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Abstract
Bacteria of the Bacillus cereus group colonize several ecological niches and infect different hosts. Bacillus cereus, a ubiq-
uitous species causing food poisoning, Bacillus thuringiensis, an entomopathogen, and Bacillus anthracis, which is highly 
pathogenic to mammals, are the most important species of this group. These species are closely related genetically, and their 
specific toxins are encoded by plasmids. The infectious cycle of B. thuringiensis in its insect host is regulated by quorum-
sensing systems from the RNPP family. Among them, the Rap–Phr systems, which are well-described in Bacillus subtilis, 
regulate essential processes, such as sporulation. Given the importance of these systems, we performed a global in silico 
analysis to investigate their prevalence, distribution, diversity and their role in sporulation in B. cereus group species. The 
rap–phr genes were identified in all selected strains with 30% located on plasmids, predominantly in B. thuringiensis. Despite 
a high variability in their sequences, there is a remarkable association between closely related strains and their Rap–Phr 
profile. Based on the key residues involved in RapH phosphatase activity, we predicted that 32% of the Rap proteins could 
regulate sporulation by preventing the phosphorylation of Spo0F. These Rap are preferentially located on plasmids and mostly 
related to B. thuringiensis. The predictions were partially validated by in vivo sporulation experiments suggesting that the 
residues linked to the phosphatase function are necessary but not sufficient to predict this activity. The wide distribution and 
diversity of Rap–Phr systems could strictly control the commitment to sporulation and then improve the adaptation capaci-
ties of the bacteria to environmental changes.
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Introduction

Several bacterial processes are regulated by quorum sensing, 
a cell–cell communication that enables bacteria to regulate 
their fate with regard to the population density. The Rap pro-
teins and their cognate Phr peptide inhibitors are quorum-
sensing systems present in the Bacillus cereus group but not 

extensively studied in these bacteria. The B. cereus group 
comprises at least seven species (Bacillus cereus sensu 
stricto, Bacillus thuringiensis, Bacillus anthracis, Bacillus 
weihenstephanensis, Bacillus mycoides, Bacillus pseudo-
mycoides and Bacillus cytotoxicus) of rod-shaped, spore-
forming, Gram-positive bacteria that are found in diverse 
ecological niches and able to colonize different hosts (Liu 
et al. 2015). Due to the complex phylogeny of the group, as 
phylogenetic clades are polyphyletics and species are para-
phyletics, its taxonomy continues to be debated (Bazinet 
2017; Guinebretière et al. 2008; Helgason et al. 2000; Liu 
et al. 2015; Raymond, 2017; Tourasse et al. 2011).

The three main species of the B. cereus group have a 
significant impact on human activity. B. cereus is a ubiqui-
tous and opportunistic bacterium and includes strains that 
cause food poisoning with vomiting or diarrhea and severe 
local infections, such as endophthalmitis or periodontitis 
(Callegan et al. 2003; Ehling-schulz et al. 2006; Stenfors 
Arnesen et al. 2008). B. thuringiensis is the world’s most 
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used biopesticide due to its production of insecticidal tox-
ins (designated as Cry proteins) specifically pathogenic to 
a wide range of insects (Schnepf et al. 1998). B. anthracis 
is a mammal pathogen, including humans, and is the caus-
ative agent of anthrax (Liu et al. 2014). Although pheno-
typically different, these species are closely related geneti-
cally (Rasko et al. 2005), and the species determinants are 
encoded by plasmid genes (Vilas-Boas et al. 2007). For 
B. cereus, the enzymatic complex involved in cereulide 
(emetic toxin) synthesis is encoded by pCER270 (Ehling-
Schulz et al. 2006). Strains are identified as B. thuringien-
sis if they produce a crystal inclusion during sporulation 
due to the presence of plasmids carrying genes encoding 
Cry toxins, generally active against insects or nematodes 
(Deng et al. 2014; Schnepf et al. 1998). The high toxic-
ity of B. anthracis is due to toxins and its capsule, which 
are encoded by genes located on the plasmids pXO1 and 
pXO2, respectively (Kolstø et al. 2009).

