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Abstract 57 

The phenology of wood formation is a critical process to consider for predicting how trees 58 

from the temperate and boreal zones may react to climate change. Compared to leaf 59 

phenology, however, the determinism of wood phenology is still poorly known. Here, we 60 

compared for the first time three alternative ecophysiological model classes (threshold 61 

models, heat-sum models and chilling-influenced heat-sum models) and an empirical model in 62 

their ability to predict the starting date of xylem cell enlargement in spring, for four major 63 

Northern Hemisphere conifers (Larix decidua, Pinus sylvestris, Picea abies and Picea 64 

mariana). We fitted models with Bayesian inference to wood phenological data collected for 65 

220 site-years over Europe and Canada. The chilling-influenced heat-sum model received 66 

most support for all the four studied species, predicting validation data with a 7.7-day error, 67 

which is within one-day of the observed data resolution. We conclude that both chilling and 68 

forcing temperatures determine the onset of wood formation in Northern Hemisphere 69 

conifers. Importantly, the chilling-influenced heat-sum model showed virtually no spatial bias 70 

whichever the species, despite the large environmental gradients considered. This suggests 71 

that the spring onset of wood formation is far less affected by local adaptation than by 72 

environmentally-driven plasticity. In a context of climate change, we therefore expect rising 73 

winter-spring temperature to exert ambivalent effects on the spring onset of wood formation, 74 

tending to hasten it through the accumulation of forcing temperature, but imposing a higher 75 

forcing-temperature requirement through the lower accumulation of chilling. 76 

 77 

Keywords: wood phenology, cambium, phenological models, chilling temperatures, forcing 78 

temperatures, conifers. 79 

Introduction  80 

The seasonality of physiological processes is an essential component of terrestrial ecosystem 81 

models (TEMs; Delpierre et al., 2012; Kramer, 1995), but is usually poorly represented being 82 

mostly confined to the simulation of leaf onset and leaf loss (Delpierre, Vitasse, et al., 2016). 83 

In such models, the phenology of non-leaf organs or tissues (e.g. wood) is simulated (i) 84 
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simultaneous or relative to leaf phenology or (ii) using generic, non-organ-specific 85 

temperature functions for modulating the allocation of carbon (Delpierre, Vitasse, et al., 2016 86 

; but see Schiestl-Aalto, Kulmala, Mäkinen, Nikinmaa, & Mäkelä, 2015). This reflects the 87 

state of our knowledge on the phenology of trees, which is far more developed for leaves as 88 

compared with other organs or tissues (Delpierre, Vitasse, et al., 2016; Ford, Harrington, 89 

Bansal, Gould, & St. Clair, 2016). It is difficult to quantify how strongly this knowledge gap 90 

affects the predictive ability of TEMs, but it certainly jeopardizes their biological realism 91 

(Guillemot et al., 2017). For example, it has been demonstrated in evergreen conifers that the 92 

spring resumption of cambium activity generally occurs before budburst (Cuny, Rathgeber, 93 

Lebourgeois, Fortin, & Fournier, 2012; Gruber, Strobl, Veit, & Oberhuber, 2010; Huang, 94 

Deslauriers, & Rossi, 2014; Michelot, Simard, Rathgeber, Dufrêne, & Damesin, 2012; Rossi 95 

et al., 2009). Moreover, several studies have shown that, independent from leaf phenology, 96 

the duration of the wood growing season per se is a major determinant of wood production 97 

(Delpierre, Berveiller, Granda, & Dufrêne, 2016; Lempereur et al., 2015), so that an earlier 98 

onset of cambium activity, or a later cessation may result in a higher cell production (Lupi, 99 

Morin, Deslauriers, & Rossi, 2010; Mäkinen, Jyske, & Nöjd, 2018). Consequently, there is a 100 

clear need for the development of wood phenology modules for inclusion into TEMs.  101 

In order to develop wood phenology modules for TEMs, we first have to understand the 102 

causal climatic drivers of wood phenology. In the temperate and boreal regions of the 103 

Northern Hemisphere, the formation of wood is seasonal and occurs from late spring to early 104 

autumn (Rossi et al., 2016, 2008). In spring, cambial mother cells start dividing, producing 105 

new derivatives of phloem outward and xylem inward (Larson, 1994; Vaganov, Hughes, & 106 

Shashkin, 2006). As a base model for this cycle, several authors have proposed that, just as 107 

for buds, the spring resumption of cambium activity is the outcome of a two-phase dormancy 108 

period (Begum et al., 2018; Begum, Nakaba, Yamagishi, Oribe, & Funada, 2013; Ford et al., 109 

2016; Little & Bonga, 1974; Rensing & Samuels, 2004). According to this model, cambium 110 

activity is prevented by tree’s internal factors (e.g. physiological state, signals) during the 111 

endo-dormancy phase; while it resumes during the eco-dormancy phase when the external 112 

conditions are favourable.  113 

The main candidate for external conditions driving the resumption of cambium activity in 114 

temperate and boreal ecosystems is the spring temperature (as reviewed in Begum et al., 115 

2018; Delpierre, Vitasse, et al., 2016; Larson, 1994). Field observation have shown that spring 116 

cambium resumption is usually delayed at high altitudes and latitudes as compared to low 117 
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altitudes and latitudes (Jyske, Mäkinen, Kalliokoski, & Nöjd, 2014; Moser et al., 2010; Rossi 118 

et al., 2016; Rossi, Deslauriers, Anfodillo, & Carraro, 2007; Rossi et al., 2008). Furthermore, 119 

local stem heating activated the formation of wood (Gričar et al., 2007), with a gradually 120 

increased response to heat applied from winter to spring (Oribe & Kubo, 1997). 121 

Based on these evidences, previous studies have developed different model formulations 122 

based on spring temperature to predict the timing of cambial resumption. A first model class 123 

uses a temperature threshold for predicting the onset of cambial activity in conifers from cold 124 

biomes (Deslauriers, Rossi, Anfodillo, & Saracino, 2008; Rossi et al., 2007, 2008). However, 125 

although this model is able to identify likely periods of cambial activity, its accuracy for 126 

predicting the onset of cambial activity from temperature time series is probably low (Fig. 127 

S1). Another model class is that of heat sums (Giagli, Gricar, Vavrcik, & Gryc, 2016; 128 

Schmitt, Jalkanen, & Eckstein, 2004; Seo, Eckstein, Jalkanen, Rickebusch, & Schmitt, 2008; 129 

Swidrak, Gruber, Kofler, & Oberhuber, 2011). Their underlying hypothesis is that the 130 

cambium resumes its activity (cell division followed by cell differentiation) after sufficient 131 

exposure to temperatures above a threshold (so-called forcing temperatures). Thus, heat sum 132 

models mimic the progress of cambium through the eco-dormancy phase, making the implicit 133 

hypothesis that the endo- and eco-dormancy phases are sequential, and that endo-dormancy 134 

stops at the date when heat accumulation starts (Delpierre, Vitasse, et al., 2016). In practice, a 135 

degree-days accumulation is calculated by summing temperatures above a threshold (‘base 136 

temperature’) of typically +5°C (or more rarely lower values e.g. 0-1°C, see Antonucci et al., 137 

