M. Allaby, Biomes of the Earth: Temperate Forests, 2006.

S. Baken, C. Moens, B. Van-der-grift, and E. Smolders, Phosphate Binding by 691 Natural Iron-Rich Colloids in Streams, Water Res, vol.98, pp.326-333, 2016.

S. Baken, I. C. Regelink, R. N. Comans, E. Smolders, and G. F. Koopmans, , 2016.

, Rich Colloids as Carriers of Phosphorus in Streams: A Field-Flow Fractionation Study, Water 695 Res, vol.99, pp.83-90

M. F. Benedetti, W. H. Van-riemsdijk, L. K. Koopal, D. G. Kinniburgh, D. C. Gooddy et al., Metal Ion Binding by Natural Organic Matter: From the Model to the 698 Field, Geochim Cosmochim Acta, vol.60, issue.14, pp.2503-2513, 1996.

D. Binkley, G. G. Ice, J. Kaye, and C. A. Williams, Nitrogen and Phosphorus 700 Concentrations in Forest Streams of the United States, J Am Water Resour Assoc, vol.40, issue.5, pp.1277-1291, 2004.

K. Bishop, I. Buffam, M. Erlandsson, J. Fölster, H. Laudon et al., Aqua Incognita: The Unknown Headwaters, Hydrol Process, vol.703, pp.1239-1242, 2008.

H. Blume, G. W. Brümmer, R. Horn, E. Kandeler, I. Kögel-knabner et al.,

B. Stahr and . Wilke, Scheffer Schachtschabel: Lehrbuch Der Bodenkunde, p.707, 2009.

. Springer-verlag,

R. Bol, D. Julich, D. Brödlin, J. Siemens, K. Kaiser et al., , p.709

D. Mewes and F. Blanckenburg, Dissolved and Colloidal Phosphorus Fluxes in 710 Forest Ecosystems-an Almost Blind Spot in Ecosystem Research, J Plant Nutr Soil Sci, vol.711, issue.4, pp.425-438, 2016.

J. Buffle and G. G. Leppard, Characterization of Aquatic Colloids and 713, 1995.

. Macromolecules, Key Role of Physical Structures on Analytical Results, Environ Sci, vol.714

. Technol, , vol.29, pp.2176-2184

L. Celi, E. Barberis, B. Turner, E. Frossard, and D. Baldwin, Abiotic Stabilization of 716 Organic Phosphorus in the Environment, Organic phosphorus in the environment, pp.113-132, 2005.

R. Dahlqvist, M. F. Benedetti, K. Andersson, D. Turner, T. Larsson et al., Association of Calcium with Colloidal Particles and Speciation of Calcium in the 719 Kalix and Amazon Rivers, Geochim Cosmochim Acta, vol.718, issue.20, pp.4059-4075, 2004.

T. Darch, M. S. Blackwell, J. M. Hawkins, P. M. Haygarth, and D. Chadwick, , 2014.

, A Meta-Analysis of Organic and Inorganic Phosphorus in Organic Fertilizers, Soils, and 723 Water: Implications for Water Quality, Critical Rev Environ Sci Technol, vol.44, issue.19

M. Dynesius, C. Nilsson-;-gottselig, N. Amelung, W. Kirchner, J. Bol et al., Increasing Concentrations of Iron in Surface Waters as a Consequence of Reducing 730 Conditions in the Catchment Area, Fragmentation and Flow Regulation of River Systems 726 in the Northern 3rd of the World, vol.266, pp.479-493, 1994.

H. P. Erickson, Size and Shape of Protein Molecules at the Nanometer Level 733 Determined by Sedimentation, Gel Filtration, and Electron Microscopy, Biol Proced Online, vol.734, pp.32-51, 2009.

M. Espinosa, B. L. Turner, and P. M. Haygarth, Preconcentration and Separation of 736 Trace Phosphorus Compounds in Soil Leachate, J Environ Qual, vol.28, issue.5, pp.1497-1504, 1999.