Several microorganisms behaviors, such as biofilm for-
mation, sporulation, motility, genetic exchange (compe-
tence and conjugation), and virulence factor production, 
are regulated by quorum sensing (QS), a cell–cell com-
munication process that allows bacteria and eukaryotic 
microorganisms to coordinate their biological processes 
based on the population density (Polke and Jacobsen 2017; 
Rutherford and Bassler 2012). In Gram-positive bacteria, 
this communication is done by signaling oligopeptides 
that are recognized by cognate regulators, such as the 
QS systems of the RNPP family (from Rap, NprR, PlcR, 
and PrgX) (Declerck et al. 2007). These regulators are 
formed by tetratricopeptide repeat (TPR) domains that are 
structural motifs of degenerated residues that mediate pro-
tein–protein and protein–peptide interactions (D’Andrea 
and Regan 2003). The activity of these cytoplasmic regu-
lators is activated (NprR and PlcR) or inhibited (Rap) by 
secreted, matured, and re-imported peptides that func-
tion as signaling molecules (Perchat et al. 2011; Perego 
and Hoch 1996; Pottathil and Lazazzera 2003; Slamti 
and Lereclus 2002). The genes encoding these signaling 
peptides are located directly downstream from the coding 
sequence of their cognate RNPP regulator, and the two 
genes are transcribed in the same orientation (Declerck 
et al. 2007). Except for the Rap proteins, RNPP regula-
tors have an HTH (helix-turn-helix) DNA-binding domain, 
allowing them to function as transcriptional regulators 
(Declerck et al. 2007). During the infectious cycle of B. 
thuringiensis in insect larvae, three QS systems are suc-
cessively activated (Slamti et al. 2014): (i) PlcR–PapR 
regulates the virulence stage by controlling the expression 
of virulence genes; (ii) NprR–NprX regulates the necro-
trophic stage, allowing bacteria to survive and to sporulate 
in the insect cadaver; and (iii) Rap–Phr regulates the initia-
tion of the sporulation process.

Sporulation is essential for survival and dispersion of a 
wide variety of organisms (Huang and Hull 2017). In Bacil-
lus subtilis, this differentiation process is regulated by a 
complex pathway (Sonenshein 2000), in which Spo0A is 
the major regulator of sporulation that must be phosphoryl-
ated to be active. External signals, such as starvation, are 
detected by different sporulation kinases (KinA to KinE), 
which phosphorylate the Spo0F response regulator (Bur-
bulys et al. 1991). The phosphoryl group is then transferred 
through the phosphorelay from Spo0F to the phosphotrans-
ferase Spo0B, and then to Spo0A (Jiang et al. 2000a). Cer-
tain Rap proteins indirectly inhibit the phosphorylation of 
Spo0A by dephosphorylating Spo0F and thus impair the 
initiation of sporulation (Perego and Hoch 1996).

Eleven rap genes (from rapA to rapK) were identified 
on the chromosome of the B. subtilis 168 strain. Functional 
studies have shown that RapA, RapB, RapE, RapH, RapI, 
and RapJ can dephosphorylate Spo0F (Jiang et al. 2000b; 
2011, Parashar et al. 2011, 2013a; Perego et al. 1996; Smits 
et al. 2007). RapC, RapD, RapF, RapH, and RapK regulate 
competence by inhibiting ComA (Auchtung et al. 2006; 
Bongiorni et al. 2005; Core and Perego 2003; Ogura and 
Fujita 2007; Smits et al. 2007), RapG regulates extracel-
lular protease production by inhibiting DegU (Ogura et al. 
2003), and RapI also regulates the mobility of the ICEBs1 
genetic element (Auchtung et al. 2005). rap–phr genes have 
also been identified in B. subtilis plasmids. These plasmid 
systems are involved in the regulation of proteolytic enzyme 
production (Koetje et al. 2003), sporulation, competence, 
biofilm formation (Parashar et al. 2013b), and plasmid con-
jugation (Singh et al. 2013). The activities of Rap proteins 
are inhibited by their cognate Phr peptides. Phr-encoding 
genes are located downstream from the rap genes and are 
generally co-transcribed, although many phr genes have a 
secondary promoter (Perego and Brannigan 2001; McQuade 
et al. 2001). The pro-Phr are secreted and processed in the 
extracellular environment. The mature Phr are then internal-
ized within the bacterial cells by oligopeptide permeases and 
bind to Rap proteins to inhibit their activity (Perego 1997).