2015; Li et al., 2017) from a given day, fixed a priori, before the onset date of cambial 138 

reactivation. However, there is no consensus concerning the day or period of year from which 139 

the cambium becomes sensitive to forcing temperatures. Some studies choose January 1 or 140 

spring equinox (Giagli et al., 2016; Schmitt et al., 2004), whereas others (Seo et al., 2008) 141 

consider the starting date occurring when trees have experienced a daily mean temperature 142 

above +5°C for at least five consecutive days. Moreover, heat sum models usually fail in 143 

identifying a species-specific heat sum threshold above which cambium would systematically 144 

be active (Giagli et al., 2016; Moser et al., 2010), which is indicative of their low structural 145 

realism and thus low predictive ability. More recently, chilling-influenced heat sum models 146 

have been shown able to predict spring cambial reactivation in Douglas fir (Ford et al., 2016). 147 

Similar to heat sum models, those models were originally designed for describing the progress 148 

of primary meristems (i.e. leaf or flower buds) from dormancy to budburst. Their basic 149 

hypothesis is that the cambium requires a lower accumulation of forcing temperatures during 150 
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the eco-dormancy phase when exposed to increasing levels of cold temperatures (so-called 151 

chilling temperatures, (Cannell & Smith, 1983; Little & Bonga, 1974) during the endo-152 

dormancy phase, which may precede or be concomitant to the eco-dormancy phase (Chuine, 153 

Garcia de Cortazar-Atauri, Kramer, & Hänninen, 2013). The underlying physiological basis 154 

of such chilling-influenced heat sum models is not fully understood (Rinne et al., 2001; Singh, 155 

Svystun, AlDahmash, Jönsson, & Bhalerao, 2017). Last, a recent study made use of empirical 156 

models (linear regression of spring-averaged temperature) to predict the timing of cambial 157 

resumption (Rossi et al., 2016). 158 

Though previous studies evaluated the ability of the three abovementioned model classes 159 

separately in simulating the date of the resumption of cambium activity in spring (threshold-160 

type, Rossi, Morin, Deslauriers, & Plourde, 2011; heat sums, Seo et al., 2008; Swidrak et al., 161 

2011; chilling-influenced heat sums, Ford et al., 2016; empirical regression, Rossi et al., 162 

2016), there has been no comparison of those models merits on the same dataset. Here, we 163 

make use of a large number of field observation data collected over Europe and Canada 164 

(GLOBOXYLO database) to conduct for the first time a systematic evaluation of the causal 165 

factors affecting the breaking of cambial dormancy, and to propose an improved model of 166 

cambial spring resumption. Specifically, by identifying which model structure receives most 167 

support from observed data, we aim to evaluate: (1) if the resumption of cambium activity of 168 

Northern Hemisphere conifers in spring is more likely caused by the crossing of a given 169 

temperature threshold or by an accumulation of heat (“do threshold models outperform heat 170 

sum models?”) and; (2) if observation data support the existence of a separate endo-dormancy 171 

phase that can be broken by chilling exposure (“do chilling-influenced heat sum models fit the 172 

data best?”). Our hypotheses are (1) threshold models are fine for identifying a thermal 173 

probability of cambium activity but have low predictive ability since the daily variability of 174 

temperature superimposed to seasonal variations cannot serve as a reliable cue for trees; (2) 175 

that over large geographical gradients, models incorporating both the effects of chilling and 176 

forcing temperature are better able to describe the variability in the beginning of wood 177 

formation (since over large climate zones, multiple climate limitations interact). Having 178 

identified the model structure best supported by the data, we then evaluate the biological 179 

reliability of its inferred parameters, for future use in Terrestrial Ecosystem Models. 180 

Material and methods 181 

Study sites 182 
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The selected study sites were extracted from the GLOBOXYLO databasea

Wood formation data 195 

, a dataset gathering 183 

wood formation and meteorological information collected over the past 15 years from several 184 

research teams all over the world. The selected data concern the four most observed 185 

coniferous species (Larix decidua Mill. (LADE), Pinus sylvestris L. (PISY), Picea abies L. 186 

Karst. (PCAB) and Picea mariana (Mill.) BSP (PCMA)), covering a wide range of 187 

temperature and photoperiod conditions in the Northern Hemisphere (from 40.0°N to 67.5°N 188 

latitude, 79.2°W to 29.4°E longitude, and from 30 m to 2150 m altitudes) (Fig. 1, Table S1). 189 

Specifically, the dataset includes wood formation critical dates from 2001 to 2013 over 46 190 

study sites for a total of 220 site-years, representing 1105 tree-site-year observations. All 191 

sampled trees were dominant individuals. The average (±SD) tree age was 124 ± 70 years, 192 

with a diameter at breast height (DBH) of 44 ± 30 cm, and a tree height of 21 ± 8 m (Table 193 

S1). 194 

Microcore sampling and preparation 196 

At each study site, on average 5±2 trees were chosen and sampled weekly from March-April, 197 

depending on local climate conditions, to monitor wood formation. The collection, 198 

preparation, and analysis of wood samples followed a common protocol across sites. Wood 199 

microcores of 2 mm in diameter and 15-20 mm in length were collected weekly at breast 200 

height (1.3±0.3 m) over the growing season, using a Trephor® tool  (Rossi, Anfodillo, & 201 

Menardi, 2006) or surgical bone sampling needles (Deslauriers, Morin, & Begin, 2003). 202 

Microcores were then cut with rotary or sledge microtomes in transverse sections of 10-30 µm 203 

thick, stained with safranine and astra blue or cresyl violet acetate and observed under bright-204 

field and polarized light after coloration (Rossi, Deslauriers, & Anfodillo, 2006). 205 

 206 

Determination of the spring resumption of xylem formation 207 

We focus on the beginning of xylem cell enlargement (bE) as a critical, well-defined marker 208 

corresponding to the spring start-up of wood formation. Ultrastructural changes in cambial 209 

cells are the very first stage of growth reactivation. The bE occurs somewhat later than the 210 

onset of ultrastructural changes in cambial cells; but the latter is very difficult to observe 211 

                                                 
a https://www6.nancy.inra.fr/foret-bois-lerfob/Projets/Projets-en-cours/GLOBOXYLO 
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accurately and involves both xylem and phloem cells (Prislan, Čufar, Koch, Schmitt, & 212 

Gričar, 2013; Prislan, Schmitt, Koch, Gričar, & Čufar, 2011). It is therefore not often reported 213 

in wood formation monitoring studies. To quantify bE, the number of cells in each 214 

differentiation zone (cambial, enlargement, thickening, and mature) was counted along at 215 

least three radial files on the anatomical sections. Enlarging tracheids were characterized by 216 

radial diameter at least twice that of a cambial cell. We defined, at the tree level, the 217 

beginning of the enlargement phase (bE) as the date (day of year, DoY) when more than 50% 218 

of the observed radial files present at least one first enlarging tracheid (Rathgeber, 219 

Longuetaud, Mothe, Cuny, & Le Moguédec, 2011). 220 

Temperature and photoperiod data 221 

Mean daily temperatures have been collected at the study sites (Fig. 1). However, local 222 

weather stations were usually not installed before the start of the wood formation monitoring. 223 

