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Abstract

The phenology of wood formation is a critical process to consider for predictintrdwsv

from the temperate and boreal zones meagct to climate change. Coarpd toeaf
phenologyshewevethe determinism ofvood phenology is still poorly knowklere, we
comparedorthe,first timethree alternative ecophysiological model clasgeeghold

models heat-summodels anahilling-influenced heat-sum models) and an empirical model in
their ability to"predict the starting date of xyleell enlargement in sprindor four major
Northern Hemisphereonifers (Larix decidua, Pinus sylvestris, Picea abies andPicea

mariana). We-fitted modelsvith Bayesian inference twood phenological data collected for
220 site-years,over Europe and Candde dilling-influencedheatsum modeteceivel

most supportor all thefour studiedspeciespredicting validatiomatawith a7.7-day error

which is within‘oneday ofthe observed datasolution We conclude that both chilling and
forcing temperatures determine the onset of wood formation in Northern Hemisphere
conifers.Importantly, the chillinginfluencedheatsum modekhowed virtually n@patial bias
whichever thespecies, despite the large environmental gradients considered. This suggests
that the spring onset of wood formation is far less affected by local adaptatidoytha
environmentallydriven plasticityIn a context of climate changee therefore expedaising
winter-spring temperature texert ambivalent effects on the spring onset of wood formation,
tending to hasten it through the accumulation of forcing temperature, but imposingra highe
forcingtemperatureequirement through the lower accumulation of chilling.

Keywords:'wood phenology, cambium, phenological modelslling temperatures, forcing
temperaturesconifers.

Introduction

The seasonality of physiological processes is an essential component of terrestrial ecosystem

models (TEMsDelpierre et al.2012; Kramer, 1995), but is usually poorly represented being
mostly confined to the simulation of leaf onset arad less(Delpierre, Vitasse, et al., 2016).

In such models, the phenology of nieaf organsor tissuege.g. wood) issimulated (i)

This article is protected by copyright. All rights reserved
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85 simultaneous or relative to lepfienology or (ii) using generic, non-orgsecific
86 temperature functions for modulating the allocation of ca(bafpierre, Vitasse, et al., 2016
87 ; but seeSchiestlAalto, Kulmala, Makinen, Nikinmaa, & Makela, 2015his reflects the
88 state of our knowledge onédlphenology of treg which is far more developed for leaves as
89 compared with=other organs or tissues (Delpierre, Vitasse, et al., 2016; Fomgtdarr
90 Bansal, Gauld, & St. Clair, 2014}.is difficult to quantify how strongly this knowledge gap
91 affecsthe predictive abilityof TEMs, but itcertainlyjeopadizes their biological realism
92 (Guillemoteet al., 2017For example, it has been demonstrated in evergreen conifers that the
93 spring resumption of cambium activity generally occurs before budburst (Cuny, Rathgeber
94  Lebourgeals, Fortin, & Fournier, 2012; Gruber, Strobl, Veit, & Oberhuber, 2010; Huang,
95 Deslauriersy &Rossi, 2014; Michelot, Simard, Rathgeber, Dufréne, & Damesin, 2i52; R
96 et al., 2009)." Mereoveseverastudies have shown that, independent from leaf phenology,
97 the duration of the wood growing seag®n se is a majordeterminant of wood production
98 (Delpierre, Berveiller, Granda, & Dufréne, 2016; Lempereur et al., 28@5hat an earlier
99 onset of cambium activity, or a later cessation may result in a higher cell poodilctpi,
100 Morin, Deslauriers, & Rossi, 2010; Makinen, Jyske, & Nojd, 2018). Consequently, there is a

101 clear need for the developmaritwood phenology modules for inclusion into TEMs.

102 In order to develop wood phenology modules for TEMs, we first have to understand the
103 causal climatic drivers of wood phenology tihetemperate antdoreal regions of the

104 Northern Hemisphere, tHermation of woods seasonal andccurs fronlate spring to early

105 autumn (Ressi et al., 2016, 2008). In spricegnbal mothercellsstartdividing, producing

106 new derivatives,of phloem outward and xylgward (Larson, 1994; Vaganov, Hughes, &

107 Shashkin, 2006)As a base model for this cycle, several authors pemgosedhat just as

108 for buds,thespring resumption of cambium activity is the outcome of a two-phase dormancy
109 period (Begum'et al., 2018; Begum, Nakaba, Yamagishi, Oribe, & Funada, 2013; Ford et al.,
110 2016; Little & Bonga, 1974; Rensing & Samuels, 2004). According to this nzadabium

111 activity is prevented by treeisternal factors (e.g. physiologicatate, signalsjluring the

112 endo-dormancy phasevhile it resumegiuring theeco-dormancy phase when tbeernal

113 conditions are favourable.

114 The main candidate for external conditions driving the resumption of cambiumyaictivit

115 temperate and boreal ecosystasihe spring temperatufas reviewedn Begum et al.,

116 2018; Delpierre, Vitasse, et al., 2016; Larson, 1994). Field observation have shown that spring
117 cambium resumptiois usually delayeat high altitudesand latitudesascompared to low
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altitudesand latitudes (Jyske, Méakinen, Kalliokoski, & N6jd, 2014; Moser et al., 2010; Rossi
et al., 2016; Rossi, Deslauriers, Anfodillo, & Carraro, 2007; Rossi et al., Zagd&8)ermore,
localstem heating activatdtle formation of woodGricar etal., 2007), with a gradually

increased response to heat applied from winter to spring (Oribe & Kubo, 1997).

Based on these evidencpsgvious studiebavedevelopediifferent model formulations

based on spring temperature to predict the timing of cambial resumftiiost model class

uses demperature threshold for predicting the onset @lambial activityin conifers from cold
biomes (Deslauriers, Rossi, Anfodillo, & Saracino, 2008; Rossi et al., 2007, P& ver
althoughthis modelis able tadentify likely periods of cambial activity, its accuracy for
predicting the'onset of cambial activity from temperature time sen@slably low (Fig.
S1).Anothermodel classs that ofheat sums (Giagli, Gricar, Vavrcik, & Gryc, 2016;

Schmitt, Jalkanen, & Eckstein, 2004; Seo, Eckstein, Jalkanen, Rickebusch, & Schmitt, 2008;
Swidrak, Gruber, Kofler, & Oberhuber, 201Ther underlying hypothesis is thtie

cambium resumes its activity (cell divisimllowed by celldifferentiation)after sufficient
exposure totemperatures above a thresholdgBedforcing temperatures)rhus,heat sum

models mimic the progress of cambium through the eco-dormancy phase, making the implici
hypothesis that the endand ecedormancy phases are sequential, and that endo-dormancy
stops at thesdate when heat accumulation gaeipierre, Vitasse, et al., 201@). practice, a
degree-dayaccumulations calculatedoy summingemperatures above a threshliase
temperaturg of typically +5°C(or more rarelyjower values e.g. 0-1°CesAntonucci et al.,

