

Reversibility of hydrolysis inhibition at high hydrogen partial pressure in dry anaerobic digestion processes fed with wheat straw and inoculated with anaerobic granular sludge

Elisabeth A. Cazier, Eric Trably, Jean-Philippe Steyer, Renaud Escudié

▶ To cite this version:

Elisabeth A. Cazier, Eric Trably, Jean-Philippe Steyer, Renaud Escudié. Reversibility of hydrolysis inhibition at high hydrogen partial pressure in dry anaerobic digestion processes fed with wheat straw and inoculated with anaerobic granular sludge. Waste Management, 2019, 85, pp.498-505. 10.1016/j.wasman.2019.01.019 . hal-02625415

HAL Id: hal-02625415 https://hal.inrae.fr/hal-02625415v1

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Reversibility of hydrolysis inhibition at high hydrogen partial pressure in dry anaerobic digestion processes fed with wheat straw and inoculated with anaerobic

3 granular sludge

4 Elisabeth A. Cazier, Eric Trably^{*}, Jean-Philippe Steyer, Renaud Escudie

5 LBE, Univ Montpellier, INRA, 102 avenue des Etangs, 11100, Narbonne, France

6 *corresponding author: eric.trably@inra.fr; Phone: (+33)(0) 468 425 172

7 Abstract

8 In dry anaerobic digestion (AD), methanogenic performances are lowered by high solid 9 contents. Low performances are often caused by a decrease of the gas-liquid transfer 10 kinetics leading to local accumulation of inhibitory by-products. Hydrogen was 11 previously identified as an inhibitor of hydrolytic and acetogenic microbial activities in 12 dry AD. CO_2 is also generated but its impact on the microbial activity remains 13 unknown. In this study, the reversibility of dry AD inhibition by high H₂ partial 14 pressure (P_{H2} of 1 bar) was investigated by adding CO₂ (400 mbars) after 11 and 18 15 days of methanogenesis inhibition, in an AD process operated at 25% TS, using wheat 16 straw as substrate and inoculated with anaerobic granular sludge. As soon as CO_2 was 17 added, the methanogenic activity rapidly recovered within 3 days, from 0.41 ± 0.1 to 18 3.77 ± 0.8 and then 2.25 ± 0.3 , likely through the hydrogenotrophic pathway followed by 19 the acetoclastic pathway, respectively. This result was confirmed by the high abundance 20 of *Methanomicrobiales* (83%) and the emergence of *Methanosarcinales* sp (up to 17%) 21 within the methanogens. Furthermore, the recovery kinetics were impacted by the duration of the inhibition period suggesting a different impact of the high P_{H2} on hydrogenotrophic and acetoclastic methanogens.

24

25 Keywords

Acidogenesis; Carbon dioxide; Gas transfer; Hydrogen; Solid-State Anaerobic
Digestion

28 1 Introduction

29 In anaerobic digestion, the organic matter is converted by microorganisms into (1) a 30 biogas composed of CH_4 and CO_2 , and (2) a residual digestate that may be further used 31 as fertilizer if sanitary and environmental requirements are met. Three types of 32 anaerobic digestion (AD) processes are distinguished according to the operational 33 conditions: (1) the wet AD operated at a total solid content (TS) lower than 10%, (2) the 34 semi-dry AD at a TS content between 10 and 20 % and (3) the dry AD, also called 35 solid-state AD, at a TS content above 20% (Abbassi-Guendouz et al., 2012). Since less 36 water is required in dry AD, the digester size as well as the energy demand are both 37 minimized. Dry AD has gained lot of interest for industrial purposes and is now being 38 widely implemented for the treatment of agricultural and ligno-cellulosic residues.

In counterpart, dry AD technologies present several disadvantages due to their high TS content, such as a decrease of the AD performances with lower methane yields and some handling difficulties due to the high heterogeneity and viscosity of the substrate (Abbassi-Guendouz et al., 2012; Motte et al., 2013). When the TS content exceeds 30 %, the anaerobic digestion process can be rapidly blocked or even strongly inhibited

44 (Abbassi-Guendouz et al., 2012). Such inhibition phenomenon is characterized by a 45 decrease of the biogas production and an increase of the Volatile Fatty Acids (VFAs) 46 concentration (Abbassi-Guendouz et al., 2012; Motte et al., 2013). Indeed, the decrease 47 of the free available water at high TS content results in the reduction of mass transfer 48 kinetics of soluble molecules such as VFAs, or dissolved gases (Bollon et al., 2013). 49 Since dissolved gas diffusion and gas-liquid transfers become rapidly limiting, local 50 accumulation of these by-products can occur and lead to microbial local inhibition in 51 the bulk phase where microorganisms are active (Abbassi-Guendouz et al., 2012).

52 In particular, dissolved hydrogen accumulation rapidly makes the acetogenic reactions 53 thermodynamically unfavourable causing higher VFAs accumulation, a subsequent 54 decrease of the pH and finally methanogenesis inhibition (Guo et al., 2010). Under 55 anaerobic conditions, H₂ is produced by acidogenic bacteria and is immediately 56 consumed in combination with CO₂ by either homoacetogenic bacteria to produce 57 acetate, or hydrogenotrophs to produce methane (Amani et al., 2010). This latter 58 pathway represents about 30% of the CH₄ produced in anaerobic digestion (Amani et 59 al., 2010). All these reactions are reversible in the AD process where acetate oxidation 60 plays also a key role between methanogenic pathways (Karakashev et al., 2006). The 61 local H₂ partial pressure can transitorily increase but must remain low enough to avoid 62 inhibition of syntrophic acetogenic bacteria. When the hydrogen partial pressure (P_{H2}) is 63 high, VFAs production increases, causing a decrease of the pH to lower value than 6 64 (Guo et al., 2010). Such variation in pH can impact biomass hydrolysis as well as the 65 following steps of acidogenesis and methanogenesis (Siegert and Banks, 2005; Veeken 66 et al., 2000). Indeed, the growth of methanogenic and acidogenic bacteria are strongly 67 affected by the pH (Luo and Angelidaki, 2013).

