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Highlights 

 The performances of miniaturized NIR spectrometers have been poorly studied 

 Such a device was compared with a common spectrometer for predicting soil C and N 

 The microspectrometer yielded independent validation results almost as good 

 Its spectra required bias correction for C prediction, but not for N prediction 

 (Moderately) less accurate performances were attributed to narrower spectral range 

 

Abstract 

Miniaturized near infrared spectrometers are now available, at more affordable prices than 

conventional spectrometers, but their performances have been poorly studied to date. This 

paper aimed at comparing the performances of the JDSU MicroNIR 2200 spectrophotometer 

(weight < 0.1 kg) with those of a conventional bench-top instrument for predicting carbon and 

nitrogen contents in laboratory conditions, on a range of representative Malagasy soils. 

Though its noticeably narrower and less resolved spectra (1151-2186 nm at 8.15 nm step vs. 

1100-2498 nm at 2 nm step), the microspectrometer yielded predictions in independent 
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validation that were almost as accurate as those of the conventional instrument (standard 

errors of prediction were 4.6 vs. 3.4 gC kg
-1

, but 3.9 vs. 3.4 gC kg
-1

 after bias correction, and 

0.36 vs. 0.35 gN kg
-1

, respectively). Due to noisy features, the MicroNIR spectra needed 

mathematical pretreatment (e.g. standard normal variate SNV), and bias correction for C, for 

providing accurate predictions, while the raw absorbance spectra from the conventional 

instrument did not. Furthermore, building multivariate models with MicroNIR spectra 

required less latent variables than with their conventional counterparts, and these models were 

less prone to performance degradation when applied to independent validation samples. 

Fitting the spectra of the conventional instrument to those of the MicroNIR (1150-2182 nm at 

2 or 8 nm step) showed that (moderately) less accurate MicroNIR predictions could be firstly 

attributed to narrower spectral range rather than to poorer resolution. 

Considering their performances, such microspectrometers could thus represent a cost-

effective alternative to conventional spectrometers. They have now to be tested in field 

conditions. 

 

Keywords 

Near infrared reflectance spectroscopy (NIRS); soil organic carbon; soil total nitrogen; 

microspectrometer; Madagascar. 

 

1. Introduction 

Facing the increase in the global food demand while limiting the carbon footprint of 

agroecosystems requires optimizing soil management, which in turn requires characterizing 

soil properties more extensively (Krishna, 2014; Oelbermann, 2014). This can hardly be 

achieved using conventional characterization approaches, especially physico-chemical 

analyses, which are often time-consuming and expensive. Near infrared reflectance (NIR) 

spectroscopy (NIRS) has been reported to provide accurate determination of many soil 

properties time- and cost-effectively (Stenberg et al., 2010; Soriano-Disla et al., 2014). 

However, even though characterizing one sample by NIRS is cheap, as it does not require any 

laboratory supply, buying a NIR spectrometer remains rather expensive (> 40 k€ in general). 

Nowadays, a new generation of spectrometers is available, much smaller in size and at more 

affordable prices; but the performances of these spectrometers have been poorly studied to 

date (O'Brien et al., 2013; Sun et al., 2016; Urraca et al., 2016), especially regarding the 

prediction of soil properties. Altinpinar et al. (2013) and Peng et al. (2016) used ultra-portable 

infrared spectrometers for predicting soil attributes in laboratory conditions: the formers 
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studied hydrocarbon contamination in experimental mixtures of silty sand or clayey loam and 

diesel or oil, and achieved very accurate predictions; the latters studied dissolved salts and 

soluble ions in four fields, and got accurate results in general. But the performances of such 

instruments have not been compared with those of usual bench-top spectrometers. 

The possibility of working on-site, in the field, is an important advantage of portable 

spectrometers, which allows characterizing soil attributes, and even addressing their spatial 

variability at fine scales, without having to transport the samples to the laboratory except for 

calibration purposes (Yang et al., 2012). But portability is not the only interest of ultra-

portable spectrometers: the price may be an important reason for choosing these instruments, 

even for working in laboratory conditions; moreover, they may be easily transported for 

scanning samples in laboratory conditions but close to sampling sites, to avoid sample 

transport. 

The aim of the present study was to compare the performances of a NIR microspectrometer 

(weight <0.1 kg) with those of a conventional bench-top NIR spectrometer for predicting 

carbon (C) and nitrogen (N) concentrations on a range of topsoil samples from Madagascar, in 

laboratory conditions. 