The Rap–Phr systems are also present in bacteria of the B. 
cereus group. Bongiorni et al. (2006) have identified five rap 
genes in the B. anthracis A2012 strain, among which only 
two were shown to inhibit sporulation. More recently, Fazion 
et al. (2018) characterized the Rap–Phr system from a small 
plasmid (pHT8_1) of the B. thuringiensis HD73 strain and 
demonstrated its involvement in the regulation of sporulation 
in insect larvae.

In this study, we performed an overview of the Rap–Phr 
systems in the B. cereus group, including their identifica-
tion, distribution, and prediction of their sporulation activity. 
We show that the Rap–Phr systems are widespread in all 
strains, in both chromosomes and plasmids, and with great 
sequence variability. A comparison between the B. cereus 
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and B. thuringiensis strains showed that plasmid Rap–Phr 
systems are more frequently present in B. thuringiensis than 
in B. cereus. One-third of the Rap proteins were predicted 
to have a sporulation function and these Rap proteins are 
preferentially located on plasmids and, therefore, are mainly 
present in B. thuringiensis.

Materials and methods

Bacterial genomes

The B. cereus group strains with a complete genome 
sequence available in the NCBI Genome database (http://
www.ncbi.nlm.nih.gov/genom​e/) on April 2015 were 
selected. The species classification was considered as found 
in the database in the moment of data collection. The main 
available features (chromosome size and GC content, MLST 
sequence type, size and number of plasmids, and the propor-
tion of the total genome they represent) of the genomes from 
the 49 selected strains are presented in Table 1 and Online 
Resource Table 1.

Construction of the rap–phr database

Each selected genome sequence was screened for the pres-
ence of rap genes. Three strategies were used: (i) using ‘rap’ 
and ‘response regulator aspartate phosphatase’ as keywords; 
(ii) using each identified sequence for a sequence similar-
ity search by BLASTn against all selected genomes and; 
(iii) using all chromosomal Rap protein sequences from the 
B. subtilis 168 strain as a query for a tBLASTn alignment 
with B. cereus group genomes. All protein sequences were 
analyzed using InterProScan (http://www.ebi.ac.uk/inter​
pro/seque​nce-searc​h) and SMART (http://smart​.embl-heide​
lberg​.de) servers for the identification of domains and motifs 
(Jones et al. 2014; Letunic et al. 2015). The detection of TPR 
domains and the absence of HTH DNA-binding domains 
were used as the main criteria to validate putative sequences 
as Rap proteins. Sequences shorter than 333 amino acids 
or showing uncharacteristic domains for Rap proteins were 
excluded.

Identification of phr genes was performed considering 
the gene organization: (i) short open reading frames (encod-
ing 35–120 aa) and location, (ii) overlapping the rap gene 
(up to 10 bp) at the 3′ terminal end or located immediately 
downstream (up to 100 bp) from the rap gene, and (iii) 
transcription from the same DNA strand as the rap gene. 
When a phr gene was not identified by this strategy, the 
downstream region of rap was scanned for small open read-
ing frames (ORFs) checking for putative unannotated phr 
using the VectorNTI software (Invitrogen). The identified 
systems were numbered according to their location (first the 

chromosomal genes, then the plasmid ones). The chromo-
somal genes were numbered according to their order from 
the replication origin.