To be able to consider in our models weather conditions also before the monitoring period, we 224 

used, for European sites, the WATCH gridded meteorological dataset (grid-resolution = 0.5°, 225 

Weedon et al., 2014) to extrapolate those missing data, after establishing linear regression 226 

between the local and corresponding WATCH temperature data (correlation between 227 

overlapping local and WATCH temperature time series was 0.95 < r < 0.99), and removing 228 

the (low) biases of WATCH data. For Canadian sites, i.e. for Picea mariana, we did not 229 

extrapolate the temperature time series. Day length (the daily duration of the photoperiod) 230 

was calculated daily as a function of latitude, using astronomical formulaeb

Models description 232 

. 231 

We compared three classes of ecophysiological models and one empirical model (Table 1) in 233 

their ability to predict the date of onset of xylem cell enlargement phase (bE) in the four tree 234 

species of interest. The three model classes are: (i) threshold models, (ii) heat sum models, 235 

(iii) chilling-influenced heat sum models. Since the patterns of xylem formation have been 236 

strongly related to mean temperatures over large geographical gradients (Rossi et al., 2016), 237 

we used an empirical model relating bE to early season (January-June) average temperature as 238 

a benchmark for ecophysiological models.  239 

                                                 
b See for example Pr Dennis Baldocchi’s biometeorology course, lecture number 7 
(https://nature.berkeley.edu/biometlab/index.php?scrn=espm129) 
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For all ecophysiological models, we used photoperiod thresholds to delineate the start and end 240 

of the endo- and eco-dormancy periods, different to most earlier phenological modelling 241 

studies, which usually considered temperature accumulation to start at a given day of year 242 

(e.g. usually January 1 in most phenological studies considering heat sum models; Linkosalo, 243 

Carter, Hakkinen, & Hari, 2000; Seo et al., 2008). This choice was motivated by the fact that 244 

our study covers a large latitudinal gradient over which a given calendar day (not perceptible 245 

by trees per se) may correspond to a large variations in photoperiod (a signal which is 246 

perceptible by trees).   247 

Temperature- and photoperiod-threshold models 248 

In this class of models, we assumed that bE occurs when a given temperature and/or 249 

photoperiod threshold has/have been crossed. A first formulation of this model (henceforth 250 

referred to as Tt model) is:  251 �� = min(�)  ���ℎ �ℎ�� �(�) ≥ �∗ ��� � > −10 (1) 252 

where bE is the beginning of the xylem enlargement period (DoY), d is a day of year (DoY), 253 

T is the daily average temperature, and T* is a temperature threshold (°C). We assume that the 254 

passing of the temperature threshold necessarily occurs after winter solstice of the previous 255 

year (i.e. DoY 355 of the previous year, or DoY -10 of current year). 256 

In case bE occurs when the thresholds of both temperature and photoperiod have been 257 

exceeded, the model (henceforth TDLt model) writes: 258 

� �� = min(d) ���ℎ �ℎ��  �(�) ≥ �∗ ���  � > ����ℎ � = min(�) ���ℎ �ℎ��  ��(�) ≥ ��∗ ��� � > −10
   (2) 259 

where DL is the daily photoperiod (hours) and DL* is a photoperiod-threshold (hours). 260 

  Heat sum model 261 

In the heat sum model, we assumed that bE occurs when a given accumulation of heat (above 262 

a temperature threshold, i.e. forcing temperatures) has been reached. The model (henceforth 263 

HS model) takes the form: 264 �� = min(�)  ���ℎ �ℎ��  �(�) ≥ �∗ (3) 265 
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with  ��(�) =  ∑ �����(�)                                              ����������ℎ �����(�) = ��(�) − ��, �� � ≥ ��
 0,                  �� � ≤ ��                     (4) 266 

where Tf is a temperature-threshold above which forcing temperatures are accumulated, F(d) 267 

is the heat sum at day d (degree-days) and F* is the forcing units requirement at which bE 268 

occurs (degree-days). In this model, the accumulation of forcing temperature starts at a given 269 

photoperiod threshold DLFstart

������ = min(�)  such that ��(�) ≥ �������� (5) 272 

 (hours), occurring after the winter solstice of the previous year 270 

such that: 271 

with � > −10 273 

This model simulates the progress of cambium through the eco-dormancy phase and makes 274 

the implicit hypothesis that the preceding endo-dormancy phase ends on day Fstart

Chilling-influenced heat sum model 276 

.  275 

In the chilling-influenced heat sum model (CiHS model), the progress of cambium through 277 

the endo- and eco-dormancy phases is explicit, and bE occurs at the end of the eco-dormancy 278 

phase. During endo-dormancy, cambium division is inhibited by tree internal factors, the 279 

effects of which are counteracted by low temperatures. Following the approach proposed by 280 

(Cannell & Smith, 1983) for bud meristems, this hypothesis translates into an accumulation of 281 

chilling temperatures, quantified as a number of chilling units (Ctot, in chill units C.U.). Ctot is 282 

calculated on a daily basis from Cstart (DoY), up to the Cend����(�) = ∑ ��(�(�))
����������  (6) 284 

 date as follows: 283 

where the daily rate of chilling (Rc

��(�(�)) = �1 �� �(�) < ��
0 �� �(�) ≥ ��    (7) 286 

) can be calculated as a linear function of temperature:  285 

where Tc

Besides the accumulation of chilling, the model assumes that the progression of the cambium 288 

towards bE during eco-dormancy is favoured by the accumulation of forcing temperatures 289 

F(d), as described in eq. 3-4. The CiHS model postulates that, as the accumulation of chilling 290 

 is the temperature threshold (°C) below which chilling accumulation occurs.  287 A
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proceeds, the requirement for forcing temperatures decreases, such that the critical sum of 291 

forcing F* is defined daily, and linearly depends on Ctot�∗(�) = � × ����(�) + ℎ (8) 293 

: 292 

where g is the slope of the relation between required forcing units and chilling-accumulation 294 

(degree-days per C.U.), and h is the forcing units requirement in the absence of chilling 295 

(degree-days). 296 

In this model, both the period of cambium sensitivity to chilling temperatures (delimited by 297 

days of year Cstart and Cend, eq. 6) and the start of forcing temperature accumulation (on day 298 

of year Fstart, eq. 4) are parameterized as photoperiods (through parameters DLCstart, DLCend 299 

and DLFstart, respectively; see eq. 5 for the correspondence of e.g. day of year Fstart with 300 

photoperiod DLFstart). We set the parameter bounds such that DLCstart (DLCend

Empirical relation with spring average temperature 309 

) cannot occur 301 

earlier than the autumn equinox (winter solstice) of previous year. Letting the model inference 302 

procedure free to find the most likely photoperiod limits for chilling and forcing accumulation 303 

within a large range (from autumn equinox of the previous year up to summer solstice of the 304 

current year), our model may represent several temporal combinations of the chilling and 305 

forcing temperature accumulation functions, corresponding to different hypotheses of the 306 

interplay between the endo- and eco-dormancy phases (i.e. sequential and parallel; see 307 