 

2. Materials and methods 

2.1. Soil collection and conventional analyses 

The soil population studied is representative of the main agricultural soils in Madagascar. The 

360 samples, all collected at 0-5 cm depth using a cylinder, originated from eight 

experimental sites from four regions with contrasted pedoclimatic conditions (Table 1). The 

sampled plots were (i) under manual tillage or direct seeding mulch-based (DMC) cropping 

systems, with rainfed rice as main crop (maize in Tulear due to aridity) often associated with 

legume cover crop in DMC systems, with annual application of cattle manure and, possibly, 

mineral fertilizers; or (ii) natural fallow. Soil samples were air dried, sieved at 2 mm, and an 

aliquot was finely ground to pass a 0.2 mm sieve. Conventional determinations of soil C and 

N concentrations were carried out on 0.2 mm ground and oven-dried (at 40°C during 24 h) 

aliquots by dry combustion using an Elemental Analyzer CHN Carlo Erba NA 2000 (Milan, 

Italy). Samples were carbonate free, which was tested using diluted chlorhydric acid; thus all 

carbon was considered organic. More information on the soil sample population has been 

provided in Rabenarivo et al. (2013). 
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2.2. Spectrum acquisitions 

Reflectance was measured on samples that had been air dried, 0.2 mm ground, then oven-

dried just before being scanned (24 h at 40°C), using two spectrophotometers. Firstly, it was 

measured with a Foss NIRSystems 5000 (Laurel, MD, USA), a monochromator-type bench 

spectrometer equipped with a scanning grating as dispersive element and a PbS detector, 

which provides spectra between 1100 and 2498 nm at 2 nm step (i.e. 700 variables), with 5-

nm spectral resolution (width at half maximum). It is composed of a sample transport module 

which holds ring cups. The scan was performed on a 42 mm² area of a ca. 5 g subsample 

packed in a ring cup. Each spectrum was the average of 32 co-added scans (this could be 

parametrized by the operator, while integration time could not). The spectrometer is equipped 

with a ceramic plate as internal white reference. 

Secondly, reflectance was measured with a JDSU MicroNIR 2200 spectrophotometer 

(Milpitas, CA, USA), which relies on a linear variable filter as dispersive element. This ultra-

portable spectrometer is equipped with an uncooled, extended wavelength range InGaAs array 

detector and provides spectra between 1151 and 2186 nm at 8.15 nm step (i.e. 128 variables), 

spectral resolution being about 12.5 nm at 1000 nm and 25 nm at 2000 nm. The scan was 

performed on an 8 mm² area of a ca. 5 g sample packed in a Petri dish, the spectrometer being 

covered with a windowed collar for protection and uniform sample presentation. Integration 

time was set to 500 µs per scan (the minimum proposed by the spectrum acquisition software 

is 100 µs; the manufacturer recommends less than 1000 µs); and 1000 co-added scans were 

performed then averaged. Before every spectrum acquisition, external white reference (> 99% 

reflectance, achieved with a disk of clean Spectralon, i.e. compressed polytetrafluoroethylene 

powder) and black reference (< 1% reflectance, achieved by scanning the space in front of the 

operator, with no light source around) were scanned. 

The two spectrometers differ strongly from an optical viewpoint (dispersive elements, 

detectors, resolution, etc.), but this does not necessarily matter much from a practical (i.e. 

end-user's) viewpoint. Other technical differences matter from a practical viewpoint, beside 

noticeably smaller MicroNIR spectral range: sample spectrum acquisition is automatic with 

the Foss but manual with the MicroNIR; and internal white reference scanning is also 

automatic with the Foss, while external white and black references have to be scanned 

manually before every MicroNIR scan, which is somewhat tedious. Furthermore, the two 

spectrometers differ considerably in weight and price: > 20 kg and > 40 k€ for the Foss 

NIRSystems 5000, and < 0.1 kg and < 10k€ for the JDSU MicroNIR 2200. 
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The spectra were recorded in absorbance (log [1/reflectance]). Spectral data analyses were 

conducted using the WinISI IV software (Infrasoft International, LCC, State College, PA, 

USA) and the pls package (Mevik et al., 2013) of the R software (R Development Core Team, 

2012). 

 

2.3. Analysis of spectral data 

Several mathematical pretreatments were evaluated for spectrum pre-processing in order to 

reduce baseline variations, enhance spectral features, reduce the particle-size scattering effect, 

remove linear or curvilinear trends of each spectrum, or remove additive or multiplicative 

signal effects (Bertrand, 2000): standard normal variate transform (SNV), detrending (D), 

both SNV and detrending (SNVD), multiplicative scatter correction (MSC), or no correction 

(denoted None), in conjunction with first-order derivation with 4-, 15- or 20-point gap and 4- 

or 5-point smoothing (denoted 144, 1155 and 1205, respectively) or no derivation (denoted 

001). Second order derivation was not used because previous works demonstrated that it often 

resulted in poor predictions of soil properties (Brunet et al., 2007). 

The sample set was then divided into a calibration set, which included the 312 samples from 

all sites except that of Andranomanelatra, and an external validation set, which included 

41 samples from Andranomanelatra. This site was the only one where most samples were well 

represented by the population of the seven other sites together. This was evaluated by carrying 

out a principal component analysis on raw absorbance data of all but one site, then calculating 

the Mahalanobis distance H between the centre of this seven-site population and the samples 

of the eighth site (Mark and Tunnell, 1985). Andranomanelatra was the only site where most 

samples had H < 3; it included 48 samples but seven were poorly represented by the seven 

other sites together (H > 3) and were removed. This design was the only one that allowed 

relevant independent validation; because independent validation on samples that are poorly 

represented by the calibration set is not particularly relevant.  

Calibration models for predicting C and N concentrations (reference values) from absorbance 

spectra were built using modified partial least square (PLS) regression: PLS reduces the 

spectral data to a few orthogonal combinations of all absorbances, called latent variables (LV) 

or terms, that account for most spectral information and covary with the reference values. 