A 20 kb region around the rap genes (10 kb upstream and 
10 Kb downstream) was analyzed using the ISfinder data-
base (Siguier et al. 2005) to verify the presence of mobile 
elements within these genomic regions.

Rap protein clustering

Phylogenetic trees were constructed with Rap protein 
sequences according to the location of their genes in the 
genome: (i) total (all sequences), (ii) chromosome, and (iii) 
plasmids. The DAMBE program (Xia 2013) was used to 
gather sequences with 100% identity. Unique Rap sequences 
were aligned using the MUSCLE algorithm, and MEGA 6 
(Tamura et al. 2013) was used to build phylogenetic trees 
by the Neighbor-Joining Method with the best model cor-
rections for each alignment. RapH from B. subtilis 168 was 
used as outgroup in the Total tree, which was visualized on 
iTOL—Interactive Tree Of Life (Letunic and Bork 2019). 
For Rap clustering delimitation, a value of 0.8 was used as 
the cutoff using the average distance of the number of amino 
acid substitutions for chromosomal and plasmid trees. These 
trees were visualized on MEGA 6. For the Phr peptide, iden-
tical sequences recognition was done as described for the 
Rap proteins.

Multilocus sequencing type (MLST) tree

According to the scheme of Tourasse et al. (2006), sequences 
of MLST housekeeping genes of all selected genomes were 
obtained from the ‘University of Oslo’s Bacillus cereus 
group MultiLocus and MultiData Typing website (http://
mlsto​slo.uio.no)’. Sequences of adk, glpT, glpF, panC, pycA, 
ccpA, and pta genes were downloaded already concatenated. 
Alignment and phylogenetic tree development were per-
formed as described for Rap proteins.

Plasmids construction and growth conditions

To assess the effect of Rap proteins on sporulation, 
seven plasmid rap genes (rap6-BtHD1, rap8-BtHD1, 
rap10-BtHD1, rap6-Bt407, rap7-Bt407, rap8-Bt407 and 
rap7-BtHD73) and three chromosomal rap genes (rap1-
BcATCC14579, rap2-BcATCC14579 and rap5-BtHD73) 
were cloned in the plasmid pHT315-PxylA, a multi-copy 
vector with xylose-inducible promoter (Grandvalet et al. 
2001). All genes were amplified by PCR using prim-
ers listed in Online Resource Table 2 and ligated to the 
plasmid pHT315-PxylA using the appropriate restriction 
sites. For cloning steps, these plasmids were transformed 
in Escherichia coli K-12 strain TG1 and then in the 

http://www.ncbi.nlm.nih.gov/genome/
http://www.ncbi.nlm.nih.gov/genome/
http://www.ebi.ac.uk/interpro/sequence-search
http://www.ebi.ac.uk/interpro/sequence-search
http://smart.embl-heidelberg.de
http://smart.embl-heidelberg.de
http://mlstoslo.uio.no
http://mlstoslo.uio.no
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Table 1   Main features of the 49 selected genomes from the B. cereus group strains

Strain (named as in NCBI database) Release date Assembly Chromosome Plasmids STs (MLST)