68 In addition, Cazier et al. (2015) reported that a high initial partial pressure of H_2 in the 69 headspace was the main inhibitory factor affecting wheat straw hydrolysis in dry AD. It 70 was suggested that CO_2 played a key role since H_2 inhibition occurred only in absence 71 of remaining CO₂. Indeed, hydrolysis inhibition did not occur when CO₂ was initially 72 present with H₂ in the reactor headspace. In that case, H₂ was rapidly consumed by 73 homoacetogenic bacteria and methanogens. When anaerobic digestion is efficiently 74 working, it can be assumed that CO_2 and H_2 are both biologically produced during 75 acidogenesis and acetogenesis and are continuously consumed by homoacetogenic 76 bacteria and methanogenic archaea. More CO₂ than H₂ is produced, the overall CO₂ 77 content ranging from 30 to 50% of the biogas.

78 However, the exact role of CO_2 on the bacterial activity in AD remains unclear. On the 79 one hand, CO₂ has been reported as inhibitor of the production and degradation of 80 VFAs, as previously shown by Hansson and Molin (1979) and Arslan et al. (2012) who 81 worked on acetate and propionate accumulation at pH 7 and pH 4.5 and under 1 bar of 82 CO_2 , respectively. Consistently, it was elsewhere reported that an inhibitory impact of 83 CO₂ on acetogenic and lactic acid bacteria at pH 5.3 (Kim et al., 2006) and on 84 acetoclastic methanogens at pH 7 (Hansson and Molin, 1981). On the other hand, 85 acidogenesis and more particularly H_2 production was shown to be improved by 86 sparging CO₂ before fermentation (at 30 to 300 ml_{CO2}.min⁻¹) (Bru et al., 2012; Kim et 87 al., 2006). Nonetheless, an inhibitory effect was observed when CO_2 was sparged at higher rate (500 ml_{CO2}.min⁻¹) (Bru et al., 2012). In contrast, Park et al. (2005) reported 88 89 that fermentative H_2 production was improved by removing the CO₂. Since all 90 experiments were carried out under different operating conditions and different

91 microbial communities, concluding on the exact impact of CO₂ on the different AD
92 microbial activities remains unclear.

The aim of this study was to evaluate the impact of adding CO_2 in mesophilic dry AD when methanogenesis was artificially inhibited by high initial H₂ partial pressure in headspace. Two inhibition durations (11 and 18 days) prior to CO_2 injection were investigated to evaluate the persistence of the inhibitory effect on acidogenic and methanogenic populations.

98 2 Materials and methods

99 2.1 Substrate

Wheat straw (*Triticum aestivum*) was used as substrate. After harvest and collection, wheat straw was fractionated using a cutting miller through a 1 mm grid, and then sieved to collect particles having a size between 400 µm and 1 mm. The TS content of the wheat straw particles was 95%.

104 2.2 Operating conditions of the batch tests

105 Industrial UASB anaerobic granules were used to inoculate the batch reactors. The 106 granules were manually broken and mixed during 24 h at 35°C, and were then centrifuged (7 841 g, 20 min, and 4°C) to obtain a homogeneous anaerobic inoculum. 107 108 The TS content of the inoculum ranged between 10 and 15 %. The substrate/inoculum 109 ratio was fixed at 3 (on basis of the volatile solid contents) (Liew et al., 2012). A buffer solution of sodium bicarbonate (0.0026 g of NaHCO_{3.g}⁻¹ of substrate) was used to keep 110 111 the pH at 8 all along the experiment (data not shown). A solution of trace elements (FeCl₂ 2 g·L⁻¹, CoCl₂ 0.5 g·L⁻¹, MnCl₂ 0.1 g·L⁻¹, NiCl₂ 0.1 g·L⁻¹, ZnCl₂ 0.05 g·L⁻¹, 112

H₃BO₃ 0.05 g·L⁻¹, Na₂SeO₃ 0.05 g·L⁻¹, CuCl₂ 0.04 g·L⁻¹, Na₂MoO₄ 0.01 g·L⁻¹) was added (0.2 mL by flask) at start of the experiment, using the same protocol than Cazier et al. (2015). Initial TS content of the mixture (inoculum, wheat straw, sodium bicarbonate solution and trace elements) was fixed at 25% corresponding to the maximal TS value where no inhibitory effect was observed in dry AD (Abbassi-Guendouz et al., 2012; Motte et al., 2013)and to only investigate the reversibility of the inhibition only caused by high hydrogen partial pressure (Cazier et al. (2015)).

120 First, the mixture was introduced into a reactor with a working volume of 3 L operated 121 during 10 days at 35° C under N₂ atmosphere to reach an active phase of 122 methanogenesis and homogenize the substrate/inoculum medium. Then, 20 g of this 123 pre-culture was put into the bottom of a 600 ml flask, which corresponded to a thin 124 layer of less than 1 cm of substrate to limit the influence of the gas diffusion in the 125 medium. The flasks were initially flushed with N2 gas. Hydrogen was then added to 126 reach an initial H₂ partial pressure of 996 \pm 27 mbars, under a total pressure of 1 500 127 mbars. A control, with only N_2 in headspace, was also carried out. All the flasks were 128 then incubated at 35°C for 32 days. In some of the flasks filled with hydrogen, 396 ± 44 129 mbars of CO₂ were added after 11 and 18 days of operation. Batch tests were carried out 130 in triplicates for each condition. Flasks were sampled at day 0, 11, 18, 25 and 32 for 131 further analysis of fermentative metabolite concentrations.

132 2.3 Analytical methods

Biogas production volume was periodically estimated by measuring the total pressure and the biogas composition. The gas composition was determined using a gas chromatograph Perkin Clarus 580 composed of an injector heated at 250°C and two capillary columns heated at 60°C. The first column corresponded to an RtUbond for the 137 CO₂ and the second column an RtMolsieve used for the detection of the O₂, H₂, N₂ and 138 CH₄. The carrier gas was argon at 350 kPa and under a flowrate of 31.8 ml.min⁻¹. The 139 detection was ensured by a thermal conductivity detector kept at 150° C.