Cross-validation is recommended for estimating the optimal number of LV in order to avoid 

overfitting. The modification included in the modified PLS algorithm consists in normalizing 

the residuals (Shenk and Westerhaus, 1991a, 1991b). Cross-validation was performed by 

dividing the calibration set into four groups in a cyclical way (i.e. "Venetian blinds"), after 
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having ranked the samples according to increasing C or N concentration (i.e. the first, fifth, 

ninth samples, etc., were in the first group; the second, sixth, tenth samples, etc., in the second 

group, and so on). All but one group were used for developing the model and one for testing 

it, the procedure being performed four times to use all samples for both model development 

and testing. The residuals of all predictions were pooled to calculate the standard error of 

cross-validation (SECV). The number of terms (LV) after which final SECV no longer 

decreased meaningfully determined the optimal number of terms of the model. A prediction 

model that used all calibration samples was built with this number of LV, and its performance 

was evaluated according to standard error of calibration (SEC). The model performance was 

then evaluated on the external, independent validation set (which had not been used for model 

development), according to four figures of merit: (i) the standard error of prediction (SEP); 

(ii) the standard error of prediction corrected for bias (SEPc; bias is the mean residual); 

(iii) the coefficient of determination between predicted and measured values (R²val); and 

(iv) the RPDval (ratio of standard deviation of measured values in the validation set to SEPc). 

According to Chang et al. (2001), prediction of soil properties with RPDval ≥ 2 has been 

considered accurate. The mathematical pretreatment that minimized SEPc (thus maximized 

RPDval) was considered the most appropriate. 

An attempt was made to perform cross-validation after dividing the calibration set into groups 

corresponding to sites. This resulted in very poor results, probably because the soils used for 

calibration differed between sites, as was observed when trying to find a validation site (cf. 

above); thus a model built on some sites was often not appropriate for the other sites (data not 

shown). 

 

3. Results and discussion 

3.1. Conventional and spectral data 

The distributions of C and N concentrations in the total set and in the calibration and 

validation sets are presented in Table 2. C and N were closely correlated (e.g. R = 0.98 for the 

total set, n = 360, p < 0.001), which is consistent because both are dominantly found in soil 

organic matter. The validation set included samples that were relatively rich in C and N, and 

some of them were even richer than any calibration sample; nevertheless, as stated previously, 

they were well represented by the calibration set (H < 3, cf. section 2.3). It should be 

reminded that the main objective of the study was to compare spectrometer performances, not 

to build robust calibrations, which would have required that the calibration set fully represents 

any prediction set. This was not fully met here, as predictions were sometimes carried out in 
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extrapolation conditions, and as a consequence, issues were expected, especially regarding the 

slope of the regression line (Estienne et al., 2001); but these issues were presumably similar 

for both spectrometers. 

Figure 1 presents the raw absorbance spectra (log 1/R) of three example samples from the 

validation set, acquired with both spectrometers. These raw spectra were noticeably noisier 

when acquired with the MicroNIR spectrometer. 

 

3.2. NIRS predictions 

3.2.1. Number of PLS terms 

Figure 2 presents the relationship between the number of PLS terms (latent variables, LV) and 

SECV for C prediction, with no pretreatment (None001). Using MicroNIR spectra, SECV 

decreased rapidly until the number of terms reached 7, it was slightly lower for 8 terms, then 

increased; thus identifying the optimal number of PLS terms was easy, because there was a 

clear minimum, after which SECV did not decrease anymore. Using Foss spectra, SECV 

decreased rapidly when using up to 6 terms, then it decreased moderately until 15 terms, 

beyond which it remained almost constant. In such conditions, identifying the number of PLS 

terms after which SECV did not decrease meaningfully, thus optimizing the number of PLS 

terms, was less easy.  

Actually the WinISI software does not allow the operator to choose the number of PLS terms 

but just to set its maximum; then it selects as optimum the number of terms beyond which 

SECV does not decrease meaningfully. In a first step, this maximum number of terms was set 

to 16, considering empirically that more terms would result in overfitting. In such conditions, 

with no pretreatment (None001), the optimal number of PLS terms proposed by WinISI for 

both C and N was 7 with the MicroNIR spectra but 15 with the Foss spectra (Figure 2 and 

Tables 3 and 4). 

 

3.2.2. Comparison between predictions using MicroNIR and full Foss spectra 

With no pretreatment (None001), the MicroNIR spectra yielded noticeably worse cross- and 

independent external validation results than the Foss spectra (e.g. almost twice larger SEPc 

for both C and N). Prediction accuracy was not improved by the pretreatment of Foss spectra 

(data not shown), but was noticeably improved by the pretreatment of MicroNIR spectra 