M. Fernández-martínez, Nutrient Availability as the Key Regulator of Global 739 Forest Carbon Balance, Nature Clim Change, vol.4, issue.6, pp.471-476, 2014.

J. Giddings, F. Yang, and M. Myers, Flow-Field-Flow Fractionation: A Versatile New 741 Separation Method, vol.193, pp.1244-1245, 1976.

L. J. Gimbert, K. N. Andrew, P. M. Haygarth, and P. J. Worsfold, Environmental 743 Applications of Flow Field-Flow Fractionation (FlFFF), vol.22, pp.615-633, 2003.

N. Gottselig, R. Bol, V. Nischwitz, H. Vereecken, W. Amelung et al., , p.746, 2014.

, Distribution of Phosphorus-Containing Fine Colloids and Nanoparticles in Stream Water of a 747 Forest Catchment, Vadose Zone J, issue.7, p.13

N. Gottselig, V. Nischwitz, T. Meyn, W. Amelung, R. Bol et al.,

E. Siemens and . Klumpp, Phosphorus Binding to Nanoparticles and Colloids in Forest 750 Stream Waters, Vadose Zone J, issue.3, p.16, 2017.

. Hagedorn, EG-Sicherheitsdatenblatt (Gemäß, Nitrocellulose Rep, 2001.

B. T. Hart, G. B. Douglas, R. Beckett, A. Vanput, and R. E. Vangrieken, 753 Characterization of Colloidal and Particulate Matter Transported by the Magela Creek 754 System, Hydrol Process, vol.7, pp.105-118, 1993.

A. Hartland, J. R. Lead, V. Slaveykova, D. O'carroll, and E. Valsami-jones, The 756 Environmental Significance of Natural Nanoparticles, Nature Education Knowledge, issue.8, p.4, 2013.

M. Hasselloev, F. Von, and . Kammer, Iron Oxides as Geochemical Nanovectors for 758 Metal Transport in Soil-River Systems, Elements, vol.4, issue.6, pp.401-406, 2008.

M. Hasselloev, C. B.-lyven, W. Haraldsson, and . Sirinawin, Determination of 761 Continuous Size and Trace Element Distribution of Colloidal Material in Natural Water by 762 On-Line Coupling of Flow Field-Flow Fractionation with ICPMS, Anal Chem, vol.71, issue.16, p.3502, 1999.

M. Hens, R. Merckx-;-gottselig, N. Amelung, W. Kirchner, J. Bol et al., Functional Characterization of Colloidal Phosphorus 765 Species in the Soil Solution of Sandy Soils, Environ Sci Technol, vol.35, issue.3, pp.493-500, 2001.

D. M. Hill and A. C. Aplin, Role of Colloids and Fine Particles in the Transport of 768 Metals in Rivers Draining Carbonate and Silicate Terrains, Limnol Oceanogr, vol.46, issue.2, pp.331-344, 2001.

H. P. Jarvie, Role of Riverine Colloids in Macronutrient and Metal Partitioning 771 and Transport, Along an Upland-Lowland Land-Use Continuum, p.772, 2012.

, Conditions, Sci Tot Environ, vol.434, pp.171-185

I. Kögel-knabner and W. Amelung, Dynamics, Chemistry, and Preservation of 774 Organic Matter in Soils, Treatise on Geochemistry, 2014.

K. K. Holland and . Turekian, , pp.157-215

B. Lyven, M. Hassellov, D. R. Turner, C. Haraldsson, and K. Andersson, Competition 777 between Iron-and Carbon-Based Colloidal Carriers for Trace Metals in a Freshwater 778 Assessed Using Flow Field-Flow Fractionation Coupled to ICPMS, Geochim Cosmochim, p.779, 2003.

. Acta, , vol.67, pp.3791-3802

B. Marschner and K. Kalbitz, Controls of Bioavailability and Biodegradability of 781 Dissolved Organic Matter in Soils, Geoderma, vol.113, issue.3-4, pp.362-364, 2003.