140 Metabolites were quantified by diluting 5 g of digestate in 20 g of deionized water for 141 30 minutes. The mixture was then centrifuged during 20 min at 39 121 g and 4°C and 142 filtrated at 0.2 µm with a nylon membrane using the same protocol than Cazier et al. 143 (2015). VFAs were measured with a gas chromatograph Perkin Clarus 580 equipped 144 with an Elite-FFAP crossbond® carbowax® 15 m column connected to a flame 145 ionization detector at 280°C. Nitrogen was used as carrier gas under a flow rate of 6 146 mL.min⁻¹ (Motte et al., 2013). Other metabolites than VFAs were quantified using high 147 performance liquid chromatograph, e.g. lactic acid and ethanol. The chromatograph was 148 composed of an automatic sampler (Water 717), a pre-column to filter residues (Micro 149 guard cation H refill cartridges, Bio-Rad) and an Aminex HPX-87H column (300 mm 150 on 7.8 mm, Bio-Rad). The carrier eluent was a sulfuric acid solution at 0.005 M under a fixed flowrate of 0.4 ml.min⁻¹. 151

The microbial communities of *Archaea* and *Bacteria* were characterized after DNA extraction and amplification of the V3 region of the 16S rRNA according to the protocols of Braun et al. (2011) and Bru et al. (2012).

The PCR products were purified and sequenced, using the Illumina MiSeq System with 2x300 bp paired-end chemistry used at the GenoToul sequencing centre (www.genotoul.fr). An average of 46 021 high quality sequences per sample for *Archaea* and for *Bacteria* were retained after assembly, de-multiplexing and cleaning with Mothur software version 1.33.2, as described by Schloss et al. (2009). SILVA

release 102 was used for alignment and taxonomic affiliation. Sequences are registered
on NCBI database under the accession numbers KY229870 to KY229893 for archaea,
and KY234504 – KY235143 for bacteria.

163 2.4 Data analysis

R software (version 2.15.2) coupled with the package Rcmdr (version 1.8-4) was used
for statistical analysis of the experimental data, using variance analysis (ANOVA).
Non-significant p-values were fixed > 0.05 and significant p-values were fixed when <
0.05.

Total Substrate Degradation (TSD) was estimated from a theoretical Chemical Oxygen Demand (COD) mass balance between the start-up and the end of each experiment, as described elsewhere (Cazier et al., 2015). All calculation was expressed according to the initial TS content of wheat straw (TSi expressed in grams of dry solids), as follows:

172 TSD = Final State – Initial State =
$$\frac{A_{H_2,f} + A_{CH_4,f} + A_{met,f} + A_{GC}}{TSi} - \frac{A_{H_2,i} + A_{met,i}}{TSi}$$
 (Eq.1)

173 where, $A_{H_2,f}$ is the amount of H_2 remaining at the end in the headspace, $A_{CH_4,f}$ the final 174 amount of accumulated CH₄, $A_{met,f}$ the final amount of metabolic products, A_{GC} the 175 total amount of gas (H₂ and CH₄) sampled for analyses, $A_{H_2,i}$ the initial amount of H₂ 176 added and $A_{met,i}$ the initial amount of metabolites in the medium. Since all these 177 parameters are expressed in grams of COD, TSD corresponded to gram of COD per 178 gram of initial TS of wheat straw.

179 **3** Results and discussion

180 3.1 Recovery of the methanogenic activity after CO₂ addition

Figure 1.a shows the cumulated production of CH_4 along reactor operation time. For the reactors carried out at high initial P_{H_2} and, thus, operated under inhibitory conditions, CO₂ was added after 11 and 18 days of operation. The control corresponds to a reactor without initial addition of H_2 in headspace.

185 In the control reactor, a maximal and constant CH₄ production rate was observed after a lag phase of 5 days and reached a value of $2.7 \pm 0.32 \text{ ml}_{\text{CH4}} \cdot \text{g}_{\text{TS}}^{-1} \cdot \text{day}^{-1}$, equivalent to 186 2.98 ml_{CH4}·gys⁻¹·day⁻¹. This result is significantly lower than previous reported values 187 of 12 ml_{CH4}.gvs⁻¹·day⁻¹ for wheat straw at 22% TS (Liew et al., 2012). Such difference 188 189 resulted either from different microbial inoculum origins or from a TS content slightly 190 higher in the present experiment (25% TS), considering that 28-30 % TS was previously 191 reported as a threshold value prior inhibition of the methanogenic and acidogenic 192 microbial activities (Abbassi-Guendouz et al. 2012; Motte et al. 2013).

193 In the reactors where H_2 was initially added, a small quantity of CH_4 accumulated the 194 first day of experiment at low production rates of 0.96 ± 0.52 and 0.96 ± 0.42 ml_{CH4}·grs⁻ 195 1 ·day⁻¹ (Table 1): this production rates correspond to the mean values of the triplicates 196 used to evaluate the addition of CO₂ after 11 and 18 days of inhibition, respectively. 197 Thereafter, CH₄ production was strongly inhibited due to the presence of high partial 198 pressure of H₂ in the headspace, with average production rates of only 0.45 \pm 0.1 and $0.38 \pm 0.1 \text{ ml}_{CH4} \cdot g_{TS}^{-1} \cdot day^{-1}$. In comparison, the control (only N₂) showed a methane 199 production rate ten times higher at $2.7 \pm 0.3 \text{ ml}_{\text{CH4}} \cdot \text{g}_{\text{TS}}^{-1} \cdot \text{day}^{-1}$ for the same experimental 200 201 time. Consequently, the amounts of cumulated methane after 11 and 18 days reached only 4 ± 0.5 and $6 \pm 1 \text{ ml}_{\text{CH4}} \cdot \text{g}_{\text{TS}}^{-1}$ in the inhibited reactors against 20 ± 4 and 39 ± 4 ml_{CH4} · g_{TS}⁻¹ in the controls, respectively. It was concluded that methanogenesis was clearly inhibited in presence of high initial H₂ partial pressure in headspace (996 ± 27 mbars). The corresponding concentration of dissolved H₂ in the medium at 35°C was estimated at $0.58 \pm 5 \times 10^{-2} \text{ mg}_{\text{H2}} \cdot \text{L}^{-1}$. Consistently, a similar value was reported as a threshold H₂ concentration prior to wheat straw hydrolysis inhibition in AD by Cazier et al. (2015).

