muzzle (Fig. 2b).

Muzzle effect on the survival probability 
of hornet‑stressed colonies

A prior validation step excluded three simulations that 
collapsed before the implementation date of the hornet 
impacts. Among the 197 remaining simulations, no col-
lapse occurred during the impacting period of the hornet 
(i.e. from August 28 to November 6, ESM 4). Instead, 
collapse events only occurred during and after the sub-
sequent winter, from January 13 to May 1. The survival 
rate of the muzzle-simulated colonies was higher (55%) 
than the survival rate of control-simulated colonies (35%). 
Interestingly, the survival probability of hornet-stressed 
colonies significantly increased in muzzle-equipped col-
onies compared to control colonies (n = 197, F = 14.38, 
R2 = 0.43, P = 0.001). Although the survival probability 
of hornet-stressed colonies equipped with muzzles was 
marginally lower than control colonies in a context of low 
amounts of hornets simulated (i.e. less than five hornets 
hovering at the beehive entrance), theoretical simulations 

Table 1  Summary of the GLMM models performed to test the effects 
of the Asian hornet and its interaction with beehive on bee foraging 
paralysis and homing failure

Estimate SE Z value P value

Foraging paralysis (model 1)
 Muzzle − 0.177 0.021 − 8.310 < 0.001
 Hornet − 0.043 0.005 − 11.537 < 0.001
 Muzzle × Hornet 0.047 0.006 7.964 < 0.001

Homing failure (model 2)
 Muzzle − 0.115 0.148 0.778 0.436
 Bee activity − 0.147 0.009 − 15.930 < 0.001
 Muzzle × Bee activity 0.001 0.013 0.108 0.914
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predict that the muzzle increases the survival probability 
of hornet-stressed colonies up to 51% in a context of high 
amounts of hornets (i.e. more than five hornets) (Fig. 3).

Discussion

The invasive Asian hornet Vespa velutina threatens honey 
bees in Western Europe by inducing bee foragers’ homing 
failures (HF) and foraging paralysis (FP) of colonies that 
reduce colony survival probability (Monceau et al. 2013; 
Requier et al. 2019). Here, we tested whether the use of bee-
hive muzzles, a low-cost and biodiversity-friendly control 
method, can mitigate these Asian hornet impacts on honey 
bees. We found that the beehive muzzle did not affect the 
hornet-related homing failure, but drastically reduced the 
foraging paralysis. Beehive muzzle therefore helps honey 
bee colonies maintain their foraging activity even in the 
presence of the predator. Once modelled, these muzzle-
based effects increased substantially the survival probability 
of hornet-stressed colonies in the context of high abundances 
of Asian hornets. These results suggest that supplementing 
beehive muzzle can mitigate the detrimental effect of the 
Asian hornet on European honey bees.

The Western honey bee Apis mellifera is an important pol-
linator of many crops (Garibaldi et al. 2017) and wild plants 

(a) (b)

Fig. 2  Effect of the beehive muzzle on the hornet-related impacts of 
bee foraging paralysis (FP) and homing failure (HF). a The number of 
Asian hornets hovering in front of beehives triggers FP, with a sharp 
decrease in honey bee flight activity in control colonies mitigated by 
the presence of beehive muzzle. b As flight activity decreases, hor-

nets increase their bee capture success, increasing the risk of HF due 
to hornet predation, independently of the presence of beehive muzzle. 
Thick lines show the model predictions with shaded areas indicating 
the 95% CI

Fig. 3  Effect of supplementing beehive muzzle on the survival prob-
ability of hornet-stressed bee colonies. The presence of beehive muz-
zle increased the survival probability of simulated hornet-stressed 
colonies in a context of high amounts of hornets hovering at the bee-
hive entrance (i.e. more than five hornets). The Δ value consists in 
the difference of survival rate between control and muzzle colonies. 
The horizontal dotted line shows the no benefit of the beehive muzzle 
on the survival probability. Thick lines show the model predictions 
with shaded areas indicating the 95% CI
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(Huang et al. 2018), and further produces honey and other 
beekeeping products. Large-scale monitoring has revealed an 
ongoing decline of honey bee populations in Europe (e.g. van 
der Zee et al. 2012; Gray et al. 2019), the USA (e.g. Kulhanek 
et al. 2017) and in several other regions across the world 
(e.g. Latin America: Requier et al. 2018; China: Liu et al. 
2016; South Africa: Pirk et al. 2014). This decline is depicted 
by high honey bee colony mortality rates, especially during 
winter season in Europe (Neumann and Carreck 2010; Gray 
et al. 2019). The decline is likely to be related to interactions 
among multiple combined stressors (reviewed in Potts et al. 
2010, 2016; Goulson et al. 2015; Steinhauer et al. 2018). 
For instance, the agricultural disturbance of floral resource 
diversity, availability, and composition, resulting in the scar-
city of particular flowering species and/or monotonous offers 
of specific crop flowers, negatively affects managed honey 
bee colony dynamics and survival (e.g. Requier et al. 2017). 
Pesticides, e.g. neonicotinoids as well as pyrethroids and fun-
gicides, were also highlighted to severely affect the behaviour 
and fitness of honey bees (e.g. Prado et al. 2019). Addition-
ally identified critical causes are diseases, pathogens, and 
parasites (reviewed in Potts et al. 2010, 2016; Goulson et al. 
2015; Steinhauer et al. 2018). Recently, the Asian hornet has 
been added to this list of multiple stressors likely involved in 
the mortality of honey bee colonies in Western Europe (Leza 
et al. 2019; Requier et al. 2019).