Size (Mb) %GC Nb Size (Mb) % ↑ genome

B. cereus
 ATCC 10987 2002 GCA_000008005.1 5.22 35.6 1 0.21 4% 2
 ATCC 14579 2003 GCA_000007825.1 5.41 35.3 1 0.01 0% 33
 E33L 2004 GCA_000011625.1 5.30 35.4 5 0.55 10% 57
 AH187 2008 GCA_000021225.1 5.27 35.6 4 0.33 6% 3
 B4264 2008 GCA_000021205.1 5.42 35.3 0 – – − 2
 G9842 2008 GCA_000021305.1 5.39 35.3 2 0.35 6% 120
 AH820 2008 GCA_000021785.1 5.3 35.4 3 0.28 5% 39
 Q1 2009 GCA_000013065.1 5.21 35.6 2 0.29 6% 40
 03BB102 2009 GCA_000022505.1 5.27 35.4 1 0.18 3% 122
 anthracis CI 2010 GCA_000143605.1 5.2 35.4 3 0.28 5% 153
 NC7401 2011 GCA_000283675.1 5.2 35.6 5 0.33 6% 3
 F837/76 2011 GCA_000239195.1 5.22 35.4 2 0.07 1% 182
 FRI-35 2012 GCA_000292415.1 5.08 35.6 4 0.3 6% 188
 FT9 2014 GCA_000724585.1 5.22 35.5 0 – – 191
 03BB87 2014 GCA_000789315.1 5.46 35.3 2 0.26 5% 58
 D17 2015 GCA_000832385.1 5.38 35.4 1 0.21 4% 179
 FM1 2015 GCA_000832525.1 5.3 35.5 1 0.40 8% 186
 3a 2015 GCA_000832765.1 5.27 35.4 3 0.37 7% 124
 G9241 2015 GCA_000832805.1 5.27 35.4 3 0.45 9% 58
 ATCC 4342 2015 GCA_000832845.1 5.27 35.4 1 0.04 1% 4
 03BB108 2015 GCA_000832865.1 5.34 35.3 7 0.73 14% 119
 Al Hakama 2015 GCA_000832885.1 5,23 35,8 6 0.45 9% 173
 S2-8 2015 GCA_000835185.1 5.27 35.4 2 0.37 7% 124
 FORC_005 2015 GCA_000978375.1 5.35 35.3 0 – – 187

B. cereus average 5.29 35.4 2.5 0.31 6%
B. thuringiensis
 konkukian 97-27 2004 GCA_000008505.1 5.24 35.4 1 0.07 1% 59
 Al Hakam 2006 GCA_000015065.1 5.26 35.4 1 0.06 1% 89
 BMB171 2010 GCA_000092165.1 5.33 35.3 1 0.31 6% 152
 finitimus YBT-020 2011 GCA_000190515.1 5.36 35.5 2 0.33 6% 155
 chinensis CT-43 2011 GCA_000193355.1 5.49 35.4 10 0.66 12% 44
 HD-771 2012 GCA_000292455.1 5.89 35.2 8 0.56 10% 75
 HD-789 2012 GCA_000292705.1 5.5 35.3 6 0.84 15% 136
 MC28 2012 GCA_000300475.1 5.41 35.4 7 1.28 24% 231
 Bt407 2012 GCA_000306745.1 5.5 35.4 9 0.65 12% 44
 kurstaki HD73 2013 GCA_000338755.1 5.65 35.3 7 0.27 5% 115
 thuringiensis IS5056 2013 GCA_000341665.1 5.49 35.4 14 1.3 24% 44
 YBT-1518 2013 GCA_000497525.2 6 35.4 6 0.68 11% 261
 kurstaki YBT-1520 2014 GCA_000688795.1 5.6 35.3 11 0.98 18% 115
 kurstaki HD-1 2014 GCA_000717535.1 5.63 35.3 13 1.13 20% 115
 galleriae HD-29 2014 GCA_000803665.1 5.7 35.3 10 1.04 18% 211
 HD1011 2015 GCA_000832485.1 5.23 35.5 4 0.86 16% 71
 HD571 2015 GCA_000832825.1 5.26 35.4 1 0.06 1% 89
 HD682 2015 GCA_000832925.1 5.21 35.5 3 0.08 2% 212
 HD1002 2015 GCA_000835025.1 5.49 35.3 7 1.08 20% 136
 morrisoni BGSC 4AA1 2015 GCA_000940785.1 5.65 35.3 6 0.53 9% 112