209 When CO_2 was added in reactor headspace, the methane rapidly accumulated within the first 3 days to reach values of 12 ± 1 and $10 \pm 2 \text{ ml}_{CH4} \cdot \text{g}_{TS}^{-1}$ in the reactors where CO₂ 210 211 was added at day 11 and 18, respectively. This first phase of CH₄ production was called 212 "phase 1", as shown in Figure 1.b. During phase 1, H₂ and CO₂ were both rapidly 213 consumed until total exhaustion of H_2 in headspace (data not shown). No significant 214 acetate accumulation was observed during the first 7 days after CO₂ addition (Figure 2). 215 It was therefore concluded that H_2 and CO_2 were most likely consumed by 216 hydrogenotrophic methanogens to produce CH₄. Consistently, methane production rates in phase 1 were higher than in the controls, with 4 \pm 0.75 $ml_{CH4} \cdot g_{TS}{}^{-1} \cdot day^{-1}$ and 3.55 \pm 217 $0.87 \text{ ml}_{\text{CH4}} \cdot \text{g}_{\text{TS}}^{-1}$.day⁻¹ for CO₂ added at day 11 and 18, respectively, versus an average 218 value of $2.7 \pm 0.3 \text{ ml}_{\text{CH4.g}_{\text{TS}}}^{-1}$.day⁻¹ in the controls (Table 1). Such observation strongly 219 220 supports the fact that efficient hydrogenotrophic methanogenesis was the main 221 methanogenic pathway during phase 1. Moreover, the methanogenic activity recovered 222 immediately after CO₂ addition, suggesting that hydrogenotrophic methanogens were not inhibited at high P_{H2} , at least during the first 18 days. This is consistent with 223 224 previous observations where the production of CH_4 by hydrogenotrophic methanogens

was previously shown to be favoured at high P_{H2} (> 5 mbars) in anaerobic digestion systems (Demirel and Scherer, 2008; Schink, 1997).

227 After phase 1, a phase of 4 days, called 'plateau', was observed with only a small 228 amount of CH_4 that accumulated whatever the time of CO_2 addition (Figure 1.b). The 229 CH₄ production rate during the plateau phase was very low, *i.e.* 0.82 ± 0.26 and $0.41 \pm$ 0.27 ml_{CH4}· g_{TS}^{-1} ·day⁻¹ when the CO₂ was added at 11 and 18 days respectively (Table 230 231 1). Since no H₂ was present in headspace, this plateau phase corresponded probably to 232 the time for the microbial community to readapt to favourable conditions for substrate 233 degradation, as initially observed in the control, i.e. a lag phase of 4 days at the start of 234 the experiment.

235 Afterwards, methane production increased to reach a cumulated methane yield of 16 ± 1 $ml_{CH4} \cdot g_{TS}^{-1}$ and $11 \pm 3 ml_{CH4} \cdot g_{TS}^{-1}$ in 7 days, when CO₂ was added at day 11 and 18, 236 237 respectively. This second production phase was denominated 'phase 2' (Figure 1.b). In 238 phase 2, the methane production rates decreased by half when compared to phase 1 (Table 1), with 2.74 \pm 0.45 and 1.61 \pm 0.23 ml_{CH4}·g_{TS}⁻¹.day⁻¹ when the CO₂ was added 239 240 at 11 and 18 days respectively. Since the CH₄ production rates were substantially 241 different during for the first and second phase, two different methanogenic pathways 242 were likely involved. Indeed, it is well established that hydrogenotrophic 243 methanogenesis is faster than the acetoclastic methane producing pathway (Pan et al., 244 2016). While CH_4 production in phase 1 seemed to be mainly due to hydrogenotrophic 245 methanogens, methanogenesis was most probably resulting from the degradation of 246 acetate by acetoclastic methanogens in phase 2 (Demirel and Scherer, 2008).

Interestingly, CH₄ production rates were slightly higher when CO₂ was added after 11 days of inhibition (4 ± 0.75 and $2.74 \pm 0.45 \text{ ml}_{CH4} \cdot \text{g}_{TS}^{-1} \cdot \text{day}^{-1}$ for phases 1 and 2, respectively) than 18 days (3.55 ± 0.87 and $1.77 \pm 0.23 \text{ ml}_{CH4} \cdot \text{g}_{TS}^{-1} \cdot \text{day}^{-1}$ for phases 1 and 2, respectively). Such a difference suggests a cumulative inhibitory effect of the time of exposure to H₂ on both hydrogenotrophic and acetoclastic methanogens.

252 3.2 Impact of the P_{H2} on other metabolic by-products dynamics

Figure 2 presents the accumulation of metabolic by-products (VFAs and methane), the remaining hydrogen in the controls and in the reactors carried out with high initial P_{H2} . In the controls, microbial metabolites, *i.e.* all VFAs, formate, succinate, and ethanol, transitorily accumulated after 11 and 18 days of operation (35 ± 2 and 39 ± 5 mg_{COD}.g_{TS}⁻¹ at day 11 and 18, respectively) likely because of the high TS content, and then decreased to 7 ± 2 mg_{COD}.g_{TS}⁻¹ at day 32, confirming the efficient methanogenic activity even at 25% TS.

In comparison, the amount of metabolites was higher in the reactors where H₂ was 260 initially added. The concentrations of metabolites reached $58 \pm 5 \text{ mg}_{\text{COD}}.\text{g}_{\text{TS}}^{-1}$ at day 11 261 and $82 \pm 17 \text{ mg}_{\text{COD}} \cdot \text{g}_{\text{TS}}^{-1}$ at day 18 prior to CO₂ addition (Figure 2). These values 262 corresponded to a total concentration in metabolites of about 20 ± 2 g·L⁻¹ at day 11, and 263 $28 \pm 6 \text{ g} \cdot \text{L}^{-1}$ at day 18, respectively. Such value is above the inhibitory limit of 20 g $\cdot \text{L}^{-1}$ 264 as previously reported in wet AD processes (Siegert and Banks, 2005). Interestingly, 265 most of the hydrogen consumed at day 11 and at day 18 (69 \pm 2 mg_{COD}.g_{TS}⁻¹ and 72 \pm 2 266 $mg_{COD}.g_{TS}^{-1}$) corresponds to the concentration of produced metabolites (51 ± 2 267 mg_{COD} . g_{TS}^{-1} and 75 ± 17 mg_{COD} . g_{TS}^{-1} at day 11 and 18 prior to CO₂ addition, 268 269 respectively=. The small difference at day 11 between the hydrogen recoveries into metabolites (18 mg_{COD} . g_{TS}^{-1}) could correspond to the methane produced during this time 270

271 $(17.5 \pm 4 \text{ mg}_{\text{COD}}.\text{g}_{\text{TS}}^{-1})$. Such high concentration of metabolites might have been the 272 cause of the strong inhibition of methanogenic activity at high P_{H2} , prior to CO₂ 273 addition. Since VFAs did not accumulate during this period, it can also be concluded 274 that hydrolysis and/or acidogenesis may also have been inhibited under these 275 conditions, prior to CO₂ addition, as previously reported by Cazier et al. (2015).