(Table 3 for C and Table 4 for N): using the most appropriate pretreatments, the MicroNIR 

spectra still yielded noticeably worse cross-validation results than the Foss spectra (50-60% 

larger SECV); but the results of independent validations, after bias correction, were just 
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slightly worse with MicroNIR than with Foss spectra (15% and 3% larger SEPc for C and N, 

respectively). Validation results indeed show there were bias issues using MicroNIR spectra 

for C prediction (bias > 0.5 SEP), but not for N prediction, possibly due to C models being 

based on signal fingerprints closer to the noise level, which caused sensitivity to spectral 

perturbations (cf. section 3.3.3. on regression coefficients). Even though bias is not negligible 

matter, bias correction is common procedure when applying NIR models to spectra that differ 

from calibration spectra to some extent: this is for instance the case in many agricultural 

applications, where a few representative samples of every new harvest are analyzed 

conventionally beside spectral analysis, for possible bias (and slope) correction (Shenk et al., 

2001). And here, indeed, validation samples were more clayey and often richer in C and N 

than calibration samples (cf. Tables 1 and 2). For both MicroNIR and Foss spectrometers, 

validation results also show some slope issues (regression slope differing noticeably from 1), 

which was expected due to higher maximum C and N values in the validation than in the 

calibration set (extrapolation conditions; Estienne et al., 2001). Figure 3 presents comparisons 

between conventional measurements and predictions of C and N contents made using 

optimally pretreated Foss or MicroNIR spectra, in independent external validation. It is worth 

noting that N predictions were similar using Foss and MicroNIR spectra. 

Interestingly, using the most appropriate pretreatment (i.e. no pretreatment for Foss spectra), 

SEPc was 35-40% larger than SECV using MicroNIR spectra, but 80-110% using Foss 

spectra. Thus there was less reduction in prediction accuracy from cross-validation to 

independent validation using MicroNIR than Foss spectra. 

In order to try to achieve more robust models with Foss spectra, the maximum possible 

number of PLS terms (LV) was reduced: for C and N predictions, it was set respectively to 9 

and 5, which were the optimum numbers of LV with pretreated MicroNIR spectra. When 

compared with 15-LV Foss models, this reduction in the number LV yielded noticeably 

degraded C and N predictions with no pretreatment (80-100% larger SEPc), and still degraded 

predictions with the most appropriate pretreatments (30-40% larger SEPc). Moreover, this 

constraint on the number of LV did not result in more robust Foss models (SEPc was 90-

170% larger than SECV with reduced LV vs. 80-110% larger with 15 LV). In addition, such 

constrained Foss models yielded less accurate predictions than MicroNIR models having the 

same number of terms (7-10% larger SEPc without pretreatment, 10-40% larger SEPc with 

pretreated spectra). The maximum number of LV used for calibrating Foss spectra was also 

set to 13 and 11, with no improvement in robustness in general when compared with 15 LV 

(data not shown). 
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Thus less PLS terms were needed with MicroNIR than with Foss spectra for achieving 

accurate predictions. Needing more LV for processing the wider and denser Foss spectra is 

relevant a priori but nevertheless seemed to result in some overfitting, which was not easily 

manageable. 

 

3.2.3. Comparison between predictions using MicroNIR spectra and reduced Foss spectra 

To evaluate the possible influence of spectral range and resolution on model performance, 

Foss spectra were limited to 1150-2182 nm and their digitalization step to 8 nm (i.e. 

absorbance at 130 wavelength instead of 700), just like MicroNIR spectra ("MicroNIR-fitted 

Foss" in Tables 3 and 4). Maximum LV was set to 16 and also to 9 for C and 5 for N (tests 

were also carried out with 11 and 13 LV; data not shown). With either no pretreatment 

(None001) or the most appropriate ones, MicroNIR-fitted Foss spectra still yielded better 

cross-validations for C and N than MicroNIR spectra in general (SECV = 1.8-2.7 vs. 2.8-

3.2 gC kg
-1

 and 0.15-0.26 vs. 0.23-0.28 gN kg
-1

, respectively). Independent external 

validations were similarly accurate with non pretreated MicroNIR and MicroNIR-fitted Foss 

spectra (SEPc = 6.3 vs. 5.8-6.7 gC kg
-1

 and 0.58 vs. 0.50-0.57 gN kg
-1

, respectively); but they 

were more accurate with MicroNIR than with MicroNIR-fitted Foss spectra when the spectra 

were pretreated appropriately (SEPc = 3.9 vs. 4.3-4.6 gC kg
-1

 and 0.36 vs. 0.39-0.54 gN kg
-1

, 

respectively).  

To study specifically whether poorer predictions using MicroNIR than full Foss spectra 

resulted firstly from narrower range (1151-2186 vs. 1100-2498 nm) or from wider acquisition 

step (8.15 vs. 2 nm), predictions using MicroNIR-fitted Foss spectra (1150-2182 nm, 8 nm 

step) were compared with predictions using non condensed "MicroNIR-ranged Foss" spectra 

(1150-2182 nm, 2 nm step). In general denser spectra (2 vs. 8 nm) did not improve predictions 

made using MicroNIR-fitted Foss spectra (Tables 3 and 4; e.g. with no pretreatment, 

predictions of C or N made with MicroNIR-fitted and MicroNIR-ranged Foss spectra had 

similar SEPc for a given number of terms). Thus poorer MicroNIR than Foss predictions 

could be firstly attributed to narrower spectral range, and not to wider acquisition step. This 

was confirmed by the results of Yang et al. (2012), who used 400-2499-nm spectra and 

observed that soil C and N prediction models made using 50-nm interval spectra performed as 

well as those made using 2-nm interval spectra. 
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3.3. Regression coefficients 