(Chuine et al., 2013).  308 

This empirical model (analogous to Rossi et al., 2016) assumes that bE can be related to 310 

spring temperature via a linear regression, such that: 311 �� = ����� × ���� + �����, (9) 312 

where Tspg is the average January-June temperature (°C) calculated for each site-year, and 313 

mTspg and pTspg

 315 

 are parameters of the regression line. 314 

Parameter estimation and model comparison through Bayesian inference 316 

To assess the models’ abilities to simulate bE dates, we randomly split the bE data observed at 317 

the tree scale into calibration vs. validation subsets, with 70% of the data for calibration, and 318 

30% for validation. We checked that the distribution of the random calibration and validation 319 
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bE subsets did not differ (Wilcoxon rank sum test, p>0.50). Since the model fitting ability and 320 

inferred parameters may depend on the calibration subset used, we repeated the calibration 321 

procedure 30 times, using different calibration vs. validation subset combinations. The model 322 

evaluation results we report concern validation data, unless indicated. 323 

Model parameters were fitted via Bayesian inference (see, e.g. Gelman, Carlin, Stern, & 324 

Rubin, 2004, and Fu, Campioli, Van Oijen, Deckmyn, & Janssens, 2012, for application in 325 

phenological modelling). The Bayesian framework calculates a posterior estimate and 326 

uncertainty for the model parameters, based on a prior distribution and the likelihood, defined 327 

as the probability of obtaining the observed data, given the model assumptions with their 328 

respective parameters. We use a Gaussian likelihood for all models: 329 

�(�) = ∏ 1�√2� ��� �− 12 ��(�)�−��� �2��=1,� , (eq. 10) 330 

where �� is the observed bE date (DoY) for site-year-tree i; �(�)� is the bE date (DoY) 331 

predicted by the model at point � in the parameter space, and � is the standard deviation of 332 

the Gaussian distribution. 333 

For all models considered, the fitted parameters included temperature and day length 334 

thresholds, for which natural extremes are given by the temperature and day length observed 335 

across the dataset. We therefore used uniform priors with these values as boundaries.  336 

Posterior distributions were estimated with a differential evolution MCMC (DEzs, 337 

implemented in the ‘BayesianTools’ R package, (Hartig, Minnuno, & Paul, 2017)). For each 338 

model and species, we ran 200,000 MCMC iterations and confirmed convergence of the chain 339 

after burn-in using the Gelman-Rubin criterion (Gelman, Meng, & Stern, 1996), requiring the 340 

psrf value for all parameters to be smaller than 1.05. 341 

As a criterion to compare the models, we used posterior model weights, related to the Bayes 342 

factor (BF; Kass & Raftery, 1995, based on the model fit on the validation data. Assuming an 343 

equal prior weight on all models, the posterior weight for each model (PMW) is given by: 344 

���� =
ML� ∑ ML�� 

 (eq. 11), 345 

where ML is the marginal likelihood of model i or j. The marginal likelihood is the likelihood 346 

of the model for a given dataset, averaged over the parameter uncertainty. In our case, we 347 

calculated the ML for the validation data, with parameter uncertainties derived from the 348 
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posterior estimated with the calibration data. This approach of calculating the ML on a model 349 

calibrated by a subset of the data circumvents the known problem of the BF to be highly 350 

dependent on parameter priors (see, e.g., O’Hagan, 1995; van Oijen et al., 2013). The PMW 351 

can be intuitively interpreted as the probability that the respective model is ‘ true’. In order to 352 

get a representative evaluation of the model abilities, we averaged PMW calculations across 353 

the 30 model-validation procedures. 354 

Beside PMWs, we calculated for illustration the models’ root mean square error of prediction 355 

(RMSE) and Akaike Information Criteria (AIC), at the mode of their posterior parameter 356 

distributions (MAP). 357 

Quantifying bias in the model predictions 358 

We quantified the bias in model predictions of validation data at the scales of the tree, the 359 

site-year, the site (“is the model able to represent the inter-site variability of bE?”) and the 360 

year (“is the model able to represent the local annual anomaly of bE after removing the local 361 

bE average?”). Since there is no consensus in the statistical literature on how to evaluate 362 

model bias, we used two different methods. Method 1: We plotted and computed the 363 

coefficients of the linear ordinary least-squares regression of observed (y-axis) versus 364 

predicted (x-axis) data, as recommended by (Piñeiro, Perelman, Guerschman, & Paruelo, 365 

2008), and tested the null hypothesis: “the slope of the linear regression equals one and the 366 

intercept equals zero” (Wald test) using the LinearHypothesis function from the ‘car’ R 367 

package (Fox & Weisberg, 2011). Method 2: we performed a major axis (type II) linear 368 

regression of predicted (y-axis) versus observed (x-axis) data, and checked if the 95%-369 

confidence intervals of the slope and intercept included one and zero, respectively (Mesplé, 370 

Troussellier, Casellas, & Legendre, 1996). 371 

 372 

Results 373 

Wood phenological observations 374 

The observed bE dates spanned 90 days, ranging from March 16 (DoY 75) for a PISY tree at 375 

the southernmost site from the database (‘Moncayo’ site, Spain) to July 2 (DoY 183) for a 376 

LADE tree located at 1900-m on an altitudinal gradient (‘Lötschental site’, Switzerland; Table 377 

2). In this dataset, PISY was the earliest species to resume xylem cell enlargement in spring, 378 

showing ca. three-week earlier average bE than PCAB and 7-week earlier than PCMA and 379 
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LADE. The amplitude of bE dates spanned by each species varied from 49 days in PCMA to 380 

101 days in PISY, consistent with the size of the climate space occupied by each species in 381 

the dataset (Fig. 2). 382 

 383 

Performance of the models 384 

Whatever the tree species, the chilling-influenced heat sum model (CiHS) was identified as 385 

the best-supported (most likely) model for predicting bE, displaying the highest posterior 386 

model weights over validation data with PMWvalid from 0.67 to 1.00 (average 0.90; Table 3). 387 

The CiHS model largely outperformed models belonging to the threshold (i.e. Tt and TDLt 388 

models) or the heat sum (HS) classes, which both showed nil PMWvalid (Table 3). The 389 

prediction error of CiHS was substantially lower than that of other models structures (e.g. 390 

validation RMSE of CiHS was on average 1.3 days lower as compared to the heat-sum model 391 

HS, 3.6 days lower as compared to the temperature-and-photoperiod threshold model (TDLt), 392 

9.8 days lower as compare to the temperature-threshold model (Tt), Table 3). In PCMA, the 393 

empirical model predicting bE as a linear function of spring temperature (MST) received some 394 

support (PMWvalid=0.33), but substantially less than CiHS (PMWvalid

Posterior parameter estimates for the CiHS model 405 

=0.67). Beside its 395 

performance at the tree scale (Table 3), the CiHS model was also good at representing the 396 

variability of bE across site-years (Fig. 3), across sites (Suppl. Fig. S2), and across years 397 

(Suppl. Fig. S3). The CiHS model yielded unbiased predictions of the observations at all 398 

aggregation scales according to Method 1 for model bias testing (Table 4). Method 2 pointed 399 

more contrasted results: it confirmed the absence of bias at the scales of the site and of the 400 

site-year (except for LADE in the latter case; Table 4). However, it pointed biased results at 401 

the tree scale, and as regards annual anomalies (except for PCMA). In those cases, Method 2 402 

returned that the CiHS overestimated early bE and underestimated late bE dates (i.e. slopes of 403 

the major axis regression of predicted versus observed dates were less than one). 404 