276 Furthermore, the increase in the total amount of metabolites at high initial P_{H2} was 277 mostly due to an increase of acetate, and, at a lower extent, butyrate and isobutyrate. The acetate concentration increased from $2 \pm 0 \text{ mg}_{\text{COD}} \cdot \text{g}_{\text{TS}}^{-1}$ to $35 \pm 4 \text{ mg}_{\text{COD}} \cdot \text{g}_{\text{TS}}^{-1}$ at 278 day 11 and 43 \pm 11 mg_{COD}·g_{TS}⁻¹ at day 18, prior to CO₂ addition. Meanwhile, the 279 butyrate and isobutyrate concentration increased from $1.7 \pm 0 \text{ mg}_{\text{COD}} \cdot \text{g}_{\text{TS}}^{-1}$ at start to $9 \pm$ 280 $0.2 \text{ mg}_{\text{COD}} \cdot \text{g}_{\text{TS}}^{-1}$ and $18 \pm 4 \text{ mg}_{\text{COD}} \cdot \text{g}_{\text{TS}}^{-1}$ at day 11 and 18, respectively. Such increase of 281 282 acetate and butyrate concentrations under an atmosphere rich in H₂ was previously 283 observed during the anaerobic conversion of carbohydrates-rich wastes (Arslan et al., 284 2012). These authors reported an increase of 31% and 51% of acetate and butyrate 285 production, respectively, under a P_{H2} of 2 bars in comparison to only N₂.

When CO_2 was added after 11 days of inhibition, no metabolite degradation was observed during the first 7 days after CO_2 addition (phase 1), confirming the assumption of a dominant hydrogenotrophic pathway producing methane (Figure 2). The decrease of the total COD concentration between the day of addition of CO_2 (day 11) and 7 days after, was probably due to the fact that the analysis of metabolites and acetate was only done in one sacrificed replicate and not all replicates. Therefore, ANOVA was used to statistically compare the results for each. 293 7 days after CO₂ addition, a decrease of the total metabolites concentration was 294 observed, and was mostly due to acetate consumption. This observation is consistent 295 with the recovery of the methanogenic activity. The acetate content decreased from $33 \pm$ 2.4 mg_{COD}.g_{TS}⁻¹ to 8 \pm 6 mg_{COD}·g_{TS}⁻¹ between day 7 and 14, respectively. Such 296 297 difference between the acetate concentration at day 0 and 14 after CO_2 addition was 298 statistically significant (ANOVA, p-value <0.05). The decrease of acetate concentration 299 was likely due to the conversion of acetate into CH₄ by acetoclastic methanogens 300 (Pavlostathis and Giraldo-Gomez, 1991) or to the oxidation of acetate by acetate-301 oxidizing bacteria into H_2 and CO_2 that are then converted to CH_4 by hydrogenotrophic 302 methanogens (Karakashev et al., 2006). A similar trend was observed when CO_2 was 303 added after 18 days with an acetate content that decreased from $30 \pm 10 \text{ mg}_{\text{COD}} \cdot \text{g}_{\text{TS}}^{-1}$ at 304 day 7 to $18 \pm 3 \text{ mg}_{\text{COD}} \cdot \text{g}_{\text{TS}}^{-1}$ at day 14 (Figure 2). Interestingly, acetate degradation from 305 day 7 to 14 (phase 2) was slower when CO₂ was added after 18 days of inhibition. This 306 result was likely due to the time of exposure of acetate-degrading methanogens at high 307 H_2 partial pressure. In other studies, a specific inhibitory effect was observed on the 308 growth of *Methanosarcina* sp. when H_2 partial pressure was increased from 2.5 to 20 309 mbars and a specific effect on acetate degradation was observed (Ahring et al., 1991). 310 Such observation is also supporting the fact that hydrogenotrophic methanogens were 311 most probably the most efficient CH_4 producers in phase 1 since no significant 312 difference between the two times of exposure.

313 3.3 Impact of the P_{H2} on the overall substrate degradation

To estimate the impact of the P_{H2} on the global microbial activity, the overall substrate degradation was calculated in mg_{COD}·g_{TS}⁻¹ using Equation 1, which takes in consideration the amount of H₂ initially added (Figure 3). 317 In the reactors where CO_2 was added at day 11 or day 18, the substrate degradation was very similar 14 days after CO_2 addition, with 55 \pm 9 $mg_{COD} \cdot g_{TS} ^{-1}$ and 54 \pm 17 318 $mg_{COD} \cdot g_{TS}^{-1}$, respectively. Therefore, the impact of the time exposure on the methane 319 320 production rate in phase 2, was probably not due to a persistent effect on the global 321 microbial activity since the overall substrate degradation was the same after 14 days, but 322 more likely to a transitory accumulation of metabolites due to a slower methanogenic 323 activity, as shown in Figure 2. Nevertheless, when comparing these values to the 324 control, the global substrate degradation was lower in the reactors operated at high initial P_{H2} for a close duration of operation. About 80 ± 5 mg_{COD}·g_{TS}⁻¹ were reached at 325 day 11 in the control that is substantially higher than in inhibited reactors. All these 326 observations suggest that the high initial P_{H2} had very likely a persistent inhibitory 327 328 effect on the hydrolytic activity of the consortium.