2015; Li etal., 2017) from a given day, fixed a priori, befbeeonset date of cambial
reactivationHowever, there is no consensus concerning the day or period of year from which
the cambium _becomeensitive tdorcing temperature. Some studieshoose January 1 or

spring equinox (Giagli et al., 2016; Schmitt et al., 2004)ereawthers (Seo et al., 2008)
considerthe'starting dabecurring whertrees have experienced a daily mean temperature
above 6°C for at leastive consecutive day$Moreover,heat sum models usually fail in
identifying a speciesspecificheat sum threshold above which cambium would systematically
be activg(Giagli et al., 2016; Moser et al., 201@hich is indicative of their low structural
realism and thukw predictive ability. More recentlyhilling-influenced heat sum models

have been shown able to predipting cambial reactivatiom Douglas ir (Ford et al., 2016).
Similar toheat sum models, those models were originally designed for describing the progress
of primary meristems (i.e. leaf or flower buds) from dormancy to budburst. G

hypothesis is thahe cambium requires a lower accumulatiorfating temperaturesluring
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the ecedormancy phasehen exposed to increasing levels of cold temperaturesa(kem

chilling temperaturegCannell & Smith, 1983; Little & Bonga, 1974) during the endo-
dormancy phase, which may precede or be concomitant to the eco-dormancy phase (Chuine,
Garcia de Cortazahtauri, Kramer, & Hanninen, 2013). The und@ng physiological basis

of suchchilling=influenced heat sum models is not fully understood (Rinne et al., 2001; Singh,
Svystun, AIDahmash, Jonsson, & Bhalerao, 201&3t,a recent study made use of empirical
models (linear‘regression of spriageraged temperature) to predict the timing of cambial

resumption (Rossi et al., 2016).

Though previous studies evaluated the ability of the three abovementioned model classes
separately in‘'Simulating the datetbé resumption of cambium activity in spring (threshold-
type, Rossi, Morin, Deslauriers, & Plourde, 20hdat sums, Seo et al., 2008; Swidrak et al.,
2017, chilling-influenced heat sums, Ford et al., 201;6empirical regressiorRossi et al.,

2016), there,has been no comparison of those models methe same datasétere we
make use of a’large number of field observation data collected over Europe and Canada
(GLOBOXYLEO"databasefo conduct for the first time a systematic evaluation of the causal
factors affectinghe breaking of cambial dormancy, and to propose an improved model of
cambial spring resumption. Specificallyy identifying which model structure receives most
support fromeebserved datae aim to evaluate(1) if the resumption ofambium activity of
NorthernHemisphere conifers in spring is more likely calisg the crossing of a given
temperature threshold or by an accumulation of heattfiicishold models outperforreat

sum models?”) and; (2) ibbservation data support the existence of a separatedenchancy
phase that eamibe broken by chilling exposure ¢tdibing-influenced heat sum models fit the
data best?%)Our’hypotheses are (threshold models are fine for identifyingthermal
probability/of cambium activity but have Igevedictive ability since the daily variability of
temperature'querimposed to seasonal variations cannot serve as a reliebierdrees; (2)
that over large geographical gradients, models incorporating both the effectsid emt
forcing temperature are better able to describe the variabilibheibeginning bwood
formation 6inceover large climate zones, multiple climate limitations interataying
identified the model structure best supported by the data, we then evaluate thedliologi

reliability of its inferred parameters, for future use in Terrddii@system Models.
Material and methods

Study sites

This article is protected by copyright. All rights reserved
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The selected study sites were extracted from the GLOBOXYLO dafabadataset gathering
wood formatiorand meteorological informatiarollected over theast 15 years from several
research teams alver the wold. The selected data concéhe fourmost observed
coniferous specie@ arix decidua Mill. (LADE), PinussylvestrisL. (PISY), Picea abiesL.
Karst. (PCAB)andPicea mariana (Mill.) BSP (PCMA)), covering a wide range of
temperature and photepod conditions in the Northern Hemisphere (from 40.0°N to 67.5°N
latitude,79:2°W'16°29.4°E longitude, ancbm 30m to 2150 naltitudes (Fig. 1, Table S1).
Specifically, the dataset includes wood formation critical dates from 2001 ta26436
study sites for a total of 220 siyears representing 1105 tresite-year observationgll
samplel trees were dominaimdividuals The average (£SD) tree age was 124 * 70 years,
with a diameterat breast height (DBH) of 44 + 30 cm, and a tree height of 21 + ®le (Ta
S1).

Wood formation'data
Microcore sampling and preparation

At eachstudysite,on averages+2 trees were chosen and sampled weéklsn MarchApril,
depending on local climate conditions, to monitor wladhation The collection,
preparationpand analysis of wood samples followed a common protocol across agds. W
microcores of 2 mm in diameter and 286-mm in length were collected weekly at breast
height (1.3£0.3 mpver the growing season, using a Trephor® tool (Rossi, Anfodillo, &
Menardi, 2006) or surgical bone sampling needles (Deslauriers, Morin, & Begin, 2003).
Microcores.were then cut with rotary or sledge microtomes in transverse sectior30ofi 0
thick, stained witlsafranire and astra blue aresyl violet acetatand observed under bright-

field and polarized light after coloratigRossi, Deslauriers, & Anfodillo, 2006)

Determination of the spring resumption of xylem formation

We focus on the.beginning of xyletell enlargemen{bE) as a critical, weltlefined marker
corresponding to the sprirsgartup of wood formationUltrastructural changes in cambial
cells are the very first stage of growth reactivatiime bE occurs somewhat later thére
onset of ultrastructural changascambid cells; but the latters very difficult to observe

& https://www6.nancy.inra.fr/fordbois-lerfob/Projets/Projeten-cours/GLOBOXYLO

This article is protected by copyright. All rights reserved



212
213
214
215
216
217
218
219
220

221

222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239

accuratelyand involves both xylem and phloem céBsislan, Cufar, Koch, Schmitt, &

Gricar, 2013; Prislan, Schmitt, Koch, Gri¢ar, & Cufar, 2011). It is thereforenot often reported
in wood formation monitoring studies. To quantify bE, the number &f tekach
differentiation zonécambial,enlargement, thickening, amdature)wascounted along at
least three radial files on the anatomical sectiBntarging trabeids were characterized by
radial diameter at least twice that of a cambial &¥# defined, at the tree level, the
beginning ofthe‘enlargement phdbg) as the date (day of year, Do¥henmore than 50%
of the observed radial files present at least one first enlarging trg&tagitheber,
Longuetaud, Mothe, Cuny, & Le Moguédec, 2011).