3.3.1. Carbon 

Figure 4 presents the regression coefficients of C prediction models using MicroNIR spectra 

(1151-2186 nm every 8.15 nm; LV ≤ 16), Foss spectra (1100-2498 nm every 2 nm; LV ≤ 16) 

and MicroNIR-fitted Foss spectra (1150-2182 nm every 8 nm; LV ≤ 9). The models 

considered were those which yielded the best independent validation results without spectrum 

derivation, because regression coefficients are difficult to interpret when derivatized spectra 

are used. Indeed, with first derivatives, peaks correspond to regions where absorbance varies 

the most, which is not necessarily informative; and as mentioned above, previous work 

showed that second order derivation often resulted in poor predictions of soil properties 

(Brunet et al., 2007). For MicroNIR spectra, SNVD001 pretreatment yielded RPDval = 2.2 

with 5 LV instead of 2.3 with SNV1205 and 9 LV, which was the most appropriate 

pretreatment. For full and MicroNIR-fitted Foss spectra, the best independent validations 

were achieved without derivation. When considering the regression coefficients, some regions 

were somewhat noisy, for instance for MicroNIR data the serrated bands at 1450-1600 and 

1650-1800 nm, and for Foss data (full spectra) the region between 1900 and 2500 nm. Strong 

contributions to C prediction could be attributed to the following regions (assigned according 

to Workman and Weyer, 2008, except when otherwise mentioned): 

- for MicroNIR spectra, positively, to several bands around 1470-1540 (amines, amides, 

proteins) and 1690-1720 nm (aliphatic compounds) and at 2130 nm (amides); and 

negatively, to the region around 1800 nm (possibly lignin; Matson et al., 1994); 

- for full Foss spectra, positively to the regions around 1800 nm (possibly lignin; Matson et 

al., 1994), and to a lesser extent around 1590-1600 (amides), 1650-1660 (carbonyl, 

Ciurczak, 2001, and/or iron sesquioxides, Haest et al., 2012), 1480 (amines, amides, 

proteins) and 1210 nm (aliphatic compounds); and negatively, to the regions around 

1290 nm (not easily assignable), and to a lesser extent around 1450 and 1550-1560 nm 

(amines, amides, proteins) and at 1880 (chlorinated compounds possibly) and 2400 nm 

(aromatic compounds); 

- for MicroNIR-fitted Foss spectra, positively to the regions around 1690-1700 (aliphatic 

organic compounds), 1740-1750 (aromatic compounds), and to a lesser extent 1580 (water), 

1450-1460 (amines, amides, proteins), 1200 and 1220 nm (aliphatic compounds); and 

negatively, to the region around 1870 nm (chlorinated compounds possibly), and to a lesser 

extent around 1490 (amines, amides, proteins) and 1720 nm (aliphatic compounds). 
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3.3.2. Nitrogen 

Figure 5 similarly presents the regression coefficients of N prediction models using MicroNIR 

spectra (LV ≤ 16), full Foss spectra (LV ≤ 16) and MicroNIR-fitted Foss spectra (LV ≤ 16; 

with 5 LV, which was the optimum for predicting N using MicroNIR spectra, predictions with 

MicroNIR-fitted Foss spectra were very poor thus examining the regression coefficients  that 

yielded these predictions had little interest). The models considered were also those which 

yielded the best independent validation results without spectrum derivation. For MicroNIR-

fitted Foss spectra, best validation results without derivation were achieved using SNV001, 

with RPDval = 1.82 instead of 1.84 with SNVD144, which was the most appropriate 

pretreatment. For the other spectrum types, the best independent validations were achieved 

without derivation. As already seen for C, the variations of regression coefficients with 

wavelength showed noisy regions (1450-1600 and 1650-1800 nm for MicroNIR, 1900-

2500 nm for full Foss). Strong contributions to N prediction could be attributed to the 

following regions (assigned according to Workman and Weyer, 2008, except when otherwise 

mentioned): 

- for MicroNIR spectra, positively, to the regions around 1485 (amides, amides, proteins) and 

1721 nm (aliphatic compounds), and to a lesser extent around 1469 and 1509 nm (amides, 

amides, proteins) and 1689 and 1738 nm (aromatic compounds), and negatively, to 1803 nm 

(possibly lignin; Matson et al., 1994) and to a lesser extent 1363 nm (aliphatic compounds); 

- for full Foss spectra, positively, to 1656 (carbonyl, Ciurczak, 2001, and/or iron sesquioxides, 

Haest et al., 2012) and 1802 nm (possibly lignin; Matson et al., 1994), and to a lesser extent 

1196 nm (aliphatic compounds); and negatively to 1548 (amines, amides, proteins), 1880 

(chlorinated compounds possibly) and 2402 nm (aromatic compounds); surprisingly, no 

region assigned to N compounds contributed positively to N prediction, probably due to 

limited consideration of soil biochemistry in spectral libraries to date (e.g. the regions 

around 1656 and 1802 nm could relate to soil N compounds without demonstration yet); 

- for MicroNIR-fitted Foss spectra, positively, to 1654 (carbonyl, Ciurczak, 2001, and/or iron 

sesquioxides, Haest et al., 2012), 1790 (water) and 1590 nm (amides), and negatively, to 

1630 (aliphatic compounds) and 1766 nm (methylene i.e. CH2). 