329

330 The exact mechanisms behind microbial hydrolysis are still uncertain and probably 331 highly diverse when considering complex substrates. Two main mechanisms have been 332 proposed in the AD model (ADM1): (1) the enzymes are directly secreted into the 333 liquid phase by hydrolytic microorganisms with a direct effect on substrate hydrolysis 334 that releases free sugars on the bulk phase or (2) the microorganisms attach on the substrate surface with the formation of a biofilm and produce enzymatic complexes to 335 336 disrupt the organic material (Batstone et al., 2002). Recently, Cazier et al. (2015) 337 reported an initial a strong inhibitory effect of high P_{H2} on the hydrolytic activity in dry 338 AD. High P_{H2} could have either influenced the production or secretion of extracellular 339 enzymes by retro-inhibition, or reduced the physiological activity of the 340 microorganisms. Similarly to the present study, these experiments were carried out with

341 thin layer of substrate to reduce gas transfer limitation and investigate the local effect of 342 H₂ partial pressure. In dry AD reactors, the effect of gas transfer limitation must also to 343 be considered. Since diffusion coefficients decrease when TS contents increase (Bollon 344 et al., 2013), dissolved gas diffusion and gas-liquid transfer may become a limiting 345 factor (Abbassi-Guendouz et al., 2012), with a local accumulation of H_2 and CO_2 in the 346 medium. With a substrate rich in carbohydrates and at high TS content, hydrolysis and 347 acidogenesis is highly favoured with a rapid production of VFAs, CO_2 and H_2 . That 348 could lead to a local accumulation of H_2 since CO_2 could be dissolved in carbonates at 349 high pH. Therefore, if the local P_{H2} is high enough, hydrolysis may therefore be 350 inhibited, especially if the local P_{H2} is low. The results of the present study suggest that 351 the addition of CO₂ in dry AD digester may improve the methanogenic performances 352 not only by increasing the gas-transfer kinetics, but also by reducing the local P_{H2} 353 through H_2 consumption. Adding CO_2 may also present inhibitory effects on AD 354 performances if the medium is not properly buffered since CO₂ could decrease the pH 355 down to 6 that has a strong inhibitory effect on methanogens (Ward et al., 2008). 356 However, this is unlikely to occur since tests operated under similar conditions with 357 only CO_2 added in headspace (no H_2) were carried out and no impact on dry AD 358 performances was observed (data not shown).

359 3.4 Impact of the P_{H2} on microbial community dynamics

360 The compositions in *Archaea* and *Bacteria* of the microbial communities were 361 determined in the control reactor, and in the reactors containing a high P_{H2} before CO₂ 362 addition, and 7 days (end of 'plateau' phase) and 14 days (end of phase 2) after CO₂ 363 addition (Table 2). 364 First, the composition in Archaea in the inoculum (day 0) was mainly dominated by 365 hydrogenotrophic methanogens (Methanobacteriales: 91.6%) followed by mostly acetoclastic methanogens (Methanosarcinales: 5.8%), as already described by Amani et 366 367 al. (2010). Interestingly, in the control, the relative proportion of acetoclastic methanogens increased over the experimental time to reach 17 % after 18 days. Such 368 369 variation in the type of methanogens was already reported in dry AD (31% TS) during 370 the start-up period followed by a stabilization period, for a semi-continuous 371 thermophilic reactor treating the organic fraction of municipal solid waste (Montero et 372 al. 2008). A higher proportion in *Methanosarcinales* sp. might indicate that an efficient 373 microbial process occurred in the controls, as previously suggested in dry AD by 374 Abbassi-Guendouz (2013).

In the reactor where CO_2 was added at day 11, the overall composition of the archaeal 375 376 community did not significantly change. Indeed, the microbial community was 377 composed of 90-91% Methanobacteriales and only 6-8% Methanosarcinales all along 378 the experiment. Since hydrogenotrophic methanogens (Methanobacteria sp. and several 379 Methanosarcina sp.) were present in much higher concentration that acetoclastic 380 methanogens (Methanosarcina sp. only), hydrogenotrophic CH₄ production from H₂ 381 and CO_2 was likely more efficient than from acetate. Such microbial community 382 structure is in accordance with an absence of acetate accumulation during the first 7 383 days after CO_2 addition. After a time between 7 and 14 days necessary to reactivate 384 acetotrophic pathways by *Methanosarcinales*, a subsequent decrease of acetate 385 concentration was observed.

386 In comparison, the composition of the archaeal community was significantly different 387 when CO_2 was added at day 18 (Table 2). In that case, the percentage of 388 Methanosarcinales amongst Archaea was not only initially higher but also increased 389 from 12% to 17% at the end of the experiment. This result suggests that CH_4 production 390 from acetate was most probably higher when CO_2 was added after 18 days than after 11 391 days. As reported elsewhere, acetate metabolism in Methanosarcinales starts to be 392 inhibited with only 2.5 mbars of H_2 (Ahring et al., 1991). Therefore, a higher 393 composition in *Methanosarcinales* supports a higher persistence of the inhibitory effect 394 of the initial high P_{H2} . Nonetheless the final increase in *Methanosarcinales* relative 395 abundance might indicate a recovery of efficient methanogenesis in these conditions.

396 Characterization of the bacterial community showed clear differences between control 397 reactors and inhibited reactors (either 11 or 18 days). Although all other clusters of 398 bacteria remained in similar proportion, the relative abundance of *Clostridiales* 399 increased in inhibited reactors at a similar extent from 30-31% to 40-42% during the 400 first 7 days after CO_2 addition. Meanwhile, the proportion of *Bacteroidales* decreased 401 from 24-32% to 19-21% in inhibited reactors even though their relative abundance 402 reached up to 47% after 18 days in the control. Since many members of *Clostridiales* are involved in hydrolytic and acidogenic activities in AD, a reactivation of the 403 404 hydrolytic activity after H_2 inhibition seemed have to be carried out by members of the 405 Clostridiales order. The imbalance between Bacteroidales and Clostridiales orders 406 might have resulted from a differential sensitivity to inhibitor exposure. Consistently, 407 Abbassi-Guendouz et al. (2013) reported a *Clostridium* sp. enrichment when dry AD of 408 cardboard was inhibited by metabolite accumulation suggesting a higher resistance of 409 these microorganisms to detrimental conditions of growth (low pH, high P_{H2}).