Since the CiHS model predicted unknown data best, we looked at its posterior parameter 406 

estimates to evaluate their biological reliability. We first note that most parameters of the 407 

CiHS model could be estimated well (meaning that prior uncertainty was considerably 408 

reduced), and that the estimates were similar across the 30 calibration-validation splittings of 409 
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the data (Fig. 4, see Table S2 for parameter values at the mode of the merged 30 posterior 410 

distributions).  411 

In all species, chilling accumulation (DLCstart) started earlier than or close to vernal equinox 412 

(corresponding to 12-hour photoperiod, Fig. 4, occurring on DoY 81, Fig. 5) and generally 413 

lasted up to late dates (defined by DLCend

Chilling accumulation resulted in an actual reduction of the forcing requirement for bE (all g 419 

parameters were negative, Fig. 4), with a strong sensitivity to chilling exposure in LADE (-420 

14.9 degree-days / chill unit) and PCAB (-27.9 degree-days / chill unit). The upper 421 

temperature threshold for chilling accumulation (T

), potentially up to the summer solstice when 414 

applicable. Notable exceptions were high-latitude PISY and PCAB. In PCAB, the duration of 415 

chilling accumulation was very short at high latitudes, virtually non-existent at low latitudes 416 

(Fig. 5) and presented a maximum duration of ca. 15 days at intermediate latitudes (ca. 54°N) 417 

due to latitudinal variations of the photoperiod course in spring. 418 

c) ranged from -5.6°C in PCAB to +6.1°C 422 

in PCMA (Fig. 4) with a median across species of +1.6°C. The lower temperature threshold 423 

for forcing accumulation (Tf) ranged from -2.9°C in PCAB to +3.4°C in LADE (Fig. 4) with a 424 

median across species of +0.15°C. The start of forcing accumulation (defined by DLFstart

 429 

) 425 

looked bounded by vernal equinox (Fig. 5). It occurred later than the start of chilling 426 

accumulation in both spruce species (PCAB and PCMA), but earlier than the start of chilling 427 

accumulation in PISY and LADE (Fig. 5). 428 

Discussion 430 

The purpose of this study was to improve our understanding of the phenology of wood 431 

formation, and in particular to unravel the causal triggers for the spring onset of xylem growth 432 

in coniferous species. To this end, we evaluated the ability of three families of 433 

ecophysiological models and one empirical model to predict the start of the enlargement 434 

period of the xylem cells. Our results demonstrate that models based on temperature sums 435 

perform better than those based on temperature- and photoperiod-thresholds do (Table 3). 436 

Moreover, our results clearly support the chilling-influenced heat sum model (CiHS), 437 

explicitly considering the processes of chilling and forcing temperature accumulation, for the 438 

prediction of the spring onset of wood formation. Beside its high posterior probability 439 

compared to the other models, the CiHS model also predicted the spring onset of xylem 440 
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formation with good accuracy. Its RMSE on the validation data, averaging 7.7 days (Table 3), 441 

is close to the temporal resolution of micro-core sampling from the trees (i.e. 7 days), and 442 

similar to the typical prediction accuracy of budburst (i.e. primary meristems), when deployed 443 

over continental gradients (e.g. Basler, 2016). The clear support for a chilling-influenced heat 444 

sum for the modelling of spring xylem phenology is different from what is reported in 445 

budburst model comparisons. For the latter, heat sums and chilling-influenced heat sums do 446 

not usually differ in their fit (Basler, 2016; Vitasse et al., 2011).  447 

The identification of the CiHS model as receiving most support from the inference procedure 448 

suggests that both forcing and chilling temperatures play a role in determining the spring 449 

resumption date of xylem formation. To our knowledge, there is no direct evidence in the 450 

literature of a modulation of the date of onset of xylem cell formation in trees exposed to 451 

various chilling temperatures during winter and/or spring. Stem heating experiments showed 452 

that an artificial resumption of cambial activity can be triggered during late winter, but not in 453 

early winter (Begum, Nakaba, Oribe, Kubo, & Funada, 2010). This observation supports the 454 

existence of an endo-dormancy phase, during which the cambium activity is repressed by 455 

unknown tree internal factors (Delpierre, Vitasse, et al., 2016, but see Singh et al., 2017, for a 456 

review of dormancy processes in primary meristems). However, it does not prove, nor does it 457 

quantify the role of chilling temperatures in hastening the reactivation of xylem formation in 458 

spring. Thus, there is a clear need for quantifying the actual role of chilling temperatures in 459 

modulating the spring resumption of xylem formation, in line with pioneer works regarding 460 

buds and seeds (see Sarvas, 1974, reviewed in Hänninen, 2016), which have recently been 461 

actualized (e.g. Flynn & Wolkovich, 2018). 462 

We delineated the time periods for the accumulation of chilling or forcing temperatures with 463 

photoperiod limits, instead of day of year (DoY) as usually done in phenological modelling 464 

(see e.g. Olsson and Jönsson, 2014; Basler 2016) for examples over large latitudinal 465 

gradients). If the use of DoY is perfectly sound in local studies (i.e. for which the relation 466 

between DoY and photoperiod is unequivocal), it is questionable in studies spanning 467 

continental scales since plants sense time from variations in the photoperiodic signal. Across a 468 

latitudinal gradient, a given photoperiod is reached at different DoYs (except the 12-hour 469 

photoperiod occurring at spring equinox (March 20) across the entire gradient). This resulted 470 

in large differences in our southern vs. northern study sites as regards the timing of the 471 

chilling accumulation for PCAB and the duration of both chilling and forcing accumulation in 472 

PISY (Fig. 5), two species spanning large latitudinal gradients in our dataset. Whether such 473 
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variations of the actual dates of cambium sensitivity to temperatures are realistic remains to 474 

be determined. This could experimentally be done by comparing the sensitivity of cambium to 475 

chilling in genetically identical plants placed in various photoperiod conditions, either in 476 

climate chambers (as done for budburst, e.g. Basler and Körner, 2014) or in natural conditions 477 

(e.g. International Phenological Gardens, Chmielewski & Rötzer, 2001). 478 

In the CiHS model, the threshold temperatures promoting the progress of the eco-dormancy 479 

phase (forcing temperature threshold, Tf, ranging from -2.9°C to +3.4°C, Fig. 4) were 480 

comparable to values generally used in the modelling of budburst (typically 0°C or +5°C, 481 

Hänninen, 2016), based on experimental results (from -5°C to +1°C in, Heide, 1993). On the 482 

other hand, the values of threshold chilling temperatures (Tc

From a larger perspective, the questions about the plausibility of parameter values we inferred 489 

are further linked with the range of environmental conditions in which the bE data were 490 

obtained. Indeed, inferring model parameters from data acquired from trees growing under 491 

natural conditions, inevitably exposed to multiple interacting environmental factors (think e.g. 492 

of the strong concurrent latitudinal temperature and photoperiod gradient), is not equivalent to 493 

inferring them from a controlled experiment where the environmental conditions can be at 494 

least partially be disentangled (Verdier et al., 2014), and their biological interpretability is 495 

necessarily less generic. However, we noticed that our species-specific parameterizations of 496 

the CiHS model were able to reproduce the locally observed between-species difference in bE 497 

at those sites where two species of interest co-occur (Fig. 6), giving credit to the overall 498 

plausibility of the inferred parameters. 499 

) determined by the parameter 483 

inference procedure span a larger range (from -5.6°C to +6.1°C) and appear quite low in the 484 

cases of PCAB (-5.6°C) and LADE (-1.1°C) as compared to the values either determined 485 

experimentally in buds and seeds (for which Sarvas, 1974, reports -3°C as a lower limit for 486 

chilling effectiveness) or considered by expert judgment (0°C to +4.5°C in Coville, 1920; 487 