Temperature and photoperiod data

Meandaily temperatureBave beerollected at the study sitesigF1). However,dcal
weather stationsiweresuallynotinstalledbeforethe start of thevood formation monitoring.
To be able to consider in our modelsather conditions also before the monitoring pemgal,
used for European siteshe WATCHgriddedmeteorological dataset (gri@solution = 0.5°,
Weedon et al.,.20)40 extrapolatehose missinglata, after establishing linear regression
between the locand corresponding WATCH temperature data (correlation between
overlappinglocal and WATCH temperatumae series wab.95 < r < 0.99), and removing
the (low)biasesof WATCH data For Canadian sites, i.e. fBrcea mariana, we did not
extrapolate the temperature time serizay length(the daily duration of the photoperiod)
was calculated daily asfanction of latitude, using astronomical formuUlae

Models deseription

We compared three classekecophysiological models amtheempirical mode(Table 1) in
their ability.to predict thelate of onset of xylercell enlargemenphaseg(bE) in the fourtree
species ofinterestThe three modeallasses ardi) threshold models (i) heat sum models

(iii) chilling-influenced heat sum models Since the patterns of xylem formation have been
strongly related4o mean temperatures over large geographical gradiente{Rbs2016),
we usedan_empirical model relating bE &arly season (Januadyne) average temperatuae

a benchmark for ecophysiological models.

® See for example Pr Dennis Baldocstiiometeorology course, lecture number 7
(https://nature.berkeley.edu/biometlab/index.php?scrn=esgm129
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For all ecophysiological models, we used photoperiod thresholds to delineatrthad end
of the endoand ecedormancy periods, different to most earlier phenological modelling
studies, which usually consideremmperatur@ccumulation to start atgiven day of year

(e.g. usually January 1 in most phenological studies considem@hgum models; Linkosalo,
Carter, Hakkinen, & Hari, 2000; Seo et al., 2008)is choice was motivated by the fact that
our study covers a largatitudinal gradienbver which a given calendar day (not perceptible
by treesper‘sey'may correspond to a large variations in photoperiod (a signal which is

perceptible by trees)
Temperature- and photoperiod-threshold models

In thisclassof medels, we assumed that bE occurs when a given temperature and/or
photoperiodithreshold has/have been crasaditst formulation of this model (henceforth
referred to a3t model) is:

bE = min(d) suchthatT(d) > T* and d > —10 ()

wherebE is the beginning of the xylem enlargement period (DaM}, a day of year (DoY),
T is the daily average temperature, dfds a temperature threshold (°@Ye assume that the
passingrofithestemperature threshold necessarily occurs after winter solgte@@vious

year (i.e.DoY _355 of the previous year, or DoY -10 of current year).

In casebE occurs when the thresholds of both temperature and photoperiod have been

exceededthe model (henceforffDLt model) writes:

{ bE = min(d) such that T(d) = T*and d > j @)

withg*= min(d) such that DL(d) = DL* and d > —10
whereDL is.the daily photoperiod (hours) abdl* is a photoperiod-threshold (hours).
Heat sum model

In the heat sumrmode| we assumed that bE occurs when a given accumulattiogat (above
a temperature threshold, i.e. forcing temperatures) has been reached. Thégherumdorth
HS model)takesthe form:

bE = min(d) such that F(d) > F* (3)

This article is protected by copyright. All rights reserved
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F(d) = ngtart leff(d)
T(d) =Ty, if T2 T; (4)

with )

whereT; is a temperaturéhreshold above which forcing temperatures are accumuked,

is the heat'sum atayd (degree-days) arfer is theforcing units requirement at which bE
occurs (degredays).In this model, the accumulation of forcing temperasiegtsat a given
photoperiod thresholBL 4t (hOurs), occurring after the winter solstice of the previous year
such that:

Fstqre = min(d) such that DL(d) = DLpgiqart (5)
with d > —10

This model simulates the progress of cambium through the eco-dormancy phaskasd

the implicitthypothesishatthe preceding endo-dormancy phase ends om-day
Chilling-influenced heat sum model

In thechilling-influenced heat suimmodel CiHS model), the progress of cambium through
the endoand.ecedormancy phases is explicit, and bE occurs at thettiee ecedormancy
phase. During*endo-dormancy, cambium division is inhibited by tree internal factors, the
effects of which.are counteractbey low temperatures. Following the approach proposed by
(Cannell & Smith, 1983for bud meristems, this hypothesis translatesantaccumulation of
chilling temperatures, quantified as a number of chillinds (Ciy, in chill units C.U). Cy is

calculatecon a daily basis frorga (DoY), up to theCeng dateas follows:
Ceoe(d) = T R(T(d)) (6)
where the daily rate of chillind¢) can be calculated as a linear ftioe of temperaire

C(Lif T(d) <T,
Re(T(d)) = {0 if T(d) > T, (7)

whereT¢isthe temperature threshold (°C) below which chilling accumulation occurs.

Besides the accumulation of chilling, the model assumes that the progression of the cambium
towards bE during eco-dormancy is favoured by the accumulation of forcing temperatures

F(d), as described in eg-& TheCiHS model postulates thaasthe accumution of chilling

This article is protected by copyright. All rights reserved
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proceedsthe requiremenfor forcing temperaturedecreasessuch that the critical sum of

forcing F* is defined daily, antinearly depends oC::
Fr(d) =g X Croe(d) +h  (8)

whereg issthesslope of the relation between required forcing anigschillingaccumulation
(degree-days per C.U.), ahds the forcing units requiremeint the absence of chilling

(degreedays).

In this model;.both the period of cambium sensitivity to clgli@mperatures (delimited by
days of yeafCqtandCeng, €9. 6) and the start of forcing temperature accumulation (on day
of yearF«art, €0. 4) are parameterized as photoperiods (through parambetegg:, DLCenq
andDLF«at, respectively; see eq. 5 for the correspondence of e.g. day dfygavith
photoperiodDLesart). We set the parameter bounds suchEha.: (DLCeng) Cannot occur
earlier than.the.autumn equinox (winter solstice) of previous ketimg the model inference
procedure/freeto find the most likely photoperiod limits for chilling and forcing adedion
within a large“rangefrfom autumn equinox of the previous year up to semsolstice of the
current year, our.model may represent several temporal combinations of ithegcand
forcing temperature accumulation functiooggresponding tdifferent hypotheses of the
interplay between the endand ecedormancy phases (i.e. sequential padhllel; see
(Chuine etal., 2013).

Empirical relation with spring average temperature

This empiricalsmodel (analogous to Rossi et al., 2@k8umes that bE can be related to

spring temperature via a linear regression, such that:
bE = stpg X Tspg + pTSpg’ (9)

whereTgy IS the average Januadyne temperature (°C) calculated for eachysstr, and

MT gy andpTgy are parameters of the regression line.