 

3.3.3. Comparisons between C and N predictions and between spectrum types 

At first sight, similar regions of MicroNIR spectra contributed heavily to C and N predictions 

(e.g. groups of positive peaks around 1500 and 1700 nm, and negative peak at 1800 nm); 

however the specific contribution of a given region might differ between C and N predictions. 
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Bias issues when predicting C but not N suggested that spectral perturbations might have 

affected regions important for predicting C but not N. MicroNIR spectra were noisy from 

1151 to 1370 nm, and to a lesser extent, from 1500 to 1850 nm (cf. Figure 1); and it is 

possible that these regions contributed more to C than N prediction (though this could not be 

evidenced easily when examining regression coefficients, cf. Figures 4 and 5). Using full Foss 

spectra, there was less similarity between regions that contributed heavily to C and N 

predictions, especially below 1700 nm; and in particular, the regions around 1290, 1480 and 

1590 nm contributed heavily to C prediction but not to N prediction. Using MicroNIR-fitted 

Foss spectra, no region contributed markedly to both C and N predictions. Nevertheless, using 

a given spectrum type, the chemical compounds that contributed most to C and N predictions 

were often the same (several regions have often been assigned to a given type of compound), 

though their respective weights often varied: 

- aliphatic and N organic compounds (positively), and possibly lignin (negatively), using 

MicroNIR spectra; 

- lignin possibly, carbonyl or sesquioxides (positively), and N, aromatic and possibly 

chlorinated compounds (negatively), using full Foss spectra; 

- amides and water (positively) and aliphatic compounds (negatively) using MicroNIR-fitted 

spectra. 

Moreover, the regions that contributed to a given prediction (C or N) varied according to the 

spectrum type in general. For instance, the region around 1290 nm had a strong negative 

contribution to C prediction using full Foss spectra but marginal contribution using MicroNIR 

spectra. Such discrepancies could be seen for almost every region that contributed heavily to 

prediction using a given spectrum type. Discrepancies could even be dramatic: the 

contributions of the regions around 1650 and 1800 nm to C and N predictions were strongly 

positive using full Foss spectra but strongly negative using MicroNIR spectra. Nevertheless 

the regions around 1480 nm, and to a lesser extent around 1510 and 2130 nm, had a strong 

positive contribution to C prediction using both MicroNIR and full Foss spectra. Some 

regions of both spectrum types also contributed comparably to N prediction (e.g. 2065 nm). 

Though the contributing regions were not necessarily the same, the chemical compounds that 

contributed to a given prediction were often similar using different spectrum types. In 

particular, aliphatic and N organic compounds contributed positively to C and N predictions 

in general. 

Such discrepancies in the contributions of spectral regions were probably an effect of 

multivariate analysis. Indeed, PLS regression combines and weights the contributions of 
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different spectral regions assigned to a given type of compounds involved in the prediction of 

the variable of interest (C or N contents here), in order to optimize the fitting of spectra to this 

variable. 

 

4. Conclusions 

When compared with Foss spectra (1100-2498 nm every 2 nm), MicroNIR spectra (1151-

2186 nm every 8.15 nm) resulted in a little less accurate C and N prediction models, provided 

spectra were mathematically pretreated, and for C, bias correction was performed (with 

optimal pretreatment, SEP = 4.6 vs. 3.4 gC kg
-1

 and SEPc = 3.9 vs. 3.4 gC kg
-1

, for N 

SEP = SEPc = 0.36 vs. 0.35 gN kg
-1

, respectively); but MicroNIR models required less PLS 

terms and were less prone to performance degradation when applied to independent validation 

samples (after bias correction for C). Actually, more PLS terms were necessary to calibrate 

Foss spectra but this seemed to result in some overfitting; and reducing the number of PLS 

terms did not increase prediction accuracy or robustness. Reducing Foss spectra to MicroNIR 

pattern showed that (moderately) less accurate MicroNIR predictions could be firstly 

attributed to narrower spectral range rather than to wider acquisition step. 

In short, the JDSU MicroNIR spectrometer, though it produced spectra 25% narrower and 

four times rougher than the Foss NIRSystems spectrometer, could be considered a cost-

effective alternative for NIRS prediction of soil properties in laboratory conditions. One 

important advantage of such ultra-portable instruments is the possible use on-site, thus further 

work is needed to evaluate the performances of the micro-spectrometer considered in field 

conditions. 
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Table 1. Presentation of the studied sites. 