+2°C to +4°C for cambium in Little & Bonga, 1974) as effective for chilling. 488 

In this study we used model formulations initially developed for simulating the occurrence of 500 

budburst, assuming similar environmental controls of the phenology of primary and 501 

secondary meristems (Delpierre, Vitasse, et al., 2016). Even for budburst, those models lack 502 

an indisputable biological support (Clark, Salk, Melillo, & Mohan, 2014; Delpierre, Vitasse, 503 

et al., 2016). New model formulations for the phenology of budburst appear in the literature 504 

from time to time, considering more complex interactions of chilling and forcing temperatures 505 
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in interaction with photoperiod (e.g. Blümel & Chmielewski, 2012; Caffarra, Donnelly, & 506 

Chuine, 2011). Similar to the necessary effort to calibrate and compare those continuous-state 507 

budburst models to continuous data (for instance by measuring the release of plasmodesmata 508 

closure by callose, which is an indicator of bud endo-dormancy, Singh et al., 2017), a 509 

biologically-undisputable modelling of spring cambial activity will require the evaluation of 510 

those models with continuous seasonal markers of cambial cells activity (i.e. cytoplasmic 511 

changes in cambial cells such as presence and form of microtubules, vacuoles, lipid droplets, 512 

plastids and other cell organelles; Begum et al., 2012; Chaffey & Barlow, 2002; Prislan et al., 513 

2013; Rensing & Samuels, 2004), or metabolite content.  514 

Even if the CiHS model has no clear mechanistic foundation, we remind that the exposure to 515 

chilling temperature promotes soluble sugars accumulation from starch conversion, especially 516 

sucrose (along with raffinose, stachyose and other metabolites; Sakai & Larcher, 1987; 517 

Strimbeck, Schaberg, Fossdal, Schröder, & Kjellsen, 2015) that remain high until spring de-518 

hardening. Since cell production is limited by local sucrose availability (Deslauriers, Huang, 519 

Balducci, Beaulieu, & Rossi, 2016), we posit that exposure to chilling temperatures may 520 

constitute a local pool of sucrose readily available for cell production when temperatures 521 

become favourable for mitosis and/or cell expansion. In case of low chilling, this local 522 

sucrose pool would be low, and carbon-fueling for cell formation would rely more on the 523 

resumption of photosynthesis, which responds to forcing temperature accumulation (Mäkelä, 524 

Hari, Berninger, Hänninen, & Nikinmaa, 2004; Pelkonen & Hari, 1980). This mechanistic 525 

hypothesis is coherent with the general behaviour of the CiHS model (the required forcing 526 

accumulation decreases with increasing chilling exposure), and would explain why we infer in 527 

some species low temperature thresholds for chilling accumulation (-1.1°C in LADE, -5.6°C 528 

in PCAB). Indeed, the rate of starch to sugar conversion has been shown to be maximum at 529 

temperatures from -3°C to -5°C, and continued down to -15°C (in Salix sachalinensis twigs, 530 

Sakai, 1966).  531 

Moreover, the successful use of model structures designed and used to predict budburst to 532 

simulate the resumption of cambial spring activity raises the question of the coordination and 533 

interaction of the phenologies of tree organs (Delpierre, Vitasse, et al., 2016). Phytohormones 534 

can play a significant role; with e.g. auxins produced in expanding buds influencing the rate 535 

of stem cambial divisions (see review of Sorce, Giovannelli, Sebastiani, & Anfodillo, 2013). 536 

Yet, the important role of auxin is also interconnected with cytokinin in the vascular 537 

cambium. Although auxin peak in the middle of cambium and cytokinin in the middle of 538 
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phloem, the latter acts as a positive regulator of cell division in the vascular cambium by 539 

increasing the number of cambial cell (Immanen et al., 2016) because of its crucial role on the 540 

cell division cycle (Schaller, Street, & Kieber, 2014). Thus, the resumption of xylem 541 

formation in spring is at least partially independent from auxin-producing buds, as clearly 542 

demonstrated in stem heating experiments (where xylem formation resumes artificially 543 

whereas buds remain dormant, Begum et al., 2010; Gricar et al., 2006; Oribe, Funada, & 544 

Kubo, 2003), and from the observed earlier timing of enlargement of new xylem cells, as 545 

compared to bud elongation in the evergreen coniferous trees studied here (Picea abies, Pinus 546 

sylvestris, Picea mariana; Antonucci et al., 2015; Cuny et al., 2012; Huang et al., 2014; 547 

Michelot et al., 2012). The presence of auxins in overwintering tissues (Egierszdorff, 1981), 548 

and of a local pool of sucrose (see above) may decouple the onset of cambium division and 549 

xylem enlargement from the timing of bud elongation, as observed from stem heating 550 

experiments; along with the presence of signal-transduction chains involving phytochromes 551 

(proteins acting as photoreceptors, i.e. able to sense modifications of the photoperiod) in the 552 

cambium (Petterle, Karlberg, & Bhalerao, 2013), this suggests that the cambium may well 553 

respond to variations of environmental conditions independently from buds. This hypothesis 554 

is supported by inter-annual variability in the delays between the spring phenophases of wood 555 

and leaves in both gymnosperms (Cuny et al., 2012) and angiosperms (Takahashi, Okada, & 556 

Nobuchi, 2013). 557 

 558 

The chilling-influenced heat sum model produced mostly unbiased results when the data were 559 

aggregated at the site-year or at the site scale (Table 4), pointing to its overall accurate 560 

capacity of to simulate the spring resumption of xylem formation in coniferous species. Yet, 561 

one of our bias-detection methods (method 2) suggested that the model underestimated the 562 

range of tree individual bE (in all species, Table 4) and the annual bE anomalies (in 3 out of 4 563 

species, Table 4, Fig. S3). Though our models rely on environmental (temperature and 564 

photoperiod) data collected at the tree population scale, we conducted the parameter inference 565 

with the most basic level of information available (i.e. at the individual tree level, see section 566 

2.5). It is clear that part of the model bias that is detected at the individual scale is related to 567 

the model structural incapacity to simulate the variety of individual tree responses to the same 568 

environment that is observed in a tree population (Delpierre, Guillemot, Dufrêne, Cecchini, & 569 