Parameter estimation and model comparison through Bayesiainference

To assess the models’ abilities to simulate bE dates, we randomly split the lbsktzed at
the tree scaleto calibration vs. validation subsets, with 70% of the data for calibration, and

30% for validation. We checked that the distribution of the random calibration and walidati
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320 DbE subsets did not differ (Wilcoxon rank sum test, p>0.50). Since the model fitting afmlity a
321 inferred parameters may depend on the calibration subset used, we repeated the calibration
322 procedure 30 times, using different calibration vs. validation subset combinatiomaodibe

323 evaluation results we report concern validation data, unless indicated.

324 Model parameters were fitted via Bayesian inference (sed&;elgan, Carlin, Stern, &

325 Rubin, 2004, and Fu, Campioli, Van Oijen, Deckmyn, & Janssens, 2012, for application in
326 phenologicalimedelling)The Bayesian framework calculates a posterior estimate and

327 uncertainty.for,the model parameters, based on a prior distribution and tHelkkldefined
328 as the probability of obtaining the observed data, given the model assumptions with their
329 respective parameters. We use a Gaussian likelihood for all models:

0\ 2
330 L®) = Mimsn sz enr | -5 (F25%) |, (eat. 10)

2 o

331 where0; is the observed bE date (DoY) for syteartreei; P(0); is the bE date (DoY)
332 predicted by the model at poiiiin the parameter space, amds the standard deviation of

333 the Gaussiansdistribution.

334 For all models considered, the fitted parameters included temperature and day length
335 thresholds, forawhich natural extremes are given by the temperature and day lengtkdobse

336 across the dataset. We therefore used uniform priors with these values as boundaries.

337 Posterior distributions were estimated with a differential evolution MCMC (DEzs,

338 implemented in the ‘BayesianTooR’ package(Hartig, Minnuno, & Paul, 2017)). For each
339 model and species, we ran 200,000 MCMC iterations and confirmed cengergf the chain
340 after burnin using the Gelman-Rubin criterion (Gelman, Meng, & Stern, 198uiring the

341 psfvalue for all parameters to be smaller than 1.05.

342 As a criterion to compare the models, we ysesterior model weights, related to the Bayes
343 factor (BF;Kass & Raftery, 199%asedn the model fit on the validation data. Assuming an
344  equal prior weight on all models, the posterior weight for each mBy&N) is given by:

345 PMW; = zMLi

% ML (eq. 11),

346 where ML is the marginal likelihood of modebr j. The marginal likelihood is the likelihood
347 of the model for a given dataset, averaged over the parameter uncertainty. Irepwecas

348 calculated the ML for th validation data, with parameter uncertainties derived from the
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posterior estimated with the calibration data. This approach of calculating-tbe & model
calibrated by a subset of the data circumvents the known problem of the BF to be highly
dependenbn parameter priors (see, e@:Hagan, 1995; van Oijen et al., 2013). TR&W
can be intuitively interpreted as the probability that the respective mdtieldsIn order to
get a representative evaluation of the model abilities, we averageddaMWations across

the 30 model+alidation procedures.

Beside PMVspwe @lculated foillustration themodels'root mean square errof prediction
(RMSE) and.,Akaik Information CriterigAlIC), at the mode of their posterior parameter
distributions(MAP).

Quantifyingrbiasiin the model predictions

We quantified:the bias in model predictions of validatiateat the scales of thieee, the
site-year, the site (“is the model able to represent the-gitevariability of bE?”) and the
year (“is the"model able to represent the local annual anomaly of bE after removing the local
bE average?”)=Since there is no consensus in the statitBcalure on how to evaluate
model bias, we used two different methddsthod 1: We plotted and computed the
coefficients of the lineawrdinary leassquaresegression of observdg-axis)versus
predictedX=axis) data, as recommended by (Pifieiro, Perelman, Guerschman, & Paruelo,
2008), ana-tested the null hypothesis: “the slope dfirtear regressiorquals one and the
intercept equals zergWald test)using the LinearHypothesis function from the ‘car’ R
package (Fox & Weisberg, 201Method 2: we performed anajor axis(type 1) linear
regression ef-predictgg-axis) versus observeg-axis)datg and checked if the 95%-
confidenceiintervals of the slope and intercept included one and zeextiedy (Mesplé,

Troussellier,"Casellas, & Legendre, 1996).

Results
Wood phenological observations

The doserved bElatesspanned 90 days, ranging from March(DeY 75) for aPISY tree at
the southernmost site from the database (‘Moncayo’ site, Sppain)y 2 (DoY 183for a
LADE tree located at 1966 on an altitudinal gradieiftLotschental site’, Switzerland;able
2). Inthis datasetPISY was the earliest specigsresume xylem ceéinlargement in spring,
showingca.threeweekearlier averagbE than PCAB and Weekearlier than PCMAand
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LADE. The amplitude of bE dates spantgdeach speciegaried from49 days in PCMA to
101days in PISY consistent with the size of the climate spaceupiedoy each specias
thedatasetFig. 2).

Performanc¢e ofthe models

Whateverthetreespeciesthe chilling-influenced heat sum modeliHS) wasidentified as

the best-supported (most likely) model for predictingdi&playing the highegiosterior

model weights over validation datath PMW,4jis from 0.67 to 1.00 (average 0;9able 3).

The CiHS modellargely outperformed models belonging to theeshold (i.e. Tt andTDLt

models) ottheheat sum (HS) classeswhich bothshowed nil PMW,iq (Table 3).The

prediction errer-0CiHS was substantially lower than that of other models structures (e.qg.
validation RMSE ofCiHSwas on average 3 days lower as compared to the h&an model

HS 3.6 days'larer as compared to the temperatanel-photoperiod threshold mod&D(Lt),
9.8days lower-as compare to the temperatbreshold modelTt), Table 3).In PCMA, the
empirical model'predicting bE as a linear function of spring temper&I8€) feceived some
support(PMW,4iig=0.33), but substantially less th&HS (PMW,,i3=0.67).Beside its
performances.at the tree scale (Tablel8,GiHS modelwasalsogoodat representinthe
variability.of bE across sitg/ears (Fig. 3)across site§Suppl.Fig. S9, and across years
(Suppl.Fig. S3. TheCiHS modelyielded unbiased predictions of the observations at all
aggregation scalesccording to Method 1 for model bias testing (Tabléviethod 2pointed

more contrasted results: it confirmed the absence of bias at the scales of the site and of the
site-year (except for LADE in the latter case; Table 4). Howeveniiited biased results at

the tree scale,and as regards annual anomalies (except for PCMA). lcabeseMethod 2
returnedthat'theCiHS overesimated early bE and underestimated late bE dates (i.e. slopes of

themajor axisregression of predicted versus observed dates were less than one).
Posterior parameterestimatesfor the CiHS model

Since theCiHS model prediatd unknown datdest we lookedat its posterior parameter
estimates to evaluate their biological reliabilitye\f#st note that most parametefshe
CiHS model could be estimated well (meaning that prior uncertainty was considerably

reduced), anthat theestimatesvere similaracross the 30alibrationvalidation splitting of
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410 the datgFig. 4, see Table S2 for parameter values at the mode aiehged 30 posterior
411  distributions).