410 **4** Conclusion

411 In this study, inhibition of dry AD at high initial H_2 partial pressure was found to be 412 reversible by adding CO_2 whatever the time of exposition to H_2 . The reversibility 413 occurred in two steps, with a very probable first consumption of H₂ and CO₂ by 414 hydrogenotrophic methanogens followed by acetoclastic methanogen. Methanogenic 415 performances depended then on the time of exposure to high P_{H2} with a persistent 416 impact on AD kinetics. These results suggest that injecting CO₂ may represent a 417 solution to improve solid-state AD at high TS content by avoiding local inhibition of 418 H_2 .

419

420 Acknowledgements

We thank Gaëlle Gevaudan for the technical assistance with the microbial analysis ofthe experiments.

This work was supported by the French Environment and Energy Management Agency
(ADEME) and the French Institute for Agricultural and Food Research (INRA), by
funding EA Cazier's PhD.

426 **5 References**

- 427 Abbassi-Guendouz, A., Brockmann, D., Trably, E., Dumas, C., Delgénes, J.-P., Steyer,
- 428 J.-P., Escudié, R., 2012. Total solids content drives high solid anaerobic digestion
- 429 via mass transfer limitation. *Bioresour. Technol.* 111, 55–61.

430	Ahring, B.K., Westermann, P., Mah, R.A., 1991. Hydrogen inhibition of ace	tate
431	metabolism and kinetics of hydrogen consumption by Methanosard	cina
432	thermophila TM-1. Arch. Microbiol. 157, 38–42.	

- Amani, T., Nosrati, M., Sreekrishnan, T., 2010. Anaerobic digestion from the viewpoint
 of microbiological, chemical, and operational aspects a review. *Environ. Rev.*18, 255–278.
- 436 Arslan, D., Steinbusch, K.J.J., Diels, L., De Wever, H., Buisman, C.J.N., Hamelers,
- H.V.M., 2012. Effect of hydrogen and carbon dioxide on carboxylic acids patterns
 in mixed culture fermentation. *Bioresour. Technol.* 118, 227–34.
- 439 Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V, Pavlostathis, S.G., Rozzi, A.,
- 440 Sanders, W.T.M., Siegrist, H., Vavilin, V. a, 2002. The IWA Anaerobic Digestion

441 Model No 1 (ADM1). Water Sci. Technol. 45, 65–73.

- Bollon, J., Benbelkacem, H., Gourdon, R., Buffière, P., 2013. Measurement of diffusion
 coefficients in dry anaerobic digestion media. *Chem. Eng. Sci.* 89, 115–119.
- Braun, F., Hamelin, J., Gévaudan, G., Patureau, D., 2011. Development and application
 of an enzymatic and cell flotation treatment for the recovery of viable microbial
 cells from environmental matrices such as anaerobic sludge. *Appl. Environ. Microbiol.* 77, 8487–93.
- 448 Bru, K., Blazy, V., Joulian, C., Trably, E., Latrille, E., Quéméneur, M., Dictor, M.-C.,
- 449 2012. Innovative CO2 pretreatment for enhancing biohydrogen production from

- the organic fraction of municipal solid waste (OFMSW). *Int. J. Hydrogen Energy*37, 14062–14071.
- 452 Cazier, E.A., Trably, E., Steyer, J.P., Escudié, R., 2015. Biomass hydrolysis inhibition
 453 at high hydrogen partial pressure in solid-state anaerobic digestion. *Bioresour*.
 454 *Technol.* 190, 106–113.
- 455 Demirel, B., Scherer, P., 2008. The roles of acetotrophic and hydrogenotrophic
 456 methanogens during anaerobic conversion of biomass to methane: A review. *Rev.*457 *Environ. Sci. Biotechnol.* 7, 173–190.
- Guo, X.M., Trably, E., Latrille, E., Carrère, H., Steyer, J.-P., 2010. Hydrogen
 production from agricultural waste by dark fermentation: A review. *Int. J. Hydrogen Energy* 35, 10660–10673.
- 461 Hansson, G., Molin, N., 1981. End product inhibition in methane fermentations: effects
 462 of carbon dioxide on fermentative and acetogenic bacteria. *Eur. J. Appl. Microbiol.*463 *Biotechnol* 13, 242–247.
- Karakashev, D., Batstone, D.J., Trably, E., Angelidaki, I., 2006. Acetate oxidation is the
 dominant methanogenic pathway from acetate in the absence of *Methanosaetaceae*. Appl. Environ. Microbiol. 72, 5138–41.
- Kim, D., Han, S., Kim, S., Shin, H., 2006. Effect of gas sparging on continuous
 fermentative hydrogen production. *Int. J. Hydrogen Energy* 31, 2158–2169.
- Liew, L.N., Shi, J., Li, Y., 2012. Methane production from solid-state anaerobic
 digestion of lignocellulosic biomass. *Biomass and Bioenergy* 46, 125-132.

471	Luo, G., Angelidaki, I., 2013. Co-digestion of manure and whey for in situ biogas
472	upgrading by the addition of H2: process performance and microbial insights.
473	Appl. Microbiol. Biotechnol. 97, 1373–81.

- 474 Motte, J.-C., Escudié, R., Bernet, N., Delgénes, J.-P., Steyer, J.-P.P., Dumas, C.,
- 475 Delgenes, J.-P.P., Steyer, J.-P.P., Dumas, C., 2013. Dynamic effect of total solid
- 476 content, low substrate/inoculum ratio and particle size on solid-state anaerobic
 477 digestion. *Bioresour. Technol.* 144, 141–148.
- 478 Pan, X., Angelidaki, I., Alvarado-Morales, M., Liu, H., Liu, Y., Huang, X., Zhu, G.,
- 479 2016. Methane production from formate, acetate and H2/CO2; focusing on kinetics
 480 and microbial characterization. *Bioresour. Technol.* 218, 796–806.
- Park, W., Hyun, S.H., Oh, S.-E., Logan, B.E., Kim, I.S., 2005. Removal of Headspace
 CO 2 Increases Biological Hydrogen Production. *Environ. Sci. Technol.* 39, 4416–
 483 4420.
- 484 Pavlostathis, S.G., Giraldo-Gomez, G., 1991. Kinetics of anaerobic treatment. *Water*485 *Sci. Technol.* 24, 35–59.
- 486 Schink, B., 1997. Energetics of syntrophic cooperation in methanogenic degradation.
 487 *Microbiol. Mol. Biol. Rev.* 61, 262–280.
- 488 Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B.,
- 489 Lesniewski, R. a., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B.,
- 490 Thallinger, G.G., Van Horn, D.J., Weber, C.F., 2009. Introducing mothur: Open-

491	source, platform-independent, community-supported software for describing and
492	comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.