J. M. Martin, M. H. Dai, and G. Cauwet, , 1995.

, Biogeochemical Cycling of Organic-Carbon and Trace-Metals in the Venice Lagoon (Italy), p.785

, Limnol Oceanogr, vol.40, issue.1, pp.119-131

T. Mattsson, P. Kortelainen, A. Laubel, D. Evans, M. Pujo-pay et al., Export of Dissolved Organic Matter in Relation to Land Use Along a European 788 Climatic Gradient, Sci Tot Environ, vol.787, issue.6, pp.1967-1976, 2009.

D. Montalvo, F. Degryse, and M. J. Mclaughlin, Natural Colloidal P and Its 790 Contribution to Plant P Uptake, Environ Sci Technol, vol.49, issue.6, pp.3427-3434, 2015.

E. Neubauer, F. Kammer, and T. Hofmann, Influence of Carrier Solution Ionic 793 Strength and Injected Sample Load on Retention and Recovery of Natural Nanoparticles 794 Using Flow Field-Flow Fractionation, J Chroma A, vol.1218, issue.38, pp.6763-6773, 2011.

E. Neubauer, S. J. Köhler, F. Der-kammer, H. Laudon, and T. Hofmann, Effect of 797 Ph and Stream Order on Iron and Arsenic Speciation in Boreal Catchments, Environ Sci, p.798, 2013.

. Technol, , vol.47, pp.7120-7128

V. Nischwitz and H. Goenaga-infante, Improved Sample Preparation and Quality 800 Control for the Characterisation of Titanium Dioxide Nanoparticles in Sunscreens Using Flow 801 Field Flow Fractionation On-Line with Inductively Coupled Plasma Mass Spectrometry, vol.27, pp.1084-1092, 2012.

D. A. Perry, R. Oren, and S. C. Hart, Chemical Properties of Soils, pp.269-281, 2008.

N. P. Qafoku, N. Sparks-;-gottselig, W. Amelung, J. Kirchner, R. Bol et al., Fractionation and 808 Composition of Colloidal and Suspended Particulate Materials in Rivers, Terrestrial Nanoparticles and Their Controls on Soil-/Geo-Processes 806 and Reactions, vol.107, pp.33-43, 2000.

J. F. Ranville and D. L. Macalady, Natural Organic Matter in Catchments, 811 Geochemical Processes, Weathering and Groundwater Recharge in Catchments, 1997.

M. Saether and P. Caritat, , pp.263-303

I. C. Regelink, L. Weng, and W. H. Van-riemsdijk, The Contribution of Organic and 814 Mineral Colloidal Nanoparticles to Element Transport in a Podzol Soil, Appl Geochem, vol.26, pp.815-241, 2011.

I. C. Regelink, G. F. Koopmans, C. Van-der-salm, L. Weng, and W. H. Van-riemsdijk, 817 Characterization of Colloidal Phosphorus Species in Drainage Waters from a Clay Soil Using 818, 2013.

, Asymmetric Flow Field-Flow Fractionation, J Environ Qual, vol.42, issue.2, pp.464-473

I. C. Regelink, A. Voegelin, L. P. Weng, G. F. Koopmans, and R. N. Comans, 821 Characterization of Colloidal Fe from Soils Using Field-Flow Fractionation and Fe K-Edge 822 X-Ray Absorption Spectroscopy, Environ Sci Technol, vol.48, issue.8, pp.4307-4316, 2014.

C. J. Richardson, Mechanisms Controlling Phosphorus Retention Capacity in Fresh-825 Water Wetlands, Science, vol.228, issue.4706, pp.1424-1427, 1985.

C. Roth, Sicherheitsdatenblatt Gemäß Verordnung (EG) Nr, Cellulose Für 827 Die Säulenchromatographie Rep, 1907.

D. Schmitt, H. E. Taylor, G. R. Aiken, D. A. Roth, and F. H. Frimmel, Influence of 829 Natural Organic Matter on the Adsorption of Metal Ions onto Clay Minerals, Environ Sci, vol.830, 2002.