412 In all species, chilling accumulatioD c«art) Startedearlier than or close to vernal equinox
413 (corresponding to 12-hour photoperiod, Fig. 4, occurring on DoY 81, Fig. 5) and generally
414 lasted up to_late datédefined byDL ceng), potentially up to the summer solstice when

415 applicable: Notable exceptions were high-latitude PISY and PCABCHKB, the duration of
416 chilling aceumulation was very shat high latitudesvirtually nonexistentat low latitudes

417 (Fig. 5) andwpresented a maximum duration of ca. 15 days at intermediate lgtaude®’ N)

418 due to latittdinalvariations of the photoperiod ®uin spring

419 Chilling aceumulation resulted in an actual reduction of the forcing requireorepiEf(allg
420 parameters'weneegative, Fig. 4), with a strong sensitivity to chilling exposure in LADE (-
421 14.9 degreelaysy/ chill unit) and PCAB-27.9 degree-days / chill unit). The upper

422 temperaturéhresholdfor chilling accumulationTc) ranged from -5.6°@h PCABto +6.1°C
423 in PCMA (Fig. 4)with a median across species of +1.6F@e lowertemperaturehreshold
424  for forcing accumulationT) ranged from2.9°C in PCAB to +3.4°C in LADE (Fig. 4yith a
425 median across species of +0.15T@e start of drcing accumulation (defined W rsart)

426 looked hounded-by vernal equinox (Fig. B)occurred later than the start of chilling

427 accumulationin both spruspeciesPCAB and PCMA, but earlier than the start dfiding
428 accumulationin'PISY and LADE (Fig. 5).

429
430 Discussion

431 The purpose“ofithis study was to improve our understamditige phenology of wood

432 formationyand-in particular to unravlle causal trigers for thespring onset of xylem growth
433 in coniferous species. To this end, we evaluated the ability of three families of

434  ecophysiologicalmodels and one empirical model to predidct#reof the enlargement

435 period of the xylem cell©ur results demonstrate that models base@imperature sums
436 performgbetter than those based on temperature- and photoperiod-thresi{olalslel @)

437 Moreover, our results clearly supptre chilling-influenced heasummodel(CiHS),

438 explicitly considering the processes of chilling doiting temperaturaccumulation, for the
439 prediction of the spring onset of wood formation. Beside its high posterior probability

440 compared to the other modetise CiHS modelalsopredicted thespring onset of xylem
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formationwith good accuracylts RMSE onthevalidation dataaveraging 7.7 days (Table 3),

is close to the temporal resolutionmicro-core sampling from the trees (i&days) and

similar to the typicaprediction accuracy of budburst (i.e. primary meristems), when deployed
over continental gradients (e.g. Basler, 20T6g clearsupport for achilling-influenced heat
sumfor the medelling of spring xylem phenologdifferent from what iseportedn

budburst model'comparisons. Rbe latter heat sumsndchilling-influenced heat sums do

not usually“differin‘their fit (Basler, 2016; Vitasse et al., 2011).

The identification othe CiHS modelas receiving mostupport from the inference procedure
suggests that bath forcing and chilling temperatures play a role in determininginige sp
resumption date of xylem formatiofio our knowledge, there is rlrect evidencen the
literatureof a modulation of the date of onset of xyleell formationin trees exposed to
various chillingstemperatures during wintard/or springStem heating experiments srexv
that an artificialresumption of cambial activity can be triggered during late wintienptin
early wintef(Begum, Nakaba, Oribe, Kubo, & Funada, 20I®)s observabn supports the
existenceof'an‘endo-dormancy phase, during which the cambium activity is repressed by
unknown tree internal factors (Delpierre, Vitasse, et al., 201&dadtingh et al., 2017pr a
review of dormancy processes in primary merisjeimswever,it does not prove, nor does it
quantify the“rele of chilling temperatures in hastening the reactivation of Xglemationin
spring. Thus,fere is a clear need for quantifying the actual role of chilling temperatures in
modulating the spring resumption of xylédommation in line with pioneer works regarding
buds and seedseeSarvas, 1974eviewed inHanninen, 2016), which have recently been
actualized (evg=lynn & Wolkovich, 2018).

We delineated the time periods for the accumulation of chilling or forcing terapesatith
photoperiod limits, instead of day of year (D@ usuallydone in phenological modelling
(see e.gOlsson and Jénsson, 2014; Basler 20@6gxamples over large latitudinal

gradients) listhesuse oDoY is perfectly sound in local studies (i.e. for which the relation
betweerDaY-and photoperiod is unequivocal), it is questionable in studies spanning
continental.scalesinceplantssensdime from variations in the photoperiodic signakross a
latitudinal gradient, @iven photoperiods reached at different DoYs (except thehiiur
photoperiod occurring at spring equinox (March 20) across the entire gradient).sUitisde

in large differencem oursouthern vs. northestudy sites as regarttse timing of the

chilling accumulation for PCAB and the duration of both chilling and forcing accumulation i
PISY (Fig. 5) two species spanning large latitudinal gradients in our dataset. Whether such
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variationsof the actual dates of cambium sensitivity to tempera@nesealisticemains to
be determined. This could experimentally be done by comparing the sensitizémbiumto
chilling in genetically identical plants placed in various photoperiod conditions, aither i
climate chambergs done for budburst, eBasler and Korner2014) onn naturd conditions

(e.g. International Phenological Gardens, Chmielewski & Rétzer, 2001).

In the CiHSmodel, the threshold temperatures promoting the progress of the eco-dormancy
phase (fereingstemperature threshdig,ranging from -2.9°C to +3.4°C, Fig) were
comparableito.values generally used in the modelling of budburst (typically 0°C or +5°C,
Hanninen,2016)based on experimental results (freBAC to +1°C in, Heide, 1993). On the
other hand, the values of threshold chilling temperatirgsdetermined by the parameter
inference procedure span a larger range (#96r°C to +6.1°C) and appear quite low in the
cases of PEAB-6.6°C) and LADE (-1.1°C) as comparedhe values either determined
experimentally.in buds and seeds (for which Sarvas, 18pdrts-3°C as a lower limit for
chilling effectivenessor considered by expert judgment (0°C to +4.5°C in Coville, 1920
+2°C to +4°Cfor cambium in Little & Bonga, 19743 effective for chilling.