Nicolas, 2017) and can actually be quite large (e.g. the within-population SD of observed bE 570 

dates for a given year is 5 days on average, Table 2). Bias in the predictions of annual bE 571 

anomalies may further originate from the simplicity of the model structure, which probably 572 
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does not represent the whole range of environmental interactions resulting in the spring onset 573 

of xylem formation.  574 

A study aiming at simulating the date of budburst of Betula pendula and Picea abies 575 

individuals from central to Northern Europe (i.e. a bioclimatic scale comparable to the one 576 

considered in our work) reported a lower performance over validation data as compared to our 577 

results for bE (with prediction RMSE of 8.9 and 9.1 days, respectively for their best heat sum 578 

model), along with a non-homogeneous bias over the continent, suggesting a role for the local 579 

adaptation of trees phenological traits (Olsson & Jönsson, 2014). It is not clear whether the 580 

latitudinal bias observed in Olsson & Jönsson (2014) originates from local adaptation (that 581 

has been evidenced several times for budburst, see e.g. Chuine, Mignot, & Belmonte, 2000; 582 

Osada et al., 2018; Vitasse, Delzon, Bresson, Michalet, & Kremer, 2009; von Wuehlisch, 583 

Krusche, & Muhs, 1995) or is related to the uncertainty of budburst observations recorded 584 

through local phenological protocols. The data we use in our work are less prone to such 585 

problems since the observations were collected and processed according to a common 586 

protocol across the entire study zone (Rathgeber et al., 2011; Rossi et al., 2016). To this 587 

respect, we conclude from the absence of bias in the prediction of site average dates of bE 588 

(Table 4, Fig. S2) that local adaptation is, if any, of marginal influence in determining bE 589 

(Perrin, Rossi, & Isabel, 2017) as compared to the plasticity of bE driven by varying 590 

temperature and photoperiod conditions. 591 

This study is the first comparative assessment of ecophysiological models aiming at 592 

simulating the spring resumption of xylem formation in trees. We demonstrated that chilling-593 

influenced heat sum models are best supported by the data for the four coniferous species 594 

studied. Thus, analogous to what is commonly observed for buds, we state that winter-spring 595 

temperatures exert ambivalent effects on the spring onset of wood formation (bE) (i.e. on the 596 

one hand, warmer temperatures tend to hasten the occurrence of bE through the accumulation 597 

of forcing temperature, but on the other hand they are associated to less chilling, imposing a 598 

higher forcing-temperature sum to trigger wood formation). Previous results from (Rossi et 599 

al., 2011) suggested that spring warming would result in a continuous trend to earlier bE in 600 

the next decades. Our results question these predictions, since warming reduces the number of 601 

chilling days. This is probably the cause of the recently evidenced reduced sensitivity of 602 

spring leaf phenology to warm temperatures (Fu et al., 2015), which we also forecast to 603 

happen for wood formation (note that the length of wood phenology time series is much 604 

shorter than for bud phenology, so that this hypothesis remains to be tested). 605 
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Our work paves the way for the development of ecophysiological models simulating the 606 

whole phenological sequence of wood formation. We expect the CiHS model to be included 607 

as a component of schemes representing the whole seasonal cycle of wood formation, into 608 

which subsequent wood formation phases would partially depend on the occurrence of bE 609 

(Hänninen & Kramer, 2007; Lupi et al., 2010). Such a model is also urgently needed in 610 

ecosystem models of the carbon cycle (Delpierre, Vitasse, et al., 2016) which are undergoing 611 

core changes in their representation of wood growth (Guillemot et al., 2017; Schiestl-Aalto et 612 

al., 2015). 613 
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 911 

Tables 912 

Table 1. Overview of the tested models and their parameters. Ta

Model 

name 

= daily average air 913 

temperature (°C); DL= photoperiod (hours). See text for definition of the model parameters. 914 

Type Environmental 

variables 

Fitted 

parameters 

(number) 

Equation 

reference 

Tt temperature 

threshold 

T T* (1) a 1 

TDLt temperature and 

photoperiod 

thresholds 

Ta DL*, T* (2) , DL 2 

HS Heat sum  Ta DLF, DL start, Tf 3-5 , F* 

(3) 

CiHS Chilling-

influenced heat 

sum  

Ta DLC, DL start, DLCend, 

DLFstart, Tc, Tf

6-8 

, 

g, h (7) 

MST Regression line January-June 

average 

temperature 

mTspg, pTspg 9 (2) 
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Table 2. Overview of the wood phenology data. bE= date of the beginning of xylem cell 916 

enlargement (DoY), ∆bE= amplitude of bE dates (days). The ‘within site-year SD’ metric is 917 

the average standard deviation of bE among trees sampled on a given site-year. 918 

Tree 

species 

Number 

of site-

years 

Number of 

observations 

Mean 

bE 

(DoY)  

SD of 

bE 

(days) 

Min. 

bE 

(DoY)  

Max. 

bE 

(DoY)  

∆bE 

within -

species  

(days) 

Within -

site-year 

SD 

(days) 

LADE 62 300 150 12 118 183 65 5.4 

PISY 37 175 112 20 75 176 101 5.4 

PCAB 77 336 136 16 101 177 76 4.2 

PCMA 42 294 152 9 128 177 49 4.8 
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Table 3.  Model performance comparison. PMW= posterior model weight (eq. 11); RMSE= root mean square error (days); ∆AICc= 919 

differential Akaike Information Criterion, corrected for small sample biases (calculated as the difference from minimum AICc across all models; 920 

according to this metric, the best model at maximum likelihood has a score of 0). PMWs are established over the whole posterior distribution. 921 

RMSE and AICc were calculated at the point of maximum likelihood (MAP). We report here the medians of those metrics, established across the 922 

30 calibration re-samplings. The CiHS model results appear in bold characters, as displaying the highest PMW over validation data in all species. 923 

 924 

 
Model class 

Model 

name 
PMW PMWcalib RMSEvalid RMSEcalib ∆AICcvalid ∆AICccalib valid 

LADE 

(n calib= 

210, n 

valid=90) 

threshold Tt 0.00 0.00 14.7 15.0 226 89 

threshold TDLt 0.00 0.00 9.9 10.3 95 30 

heat sum HS 0.00 0.01 8.2 8.7 36 8 

chilling-

influenced 

heat sum 

CiHS 1.00 0.94 7.5 8.1 0 0 

regression MST 0.00 0.00 8.7 8.9 53 13 

PISY 

(n calib = 

123, n valid 

= 52) 

threshold Tt 0.00 0.00 21.5 24.6 208 98 

threshold TDLt 0.00 0.00 14.6 15.2 119 46 

heat sum HS 0.00 0.00 11.4 11.2 63 18 

chilling-

influenced 

heat sum 

CiHS 1.00 1.00 8.4 9.3 0 0 A
u
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regression MST 0.00 0.00 15.6 15.6 133 49 