Here, we showed that the beehive muzzle, a physical 
control method, reduces the stress related to the Asian hor-
net that could lead to a positive effect on the survival of 
hornet-stressed colonies. By reducing the stress of the bee 
colony facing hovering hornets, this mesh placed around 
the beehive’s flight board allows bee workers to continue 
foraging. Although several studies have highlighted the need 
to control for the invasive Asian hornet’s impact on honey 
bees, none of the proposed control methods have tested their 
efficiency per se. Conversely, it is well established that the 
current control methods are not well adapted and lead to 
important environmental impacts (ESM 1). For instance, 
locating and destroying nests or trapping hornets in mass 
cannot sustainably reduce the populations of any social 
invasive wasp (Beggs et al. 2011). Moreover, in the absence 
of specific baits mass trapping remains a threat to numer-
ous non-target species of the local entomofauna (Rome 
et al. 2011; Rojas-Nossa et al. 2018, Rodríguez-Flores et al. 
2019). Beehive muzzle represents for beekeepers an effec-
tive low-cost technique to reduce Asian hornet impact, while 
promoting economic saving given the estimated cost less of 
15 € per homemade beehive muzzle (including material and 
construction time) instead of a cost up to 100 € for a hornet-
related dead colony replacement. The beehive muzzles have 
to be installed at the start of the predation period (typically 
in mid of August in France; Monceau et al. 2013; Requier 
et al. 2019) and removed before the spring. Although our 

results using a 6 mm mesh device (see ESM 3) would lead to 
a potential negative effect on the foraging activity of honey 
bees in the absence of Asian hornets, we recommend testing 
a larger mesh device (e.g. 8–10 mm) that would facilitate the 
in-and-out activity of bees without reducing the protection 
against the predator. This tool can also be useful to control 
other predators that impact colonies particularly during the 
winter season, especially large insects and small mammals 
(Simone-Finstrom et al. 2017). However, even using beehive 
muzzle, beekeepers may consider to provide supplemental 
feeding with sugar syrup during pre-wintering or winter-
ing periods to enhance the survival probability of hornet-
stressed colonies though caution in supplemental feeding 
methods is required to avoid any disturbance in bee colony 
thermoregulation during the critical period of overwintering 
(Requier et al. 2019).

Biological invasions, in combination with other anthropo-
genic drivers (Brook et al. 2008), are responsible for many 
socio-economic and ecological impacts worldwide, includ-
ing massive economic costs (Bradshaw et al. 2016), health-
related issues (Mazza et al. 2014; Schindler et al. 2015), 
and ecological damages such as biodiversity loss and spe-
cies extinctions (Bellard et al. 2017). Here, we showed that 
the beehive muzzle, a physical control method, can help to 
increase the survival probability of hornet-stressed colonies 
without using environmental-cost biocides or expensive 
material. This control method could therefore be recom-
mended to beekeepers as an effective low-cost technique to 
protect their beehives. The current study is the first formal 
assessment of hive muzzles as a honey bee protection device 
against the Asian hornet. A part of our findings is based 
on theoretical modelling assessments, which remain to be 
consolidated by field data. Given the urgency of the situ-
ation, with the rapidly expanding Asian hornet threat and 
the flourishing of initiatives to control its economic impact, 
we encourage scientists and beekeeping institutes to gather 
large-scale standardized field data on the muzzle efficiency. 
Additional colony survival data are needed to further vali-
date the method in a wider range of environmental contexts. 
Importantly, any colony survival monitoring should cover 
the whole winter period and next spring arousal so that the 
potentially delayed effects (Requier et al. 2017) will be prop-
erly detected.
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ESM 3. Detailed design of the beehive muzzle. (a) Latero-frontal view, (b) latero-back view, 1	

(c) lateral view. 2	
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ESM 4. Temporal pattern of the honey bee colony population size simulated with the 6	

BEEHAVE colony model parameterized with a range of hornet impact levels following its 7	

effect on (a) control colonies without muzzle vs. (b) muzzle-equipped colonies. The control 8	

simulations (a) show a typical pattern of foraging paralysis effect (i.e. a higher size of the 9	

population in comparison with the control simulations) during (in grey) and after the Asian 10	

hornet stress period. This is related to the stop of flight activity and therefore an increase of 11	

individual survivorship per bee. See Requier et al. (2019) for more details. The muzzle-12	

equipped simulations (b) show the absence of such a foraging paralysis effect. 13	
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