From a larger perspective, thaestions about the plausibility of parameter galwe inferred
arefurtherlinked'with the range of environmental conditions in which the bE data were
obtained. Indeed, inferring model parameters from data acquired from trees guadéng
natural conditionsnevitably exposed tonultiple interacting environmentdctors(think e.g.
of the strong concurretdtitudinal temperaturand photoperiogradient), is not equivalent to
inferring them froma controlled experimenwvhere theenvironmental conditions cde at

least partially belisentangledVerdier et al.2014) and their biological interpretability is
necessarily less generidowever, we noticed that our specsgsecific parameterizations of
the CiIHS model were able to reproduce the locally observed betsperies difference in bE
at those sites where two species of interegicour (Fig. 6), giving credit to the overall

plausibilitysofdhesinferred parameters.

In this studywe used moddbrmulations intially developed for simulating the occurrerafe
budburst, assuming similar environmental controls of the phenology of primary and
secondary meristengBelpierre, Vitasse, et al., 2016). Even for budburst, those models lack
an indisputable biological support (Clark, Salk, Melillo, & Mohan, 2014; Delpiertas$g,

et al., 2016)New model formulationfor the phenology of budburappeatn the literature

from time to time, considering more complex interactions of chilling and forcing temperatures
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in interaction with photoperiod (e.Blimel & Chmielewski, 2012; Caffary®onnelly, &
Chuine, 2011)Similar to the necessary effort to calibrate and compare those contstateis
budburst models to continuous data (for instance by measuring the release of Hasatede
closure by callose, which is an indicator of bud endo-dormancy, Singh et al., 2017), a
biologically=undisputable modelling of spring cambial activity will requime évaluation of
those models with continuosgsasonamarkers of cambiadells activty (i.e. cytoplasmic
changes in‘cambial cells such as presence and form of microtubules, vacudlesopfgts,
plastids and other cell organell&egum et al., 2012; Chaffey & Barlow, 2002; Prislan et al.,
2013; Rensing, & Samuels, 2004), or metabolite content.

Even if theCiHS model has nelear mechanistifboundation, we remind that the exposure to
chilling temperature promotes soluble sugars accumulation from starch conversion, especially
sucrose (aleng:with raffinosstachyose and other metabolit8skai & Larcher, 1987;
StrimbeckSchaberg, Fossdal, Schroder, & Kjellsen, 2015) that remain high until spring de-
hardeningSince cell production is limited by local sucrose availabitgslauriers, Huang,
Balducci, Beaulieu, & Rossi, 2016), we posit that exposure to chilling temperatayes
constitute a local pool of sucrose readily available forpreitluction when temperatures
become favourable for mitosis and/or cell expandiorase of low chilling, this local

sucrose pookwould be low, and carbon-fueling for cell formation would rely more on the
resumptien”of photosynthesis, which respondstoifg temperature accumulati@akela,

Hari, Berninger, Hanninen, & Nikinmaa, 2004; Pelkonen & Hari, 1980 mechanistic
hypothesis.is coherent with the general behaviour ofth& model (the required forcing
accumulationsdecreases with increasing chilling exposure)yaualtl explain why we infer in
some species. lew temperature thresholds for chilloegimulation {1.1°Cin LADE, -5.6°C

in PCAB). Indeed, the rate of starch to sugar conversion has been shown to be maximum at
temperaturesfrorr8°C to-5°C, and continued down to -15°C @alix sachalinensis twigs,

Sakai, 1966).

Moreover the.siccessful use of model structures designed and ugeddict budburst to

simulate thesresumption of cambial spring activity raises the question of thignation and
interactionofithe phenologies of tree organs (Delpierre, Vitasse, et al., 2016). Phytohormones
can play a significanle; with e.g. auxins produced in expanding buds influentiegate

of stem cambial divisionéee review oSorce, Giovannelli, Sebastiani, & Anfodillo, 2013).

Yet, the important role of auxin is also interconnected with cytokinin in the \aascul

cambium. Although auxin peak in the middle of cambium and cytokinin in the middle of
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phloem, the latter acts as a positive regulator of cell division in the vascular cambium by
increasing the number of cambial dgfhmanen et al., 2016because of its crucial role on the

cell division cycle (Schaller, Street, & Kieber, 201%hus, the resumption of xylem

formation in spring is at least partially independent from auxin-producing asdearly
demonstrated-in'stem heating experiméwtserexylem formationresumes artificially

whereas buds remagormant, Begum et al., 2010; Gricar et al., 2006; Oribe, Funada, &

Kubo, 20083),"andfrom the observearliertiming of enlargement of new xylecells, as
comparedto bud elongation in the evergreen coniferous trees studieBibeaealfies, Pinus
sylvestris, Piceamariana; Antonucci et al., 2015; Cuny et al., 2012; Huang et al., 2014,
Michelot etal., 2012). The presence of auxins in overwintering tissues (Egigfs2981),

and of a loealgpool of sucrose (see above) may decouple the onset of cambium division and
xylem enlargement from the timing of bud elongation, as observed from stem heating
experiments; lang with thepresence of signal-transduction chains involving phytochsome
(proteins acting as photoreceptors, i.e. able to sense modifications of the pbdjapehe
cambium(Peterle, Karlberg, & Bhalerao, 2013his suggests that the cambium may well
respond to_variations of environmental conditions independently from buds. This hypothesis
is supported by inter-annual variability in the delays between the spring phenophases of wood
and leaves‘in‘both gymnosperms (Cuny et al., 2012) and angiosperms (Takahashi, Okada, &
Nobuchi, 2013).

The chillinginfluenced heat sum modetoduced mostly unbiased results when the data were
aggregated at the siyear or at the site scale (Table gyinting toits overall accurate

capacity of to simulate the spring resumption of xylem formation in coniferous spéete

one of our bias-detection methods (methodWgested thahe modelinderestimated the

range oftree individual bE (in all species, Table 4pgheannual bE anomalies(3 out of 4
species, Table 4; Fig. S3hough our models rely on environmental (temperature and
photoperiod)-data collected at the tree population scale, we conducted the parameter inference
with the mest-basic level of inforation available (i.e. at the individual tree level, see section
2.5). It is clear that part of the model bias that is detected at the individuaksedéted to

the model structural incapacity to simulate the variety of individual tsg®nses to theame
environment that is observed in a tree populatizeipierre, Guillemot, Dufréne, Cecchini, &
Nicolas, 2017) and can actually be quite large (e.g. the within-population SD ofextbb&r
dates for a given year is 5 days on average, TabRi&yin thepredictiors of annual bE
anomaliesnayfurther originaterom thesimplicity of the model structure, whigirobably
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doesnot represent the whole range of environmental interactions resulting irritige apset

of xylem formation.