 

Site Region Latitude, 
longitude 

Climate Soil type Clay 
content 

No of 
samples 

Marololo Baiboho Alaotra lake, 
northeast 

17°32' S, 
48°31' E 

mid-altitude 
tropical 

Fluvisol ≈20% 78 

Marololo Tanety Alaotra lake, 
northeast 

17°32' S, 
48°32' E 

mid-altitude 
tropical 

Ferralsol ≈20% 54 

Andranomanelatra Antsirabe, 
centre 

19°46' S, 
47°06' E 

highland 
tropical 

Ferralsol ≈60% 48 

Antsapanimahazo Antsirabe, 
centre 

19°40' S, 
47°09' E 

highland 
tropical 

Ferralsol ≈35% 18 

Ivory Antsirabe, 
centre 

19°33' S, 
46°24' E 

highland 
tropical 

Ferralsol ≈30% 30 

Andasy Manakara, 
southeast 

22°12' S, 
47°50' E 

sub-
equatorial 

Ferralsol ≈45% 60 

Andranovory Tulear, 
southwest 

23°07' S, 
44°13' E 

subarid Cambisol ≈30% 36 

Sakaraha Tulear, 
southwest 

22°54' S, 
44°37' E 

subarid Arenosol ≈10% 36 

According to the "FAO classification" (IUSS Working Group WRB, 2014). 

 

 

Table 2. Distributions of soil carbon and nitrogen concentrations (in g kg
-1

). 

 

Variable Set Mean Standard 
deviation 

Minimum First 
quartile 

Median Third 
quartile 

Maximum 

Carbon Total 23.9 13.0   5.2 14.2 18.3 36.0 59.0 

Carbon Calibration 21.1 11.2   5.2 13.5 17.4 28.8 47.5 

Carbon Validation 40.4   8.9 24.5 33.3 40.3 46.6 59.0 

Nitrogen Total 2.04 0.86 0.74 1.39 1.72 2.76 4.67 

Nitrogen Calibration 1.86 0.74 0.74 1.33 1.62 2.34 3.63 

Nitrogen Validation 3.10 0.72 1.95 2.43 3.16 3.68 4.67 
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Table 3. Cross-validation and independent external validation statistics for soil carbon 

concentration (for the 312-sample cross-validation set, mean and standard deviation were 21.1 

and 11.2 gC kg
-1

 respectively; for the 41-sample independent validation set they were 40.4 

and 8.9 gC kg
-1

 respectively). 

 

Spectro and Pretreat- 

 

Calibration 
 

Validation 

conditions ment  LVmax LV SEC SECV R²cv RPDcv  
SEP Bias SEPc Slope R²val RPDval 

                MicroNIR (1151-2186 nm, 8.15 nm) 
            

                ≤ 16 LV None001 
 

16 7 3.1 3.2 0.92 3.5 
 

9.2 6.8 6.3 0.53 0.64 1.4 

≤ 16 LV SNV1205 

 
16 9 2.6 2.8 0.94 4.1 

 
4.6 -2.5 3.9 0.87 0.82 2.3 

                Foss (1100-2498 nm, 2 nm) 

            
                ≤16 LV None001 

 
16 15 1.7 1.9 0.97 6.0 

 
3.4 0.0 3.4 0.84 0.88 2.6 

                ≤ 9 LV None001 

 
9 9 2.5 2.5 0.95 4.5 

 
8.9 5.8 6.9 0.37 0.65 1.3 

≤ 9 LV D144 
 

9 9 2.1 2.3 0.96 4.9 
 

4.4 0.0 4.4 0.72 0.82 2.0 

                MicroNIR-ranged Foss (1150-2182 nm, 2 nm) 
        

                ≤ 16 LV None001 

 
16 14 1.9 2.1 0.97 5.4 

 
7.8 4.3 6.6 0.44 0.67 1.4 

≤ 16 LV D001 

 
16 14 1.8 2.0 0.97 5.8 

 
4.0 1.1 3.9 0.68 0.90 2.3 

                ≤ 9 LV None001 

 
9 9 2.5 2.6 0.95 4.3 

 
7.3 4.3 6.0 0.44 0.80 1.5 

≤ 9 LV SNVD001 
 

9 9 2.5 2.5 0.95 4.4 
 

4.6 -1.9 4.2 0.75 0.83 2.1 

                MicroNIR-fitted Foss (1150-2182 nm, 8 nm) 

         
                ≤ 16 LV None001 

 
16 14 1.9 2.1 0.97 5.4 

 
8.1 4.7 6.7 0.50 0.58 1.3 

≤ 16 LV SNVD144 

 
16 15 1.6 1.8 0.97 6.1 

 
4.6 0.6 4.6 0.90 0.74 1.9 

                ≤ 9 LV None001 

 
9 9 2.5 2.5 0.95 4.6 

 
7.3 4.5 5.8 0.46 0.80 1.5 

≤ 9 LV SNVD001 
 

9 9 2.5 2.7 0.94 4.2 
 

4.4 -1.0 4.3 0.79 0.80 2.1 

                 

LV is the number of latent variables for PLS regression, and LVmax its maximum (fixed by the operator); SEC, 
SECV, SEP and SEPc are the standard errors of calibration, of cross-validation, of prediction, and of prediction 
corrected for bias, respectively, in gC kg

-1
; R²cv and R²val are the coefficients of determination for cross-validation 

and independent validation, respectively; RPDcv is the ratio of the standard deviation of the calibration set to 
SECV; RPDval is the ratio the standard deviation of the validation set to SEPc; R² and RPD are unitless. 
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Table 4. Cross-validation and independent external validation statistics for soil nitrogen 

concentration (for the 312-sample cross-validation set, mean and standard deviation were 1.86 

and 0.74 gN kg
-1

 respectively; for the 41-sample independent validation set they were 3.10 

and 0.72 gN kg
-1

 respectively). 