PCAB 

(n calib = 

236, n valid 

= 100) 

threshold Tt 0.00 0.00 16.8 17.2 378 151 

threshold TDLt 0.00 0.00 12.4 12.6 221 92 

heat sum HS 0.00 0.00 9.8 10.1 119 35 

chilling-

influenced 

heat sum 

CiHS 1.00 1.00 7.5 7.9 0 0 

regression MST 0.00 0.00 11.5 11.6 154 62 

PCMA 

(n calib = 

206, n valid 

= 88) 

threshold Tt 0.00 0.00 13.1 13.2 334 139 

threshold TDLt 0.00 0.00 7.3 7.3 116 45 

heat sum HS 0.00 0.00 5.8 6.1 38 15 

chilling-

influenced 

heat sum 

CiHS 1.00 0.67 5.2 5.6 0 0 

regression MST 0.00 0.33 6.7 6.9 32 1 
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Table 4. Assessment of model bias on validation data. We tested the model ability to produced unbiased predictions of bE from the validation 926 

subsets at different scales, with two different methods (see Material and Methods 2.6 for details). The slopes and intercepts estimates are reported 927 

with their 95%-confidence intervals between parentheses. Unbiased predictions are characterized by both slope= 1 and intercept=0. In Method 1, 928 

we report the p-value of the Wald test (testing for unit slope and zero intercept as the null hypothesis). In Method 2, we identify biased 929 

predictions when either the slope or intercept confidence intervals do not include one or zero, respectively. ‘yes’ / ‘no’ mark biased / unbiased 930 

predictions. 931 

  

Method 1 Method 2 

bE data 

aggregation 

scale Species slope intercept F P(>F) Bias ? slope intercept Bias ? 

tree 

LADE 1.04 (0.93, 1.15) -6.2 (-23.0, 10.6) 0.41 0.66 no 0.67 (0.60, 0.74) 49.6 (38.4, 60.0) yes 

PISY 1.02 (0.91, 1.12) -4.2 (-16.5, 8.1) 2.57 0.08 no 0.79 (0.71, 0.87) 25.9 (16.3, 34.8) yes 

PCAB 0.98 (0.92, 1.04) 2.5 (-5.4, 10.4) 0.34 0.71 no 0.88 (0.83, 0.93) 16.1 (8.9, 22.9) yes 

PCMA 1.04 (0.94, 1.15) -7.2 (-23.2, 8.7) 1.31 0.27 no 0.68 (0.61, 0.75) 49.2 (38.5, 59.2) yes 

site-year

LADE 
* 

1.06 (0.90, 1.22) -9.4 (-33.5, 14.6) 0.34 0.71 no 0.80 (0.68, 0.92) 

30.6 (11.52, 

47.6) yes 

PISY 1.02 (0.85, 1.19) -4.1 (-24.4, 16.2) 0.84 0.44 no 0.88 (0.74, 1.04) 15.4 (-3.1, 31.4) no 

PCAB 0.99 (0.88, 1.10) 2.2 (-12.7, 17.1) 0.19 0.83 no 0.91 (0.81, 1.02) 11.8 (-2.6, 24.9) no 

PCMA 1.01 (0.87, 1.16) -3.1 (-25.1, 19.0) 1.83 0.18 no 0.91 (0.79, 1.05) 14.5 (-6.2, 33.3) no 

site

LADE 
* 

1.13 (0.87, 1.40) -19.3 (-58.8, 20.2) 0.72 0.51 no 0.82 (0.65, 1.04) 25.9 (-6.1, 52.3) no 

PISY 1.03 (0.82, 1.23) -6.0 (-31.3, 19.2) 0.97 0.4 no 0.92 (0.75, 1.13) 11.7 (-12.5, 31.8) no 

PCAB 1.01 (0.83, 1.20) -1.8 (-26.6, 23.1) 0.02 0.98 no 0.91 (0.76, 1.09) 11.47 (-13.0, no 
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32.2) 

PCMA 1.27 (0.86, 1.68) 

-42.0 (-102.1, 

18.2) 3.55 0.11 no 0.75 (0.53, 1.03) 38.4 (-1.8, 70.2) no 

year 

anomaly

LADE 

**  

1.02 (0.81, 1.23) 0 (-1.1, 1.1) 0.02 0.98 no 0.73 (0.59, 0.89) 0 (0, 0) yes 

PISY 1.20 (0.67, 1.74) 0 (-2.0, 2.0) 0.3 0.74 no 0.43 (0.25, 0.64) 0 (0, 0) yes 

PCAB 1.17 (1.00, 1.34) 0 (-1.1, 1.1) 2.02 0.14 no 0.69 (0.60, 0.80) 0 (0, 0) yes 

PCMA 0.89 (0.74, 1.04) 0 (-0.8, 0.8) 1.06 0.36 no 1.02 (0.86, 1.21) 0 (0, 0) no 

* bE dates were simulated at the tree individual scale, and subsequently averaged at the site-year or site scale; ** bE dates were simulated at the tree individual 932 

scale. For calculating annual anomalies, we subtracted the average bE date, established along the observation period, to bE data averaged at the site-year scale. 933 
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Figure captions 935 

Figure 1. Location of the study sites. 936 

Figure 2. Climate space at the observed date of bE. Each bE datum is placed in a climate 937 

space defined by the day length at bE (x-axis) and the average temperature over the 15-day 938 

interval preceding bE (y-axis). 939 

Figure 3. Chilling-influ enced heat sum (CiHS) model evaluation over validation data. 940 

Predictions are reported at the tree scale (grey dots) and aggregated site-year scale (points, 941 

colours according to the average January-June temperature of the site-year). The thick black 942 

line is the least square regression line of predicted versus observed data. The one-to-one 943 

relation appears as the thin grey line. NSE= Nash-Sutcliffe model efficiency; slope= slope of 944 

the linear regression; int= intercept of the linear regression. The displayed statistics are 945 

calculated for site-year aggregated data. See Table 3 for statistics on tree-scale data. 946 

Figure 4. Posterior parameter distributions. Parameters are shown for the CiHS model, 947 

which performed best over the validation data for each species. Grey lines represent each of 948 

the 30 inference procedures, with the overall distribution appearing as coloured line. For each 949 

parameter, the limits on the x-axis mark the bounds set to the uniform prior density. The mode 950 

of the overall distribution appears for each parameter on the upper left-hand corner (e.g. 951 

DLCstart

Figure 5. Variations of chilling and forcing accumulation time intervals along latitudinal 954 

gradients. This figure displays the temporal interval of chilling accumulation (with the 955 

starting date plotted as ‘*’ and the ending date as ‘o’, linked by a straight line) and the starting 956 

date of forcing (plotted as ‘’). The colour of the symbols indicates the northernmost (blue) 957 

or southernmost (red) latitude by species. For PCAB, we also illustrate an intermediate 958 

situation (latitude = 54°N, grey symbols). Dashed black line represents vernal equinox; 959 

continuous black line represents summer solstice. 960 

 = 12.7 hours for LADE). See Material and Methods for parameters description, and 952 

Table S2 for parameter values at the mode of the merged 30 posterior distributions. 953 

Figure 6. Comparing observed and simulated interspecific differences in the date of bE. 961 

For those site-years where two species of interest have been sampled simultaneously, we 962 

plotted the observed and predicted between-species differences in bE dates (∆bE, days). Each 963 
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single point represents one site-year. (a, b): compare the distribution of differences; (c, d): 964 

compare observed and predicted differences for each site-year.965 
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Supporting information  966 

Additional supporting information may be found in the online version of this article. 967 

Figure S1. Logistic models are precise in determining temperature thresholds for the 968 

beginning of xylem growth, but are not predictive. 969 

Figure S2. Model evaluation performance over validation data, aggregated per site. 970 

Figure S3. Model evaluation performance over validation data, for annual anomalies. 971 

Table S1. Study sites. 972 

Table S2. Parameter values for the chilling-influenced heat sum (CiHS) model. 973 
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