A study aiming at simulating the date of budbursBeitila pendula andPicea abies
individuals_from central to dithern Europe (i.e. a bioclimatic scale comparable to the one
considered in.our work) report@adower performance over validation dasacompared to our
resultsfor bE (with prediction RMSE of 8.9 and 9days, respectivelfor their besheat sum
model), aleng:with a non-homogeneous bias over the continent, suggesting a role fot the loca
adaptation.of,trees phenological traits (Olsson & Jonsson, 20isthot clear whether the
latitudinal bias observed in Olsson & Jonsson (2@tijinates from local adaptation (that

has been evidenced several tifasbudburst, see e.g. Chuine, Mignot, & Belmonte, 2000;
Osada et al.,/2018; Vitasse, Delzon, Bresson, Michalet, & Kremer, 2009; von Wuehlisch,
Krusche, &Muhs, 1995)r is related to the uncertainty lmfidburstobservations recorded
through local,phenological protocols. The data we use in our work are less psoih to
problems sincéhe observationwere collected and processed according to a common
protocol acressthe entire study zone (Rathgeber et al., 2011; Rossi et al.TAahB).

respect, we conclude from the absence of bias in the prediction of site average dates of bE
(Table 4 Fig. S2) that local adaptation is, if any, of marginal influence in determining bE
(Perrin, Rossiy& Isabel, 201@s compared to the plasticity of bEven by varying

temperature and photoperiodnditions.

This study is the first comparative assessment of ecophysiological models aiming at
simulating‘the spring resumption of xylem formation in trees. We demonstinatethilling-
influenced'heat sum modedsebestsupported by the datar the four coniferous species
studied. Thus, analogous to what is commonly observed for buds, we state that wimger-spr
temperatures exeaimbivalenteffects on the spring onset of wood formatit) (i.e.on the

one hand, warmer temperatures tend to hasten the occurrence of bE through the accumulation
of forcing temperature, but on the other hand they are associated thil&ssg, imposing a
higher forcingtemperature sum toigger wood formatioj Previous results frorfRossi et

al., 2011) suggested that spring warming would result in a continuous trend to eaitier bE
the next decades. Our results question these predictions, since waadhiogghe number of
chilling days. This is probably the cause of the receniiyezxed reduced sensitivity of

spring leaf phenology to warm temperatures (Fu et al., 20&#¢h we also forecast to

happen for wood formatiofmote that théengthof wood ghenology time series is much
shorter than for bud phenology, so ttias hypothesigemains to be tested
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Ourwork paves the way for the development of ecophysiological models simulating the
whole phenological sequence of wood formatdfe expect th€iHS model to be included

as a component of schesrepresenting the whole seasonal cyclevobd formation, into

which subsequent wood formation phases would partially depend on the occurrence of bE
(Hanninen &Kramer, 2007; Lupi et al., 2010). Such a modakisurgently needeth
ecosystem'models of the carbon cy@elpierre, Vitasse, et al., 2016) which are undergoing
core changes‘intheir representation of wood growth (Guillemot et al., 2017;t58hkiés et

al., 2015).
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Tables

Table 1. Overview of the tested models and their parameter$,= daily average air

temperature"(®C)YpL= photoperiod (hours). See text for definition of the model parameters.

Model Type Environmental Fitted Equation
name variables parameters reference
(number)
Tt temperature Ta T* (1) 1
threshold
TDLt temperature and T,, DL DL*, T* (2) 2
photoperiod
thresholds
HS Heat sum Ta DL DLFstar, Tt, F* 3-5
(3)
CiHS Chilling- Ta DL DLCstar, DLCeng, 6-8
influenced heat DLFstart, Te, Tt,
sum g, h(7)
MST Regression line | JanuaryJune MTspg, PTspg(2) 9
average
temperature
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916 Table 2. Overview of the wood phenology datdE= date of the beginning of xylem cell
917 enlargement (DoY)AbE= amplitude of bE dates (days). The ‘within siear SD’ metric is

918 the average standard deviation of bE among trees sampled on a giy&asite-

_ AbE Within -

Number Mean SD of | Min. | Max. _

Tree . Number of within - | site-year
| of site- , bE bE bE bE

species observations species| SD

years (DoY) (days) | (DoY) | (DoY)

(days) | (days)

LADE | 62 300 150 12 118 183 65 5.4
PISY | 37 175 112 20 75 176 101 54
PCAB | 77 336 136 16 101 177 76 4.2
PCMA | 42 294 152 9 128 177 49 4.8
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919
920
921
922
923
924

Table 3. Mockl performance comparison PMW= posterior model weight (eq. 11); RMSE= root mean square error (day€x=

differential Akaike Information Criterion, corrected for small sample biases (calculated as theckffieoen minimum AlCa@&cross all models;
according.to this metric, the best model at maximum likelihood has a score of 0). PMWs are established ovier plostesior distribution.
RMSE and-Al€c were calculated at the point of maximum likelihood (MAP). We report here the medians of thoseestthlished@oss the

30 calibration resamplings. Th€iHS model results appear in bold characters, as displaying the highest PMW adaiovadiata in all species.

Model
Model class PMW calib PMW valid RMSEcanb RMSEvand AAICc calib AAICc valid
name
threshold Tt 0.00 0.00 14.7 15.0 226 89
threshold TDLt 0.00 0.00 9.9 10.3 95 30
LADE
_ heat sum HS 0.00 0.01 8.2 8.7 36 8
(n calib=
210. n Chllllng-
valid=90) influenced CiHS 1.00 0.94 7.5 8.1 0 0
heat sum
regression MST 0.00 0.00 8.7 8.9 53 13
threshold Tt 0.00 0.00 21.5 24.6 208 98
PISY. threshold TDLt 0.00 0.00 14.6 15.2 119 46
(n calib = heat sum HS 0.00 0.00 11.4 11.2 63 18
123, n valid chilling-
=52)2"| influenced CiHS 1.00 1.00 8.4 9.3 0 0
heat sum
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regression MST 0.00 0.00 15.6 15.6 133 49
threshold Tt 0.00 0.00 16.8 17.2 378 151
threshold TDLt 0.00 0.00 12.4 12.6 221 92
PCAB
_ heat sum HS 0.00 0.00 9.8 10.1 119 35
(n calib =
236, n valig==chilling-
= 100) influenced CiHS 1.00 1.00 7.5 7.9 0 0
heat sum
regression MST 0.00 0.00 115 11.6 154 62
threshold Tt 0.00 0.00 13.1 13.2 334 139
threshold TDLt 0.00 0.00 7.3 7.3 116 45
PCMA
_ heat sum HS 0.00 0.00 5.8 6.1 38 15
(n calib =
206, n valid=chilling-
= 88) influenced CiHS 1.00 0.67 5.2 5.6 0 0
heat sum
regression MST 0.00 0.33 6.7 6.9 32 1