 

Spectro and Pretreat- 

 

Calibration 
 

Validation 

conditions ment  LVmax LV SEC SECV R²cv RPDcv  
SEP Bias SEPc Slope R²val RPDval 

                MicroNIR (1151-2186 nm, 8.15 nm) 

            
                ≤ 16 LV None001 

 
16 7 0.21 0.23 0.90 3.2 

 
0.72 0.44 0.58 0.47 0.48 1.2 

≤ 16 LV SNVD001 
 

16 5 0.26 0.28 0.86 2.7 
 

0.36 -0.09 0.36 0.87 0.77 2.0 

                Foss (1100-2498 nm, 2 nm) 
            

                ≤16 LV None001 
 

16 15 0.16 0.17 0.95 4.4 
 

0.35 -0.05 0.35 0.93 0.77 2.1 

                ≤ 5 LV None001 
 

5 5 0.28 0.28 0.86 2.7 
 

0.64 0.18 0.62 0.32 0.45 1.1 

≤ 5 LV D144 
 

5 5 0.23 0.23 0.90 3.2 
 

0.50 0.11 0.50 0.50 0.69 1.4 

                MicroNIR-ranged Foss (1150-2182 nm, 2 nm) 
         

                ≤16 LV None001 
 

16 11 0.18 0.18 0.94 4.0 
 

0.60 0.35 0.50 0.44 0.74 1.4 

≤16 LV SNVD001 
 

16 14 0.16 0.17 0.95 4.3 
 

0.45 0.11 0.44 0.57 0.75 1.6 

                ≤ 5 LV None001 
 

5 5 0.26 0.26 0.88 2.9 
 

0.68 0.38 0.57 0.24 0.86 1.2 

≤ 5 LV SNVD001 
 

5 5 0.31 0.31 0.82 2.4 
 

0.61 0.39 0.49 0.46 0.76 1.5 

                MicroNIR-fitted Foss (1150-2182 nm, 8 nm) 
         

                ≤ 16 LV None001 
 

16 11 0.18 0.19 0.94 4.0 
 

0.61 0.35 0.50 0.45 0.72 1.4 

≤ 16 LV SNVD144 
 

16 12 0.14 0.15 0.96 4.9 
 

0.39 0.00 0.39 0.79 0.73 1.8 

                ≤ 5 LV None001 
 

5 5 0.26 0.26 0.88 2.8 
 

0.68 0.38 0.57 0.24 0.86 1.2 

≤ 5 LV D144 
 

5 5 0.25 0.26 0.87 2.8 
 

0.70 0.46 0.54 0.42 0.67 1.3 

                 

LV is the number of latent variables for PLS regression, and LVmax its maximum (fixed by the operator); SEC, 
SECV, SEP and SEPc are the standard errors of calibration, of cross-validation, of prediction, and of prediction 
corrected for bias, respectively, in gN kg

-1
; R²cv and R²val are the coefficients of determination for cross-validation 

and independent validation, respectively; RPDcv is the ratio of the standard deviation of the calibration set to 
SECV; RPDval is the ratio the standard deviation of the validation set to SEPc; R² and RPD are unitless. 
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Figure 1. Raw absorbance (log 1/R) spectra of three example samples of the validation set 

acquired with two spectrophotometers: JDSU MicroNIR 2200 vs. Foss NIRSystems 5000. 

 

 
 

 
 
 
 

Figure 2. Relationship between the number of PLS terms (latent variables) used for cross-

validation and standard error of cross-validation (SECV) for C prediction, for non-pretreated 

absorbance spectra (None001). 
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Figure 3. Comparisons between conventional measurements of soil C and N concentrations 

and predictions (independent external validation) using full Foss or MicroNIR spectra (best 

results, achieved with no pretreatment for Foss spectra, and with SNV1205 and SNVD001 for 

predicting C and N with MicroNIR spectra, respectively). 
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Figure 4. Regression coefficients of C prediction models using three types of absorbance 

spectra: acquired with JDSU MicroNIR 2200 (1151-2186 nm every 8.15 nm), with Foss 

NIRSystems 5000 (1100-2498 nm every 2 nm), and acquired with Foss NIRSystems 5000 but 

reduced to the same range and interval as MicroNIR spectra (1150-2182 nm every 8 nm). The 

models considered were those which yielded the best validation results without spectrum 

derivation. 
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Figure 5. Regression coefficients of N prediction models using three types of absorbance 

spectra: acquired with JDSU MicroNIR 2200 (1151-2186 nm every 8.15 nm), with Foss 

NIRSystems 5000 (1100-2498 nm every 2 nm), and acquired with Foss NIRSystems 5000 but 

reduced to the same range and interval as MicroNIR spectra (1150-2182 nm every 8 nm). The 

models considered were those which yielded the best validation results without spectrum 

derivation. 
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