- Siegert, I., Banks, C.J., 2005. The effect of volatile fatty acid additions on the anaerobic
 digestion of cellulose and glucose in batch reactors. *Process Biochem.* 40, 3412–
 3418.
- Veeken, A., Kalyunzhnyi, S., Scharff, H., Hamelers, B., Kalyuzhnyi, S., 2000. Effect of
 pH and VFA on hydrolysis of organic solid waste. *J. Environ. Eng.* 6, 1076–1081.
- Ward, A.J., Hobbs, P.J., Holliman, P.J., Jones, D.L., 2008. Optimisation of the
 anaerobic digestion of agricultural resources. *Bioresour. Technol.* 99, 7928–40.

501 6 Tables captions

502 **Table 1:** Methanogenic activity performances (cumulated CH_4 production, CH_4 503 production rate) for the different phases, in the control (with no H_2 initially added) and 504 for reactors with initial H_2 in headspace at a partial pressure of 996 ± 27 mbars and 505 where CO_2 was added at day 11 and 18.

506 **Table 2 :** Phylum and class of *Archaea* and *Bacteria* presents in the control (without 507 gas added) and when the CO_2 was added at 11 and 18 days in % (results of the

sequencing) at 0, 11, 18, 25 and 32 days after the beginning of the experiment.

509

510 **7** Figures captions511

Figure 1: Cumulative methane production (in $mL_{CH4}.g_{TS}^{-1}$), for reactors with H_2 512 513 initially present in headspace and where CO₂ was added after 11 and 18 days of 514 operation; according to (A) the time of reactor operation or (B) the normalized time 515 after CO₂ addition . Tests were operated at pH 8, 25% TS and at 35°C. The grey and 516 black arrows show the time when CO₂ was added at 11 and 18 days, respectively. **Figure 2:** Metabolites production (in $mg_{COD}.g_{TS}^{-1}$) according to the time of operation in 517 the control (only N₂ initially in headspace), and according to the time after CO₂ addition 518 after 11 and 18 days of operation of the reactors running at high P_{H2} . All tests were 519 carried out at pH 8, 25% TS and 35°C. 520 **Figure 3:** Substrate degradation in $mg_{COD}.g_{TS}^{-1}$, according to the time after adding CO₂ 521

522 (CO_2 added at 11 and 18 days) and since the beginning (control)

Days after CO₂ addition

		Phases	Time (days of operation)	Time since CO ₂ addition (days)	Cumulated CH ₄ produced per phase (Nml.g _{TS} ⁻¹)	Average CH ₄ production rate (Nml.g _{TS} ⁻¹ .day ⁻¹)	
		Lag phase	0 to 5		2 ± 0.6	0.45 ± 0.13	
Control		Exponential phase	5 to 32		72 ± 3	2.7 ± 0.32	
	Before CO ₂ addition	Start phase	start phase 0 to 1		0.8 ± 0.4	0.96± 0.52	
		Inhibition phase	1 to 11		4 ± 0.5	0.45 ± 0.14	
CO ₂ added at 11 days		CH ₄ production phase 1	11 to 14	0-3	12 ± 1	4 ± 0.75	
	After CO ₂ addition	Lag phase	14 to 18	3 – 7	4 ± 2.4	0.82 ± 0.27	
		CH ₄ production phase 2	18 to 25	7 - 14	16 ± 1	2.74 ± 0.45	
	Before CO ₂	Start phase	0 to 1		0.8 ± 3	0.96 ± 0.42	
	addition	Inhibition phase	1 to 18		6 ± 1	0.38 ± 0.1	
CO ₂ added at	After CO ₂ addition	CH ₄ production phase 1	18 to 21	0-3	10 ± 2	3.55 ± 0.87	
10 uays		Lag phase	21 to 25	3-7	3 ± 2.1	0.41± 0.27	
		CH ₄ production phase 2	25 to 32	7-14	11 ± 3	1.77 ± 0.23	

		Control		CO ₂ added at day 11			CO ₂ added at day 18			
Total operation time (days)		0	11	18	11	18	25	18	25	32
Time after CO ₂ addition (days)					0	7	14	0	7	14
Class	Order									
	Archaea									
Methanobacteria	Methanobacteriales	91.6%	81.7%	78.1%	90.8%	89.6%	89.8%	83.4%	83.0%	79.8%
Methanomicrobia		5.8%	15.6%	17.0%	6.2%	6.9%	7.8%	13.4%	13.0%	17.3%
	Methanomicrobiales	0%	1%	1%	0.2%	0.3%	0.2%	0%	1%	1%
	Methanosarcinales	6%	15%	16%	6%	7%	8%	13%	12%	17%
Thermoplasmata		0.5%	0.1%	0.4%	0.5%	0.7%	0.6%	0.3%	0.5%	0.5%
Bacteria										
Clostridia	Clostridiales	26.4%	29.5%	19.7%	31.0%	39.8%	46.8%	30.3%	41.9%	39.9%
Bacteroidia	Bacteroidales	29.2%	41.5%	46.9%	24.4%	20.5%	18.5%	31.9%	25.2%	20.9%
Spirochaetes	Spirochaetales	10.3%	15.0%	17.6%	10.5%	7.7%	15.5%	10.6%	6.1%	20.5%
Synergistia	Synergistales	5.6%	1.7%	2.1%	4.1%	3.9%	2.6%	5.3%	4.5%	3.0%
Anaerolineae	Anaerolineales	5.1%	1.3%	1.4%	7.7%	7.4%	3.3%	5.3%	5.2%	2.2%
Deltaproteobacteria	Syntrophobacterales	3.8%	1.4%	1.3%	2.4%	2.7%	1.2%	2.8%	4.3%	1.8%