925
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926
927
928
929
930
931

Table 4. Assessment of model bias on validation daté/e tested the model ability to produced unbiased predictions fobivEhe validation
subsets at different scales, with two different methods (see Material and Methods 2.6 for details). The slopes and inteatep@reseported
with their95% confidence intervalbetween parenthesddnbiased predictions are characterized by both slope= 1 and intercept=@htd Mg
we reportthe{value of the Wald test (testing for unit slope and zero intercept as the null ésiphtin Method 2, we identify biased
predictions when either the slope or intercept confidence intervals do nmterare or zero, respectively. ‘yes’ / ‘no’ mark biased / unbiased

predictions.
Method 1 Method 2

bE data

aggregation

scale Species |slope intercept F P(>F) | Bias? |slope intercept Bias?
LADE 1.04 (0.93, 1.15)-6.2 (-23.0, 10.6) | 0.41| 0.66/no 0.67 (0.60, 0.74] 49.6 (38.4, 60.0)| yes

ree PISY 1.02 (0.91,1.12)-4.2 (16.5, 8.1) 2.57| 0.08/no 0.79 (0.71, 0.87) 25.9 (16.3, 34.8)| yes
PCAB 0.98 (0.92, 1.04) 2.5(-5.4, 10.4) 0.34| 0.71|no 0.88 (0.83,0.93]16.1 (8.9, 22.9) |yes
PCMA |1.04(0.94,1.15)-7.2 (23.2,8.7) 1.31] 0.27|no 0.68 (0.61, 0.75) 49.2 (38.5, 59.2)| yes

30.6 (11.52,

LADE 1.06 (0.90, 1.22)-9.4 (-33.5, 14.6) | 0.34| 0.71|no 0.80 (0.68, 0.92) 47.6) yes

site-year PISY 1.02 (0.85,1.19]-4.1 (24.4,16.2) | 0.84| 0.44|no 0.88 (0.74, 1.04)15.4 ¢3.1, 31.4) | no
PCAB 0.99 (0.88,1.10)2.2 (12.7,17.1) | 0.19] 0.83|no 0.91 (0.81, 1.02) 11.8 €2.6, 24.9) | no
PCMA |1.01(0.87,1.16]-3.1 (25.1,19.0) | 1.83| 0.18|no 0.91 (0.79, 1.05) 14.5 ¢6.2, 33.3) | no
LADE 1.13(0.87,1.40)-19.3 ¢58.8, 20.2)| 0.72| 0.51|no 0.82 (0.65, 1.04) 25.9 ¢6.1, 52.3) | no

site RISY 1.03 (0.82,1.23)-6.0 (31.3,19.2) | 0.97| 0.4/no 0.92 (0.75, 1.13)11.7 ¢12.5, 31.8) no
PCAB 1.01 (0.83, 1.20)-1.8 (-26.6, 23.1) | 0.02| 0.98|no 0.91 (0.76, 1.09) 11.47 ¢13.0, no
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32.2)

-42.0 €102.1,
PCMA 1.27 (0.86, 1.68) 18.2) 3.55| 0.11|no 0.75(0.53, 1.03)38.4 €1.8, 70.2) | no
LADE 1.02 (0.81,1.23)0(-1.1, 1.1) 0.02| 0.98/no 0.73 (0.59, 0.89) 0 (0, 0) yes
year PISY 1.20 (0.67,1.74)0 (-2.0, 2.0) 0.3] 0.74|/no 0.43 (0.25,0.64) 0 (0, 0) yes
anomaly » [RCAB  [1.17 (1.00, 1.34)0 (-1.1, 1.1) 2.02| 0.14|no 0.69 (0.60, 0.80) 0 (0, 0) yes
PCMA [0.89 (0.74, 1.04]0 (-0.8, 0.8) 1.06| 0.36/no 1.02(0.86, 1.21)|0 (0, 0) no

932 * bE dates-were simulated at the tree individual scale, and subsequently averaged ajahe @itsite scale; ** bE dates were simulated at the tree individual

933 scale. For caléulating annual anomalies, we subtracted the ab& algee, established along the observation period, to bE data averaged aiyta sicale.

934
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Figure captions

Figure 1. Location of the study sites.

Figure 2. Climate space at the observed date of bEach bE datum is placed in a climate
space defined by the day length at bEaxis) and the average temperature over thdals
interval preceding bE ¢gxis).

Figure 3. Chilling-influenced heat sumiHS) model evaluation over validation data
Predictions are reported at the tree scale (grey dots) and aggregayedsgeale (points,
colours according to the average Januhme temperature of the sifear). The thick black
line isthe leastssquare regression line of predigmdusobserved data. The one-one
relation appears as the thin grey liNGE= NashSutcliffe model efficiencysope= slope of
the linear regressiomt= intercept of the linear regressidrne displayed statistics are

calculatedfor siteyear aggregated data. See Table 3 for statistics osdede data.

Figure 4. Rosterior parameter distributions Parameters are shown for ¢S model,

which perforn@dbest over the validation data faxah species. Grey lines represent each of
the 30 inference procedures, with the overall distribution appearing as colourdéatieach
parameterythe limits on theaxis mark the bounds set to the uniform prior density. The mode
of the overalldistribtion appears for each parameter on the uppeh#eftl corner (e.g.

DL cstart = 12.7 hours for LADE). Seldaterial and Method#r parameters descriptipand

Table S2 for parameter values at the mode of the merged 30 posterior distributions.

Figure 5. Variations of chilling and forcing accumulation time intervals along latitudinal
gradients. This*figure displays the temporal interval of chilling accumulation (with the
starting date plotted as *’ and the ending date as ‘0’, linked by a straight line)easthtting
date of forcing (plotted ag\’). The colour of the symbols indicates the northernmost (blue)
or southernmost (red) latitude by species. For PCAB, we also illuatratgéermediate
situation (latitude = 54°N, grey symbols). Dashed black line represents vermaequi

continuous black line represents summer solstice.

Figure 6. Comparing observed and simulated interspecific differences in the date of bE
For those sitgrears where two species of interest have been sampled simultaneously, we

plotted the observed and predicted betwsgeeies differences in bE databE, days). Each
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964 single point represents one sytear. (a, b): compare the distribution of differences; (c, d):
965 compare observed and predicted differences for eachesite
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Supporting information
Additional supporting information may be found in the online version of this article.

Figure S1 Logistic models are precise in determining temperature thresholds for the

beginning ofxylem growth, but are not predictive.

Figure S2 Model evaluation performance over validatdata, aggregated per site.
Figure S3 Model evaluation performance over validation data, for annual anomalies.
Table S1 Study,sites.

Table S2 Rarameter values for the chillimgfluenced heat sunC{HS) model.
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