. Technol, , vol.36, pp.2932-2938

A. Sharpley, M. J. Hedley, E. Sibbesen, A. Hillbricht-ilkowska, A. House et al.,

. Ryszkowski, Phosphorus Transfers from Terrestrial to Aquatic Eco-Systems, in 833 Phosphorus in the Global Environment-Transfers, Cycles and Management, Scope, vol.54, pp.834-171, 1995.

J. Six, E. T. Elliott, and K. Paustian, Aggregate and Soil Organic Matter Dynamics 836 under Conventional and No-Tillage Systems, Soil Sci Soc Am J, vol.63, issue.5, pp.1350-1358, 1999.

Y. Song, H. Hahn, and E. Hoffmann, Effects of pH and Ca/P Ratio on the 839 Precipitation of Phosphate, Chemical Water and Wastewater Treatment, pp.349-362, 2002.

B. Stolpe, L. Guo, A. M. Shiller, and M. Hassellov, Size and Composition of 842, 2010.

, Colloidal Organic Matter and Trace Elements in the Mississippi River, Pearl River and the 843 Northern Gulf of Mexico, as Characterized by Flow Field-Flow Fractionation, vol.118, pp.119-128

W. Stumm, J. J. Morgan-;-gottselig, N. Amelung, W. Kirchner, J. Bol et al., Aquatic Chemistry: An Introduction Emphasizing 846 Chemical Equilibria in Natural Waters, Geochim Cosmochim Acta, vol.56, issue.10, p.90158, 1981.

K. D. Trostle, J. R. Runyon, M. A. Pohlmann, S. E. Redfield, J. Pelletier et al., Colloids and Organic Matter Complexation Control Trace Metal 852 Concentration-Discharge Relationships in Marshall Gulch Stream Waters, Wa Resour Res, vol.853, issue.10, pp.7931-7944, 2016.

, Soil Survey Manual, USDA, 1993.

P. Vitousek, Nutrient Cycling and Nutrient Use Efficiency, Am Nat, pp.553-572, 1982.

M. L. Wells and E. D. Goldberg, Occurrence of Small Colloids in Sea Water, Nature, vol.857, issue.353, pp.342-344, 1991.

L. S. Wen, P. Santschi, G. Gill, and C. Paternostro, Estuarine Trace Metal 859 Distributions in Galveston Bay: Importance of Colloidal Forms in the Speciation of the 860 Dissolved Phase, Mar Chem, vol.63, issue.3-4, pp.185-212, 1999.

D. Zirkler, F. Lang, and M. Kaupenjohann, Lost in Filtration"-the Separation of Soil 862 Colloids from Larger Particles, Colloids Surfaces A, vol.399, pp.35-40, 2012.

N. Gottselig, W. Amelung, J. Kirchner, R. Bol, W. Eugster et al., Comment citer ce, vol.878

, Figure 2: AF 4 -ICP-MS and AF 4 -OCD raw data fractograms. a) Fractogram of Al, Ca, Fe and org C of one 879 sampling point at Krycklan, Sweden; b) Fractogram of P, Si and Mn of same sampling point as a) at Krycklan, p.880

, Sweden; c) Fractogram of P of three sampling points at sites in South, Middle and North Europe (increasing °N, p.881

). North, :. Pa-=-pallas, . Finland, :. Middle, and . Bo-=-bode, , p.882

, Fractogram of P of three sampling points at sites in South, Middle and North Europe (increasing °N, p.883

:. North, . Am-=-allt-a'mharcaidh, . Scotland, :. Middle, and . Sb-=-strengbach,

, Focus time was partially cut off. Y-axes for Al, p.885

, Fe reflect mass flow in µg/min and for org C detector signal in V. Fraction borders apply to the ICP-MS signal

, 886 for the OCD evaluation these borders were modified because OCD peaks exhibit peak broadening due to the 887 high volume of the OCD reactor

N. Gottselig, W. Amelung, J. Kirchner, R. Bol, W. Eugster et al., Comment citer ce