B. thuringiensis average 5.49 35.4 6.4 0.64 12%
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Dam− Dcm− E. coli strain ET12567 (Stratagene, La Jolla, 
CA, USA) by thermal shock. Finally, each constructed 
plasmid was transformed by electroporation (Lereclus 
et al. 1989) in the acrystalliferous (Cry−) B. thuringiensis 
var. kurstaki HD73 strain (Wilcks et al. 1998). Luria–Ber-
tani (LB) medium was used to cultivate E. coli and B. 
thuringiensis at 37 °C for DNA preparation. The medium 
HCT was used to optimize the sporulation of B. thuring-
iensis (Lereclus et al. 1982). Antibiotics were used at the 
following concentration: ampicillin 100 µg/mL for E. coli 
and erythromycin 10 µg/mL for B. thuringiensis.

DNA manipulation

Genomic DNA from the three B. thuringiensis strains 
(HD-1, Bt407, and HD73) and the B. cereus strain 
(ATCC14579) was extracted using the Puregene Yeast/
Bact. Kit B (Qiagen, France). PCRs were performed in an 
Applied Biosystems 2720 Thermal cycler (Applied Bio-
system, USA) with Phusion High-Fidelity or Taq DNA 
Polymerase (New England Biolabs, USA) and oligonu-
cleotides (Online Resource Table 2) were synthesized by 
Eurofins Genomics (Germany). The QIAquick PCR Puri-
fication Kit (Qiagen, France) was used to purify the ampli-
fied DNA fragments that were subsequently treated with 
appropriated restriction enzymes (New England Biolabs). 
Digested DNA fragments were separated on 1% agarose 
gels and purified from gels using the QIAquick gel extrac-
tion kit (Qiagen, France). T4 DNA ligase and restriction 
enzymes were used following the manufacturer’s recom-
mendations (New England Biolabs). E. coli plasmid DNA 
extractions were performed using the QIAprep Spin Mini-
prep Kit (Qiagen, France). DNA sequencing was carried 
out by GATC Biotech (Konstanz, Germany).

Sporulation assay

The sporulation efficiency of B. thuringiensis HD73 strain 
expressing rap genes was determined in the sporulation-
specific medium HCT supplemented with 20 mM of xylose 
at the beginning of stationary growth phase. After 48 h of 
growth at 30 °C, serial dilutions were plated before and after 
heat treatment for 12 min at 80 °C. The sporulation percent-
age was calculated as 100 × the ratio between heat-resistant 
spores per milliliter and total viable cells per milliliter. All 
experiments were repeated at least three times, and the mean 
values (± standard error of the mean) were calculated.

Statistical analyses

The appropriate statistical test for each data was performed 
in GraphPad InStat Software version 3.05. Comparisons 
between B. cereus and B. thuringiensis means were ana-
lyzed with t test while when contingence table were used 
to confront both species, the Fisher’s exact test was used. 
The data obtained with sporulation assay were analyzed 
using one-way Analysis of Variance (ANOVA) followed by 
Tukey–Kramer Multiple Comparisons Test (P < 0.01).

Results

Genomic overview of the B. cereus group strains

To study the occurrence, the prevalence and the distribu-
tion of Rap–Phr systems in the B. cereus group, those 
genome sequences with complete assembly level avail-
able in NCBI Genome section until April 2015 were 
selected. Most of these genomes belong to B. cereus, B. 
thuringiensis or B. anthracis, considering the relevance 

STs (Sequence Types) data was obtained from the University of Oslo’s Bacillus cereus group MultiLocus and MultiData Typing website (http://
mlsto​slo.uio.no). Plasmid ‘Nb’ is the sum of different plasmids sequenced for each strain and ‘ % ↑ genome’ is how much all these plasmids 
increase the genome size of that strain (in relation to chromosome size alone)
a This strain was first annotated as B. cereus (Johnson et al. 2015), and is now classified as B. pseudomycoides (strain BTZ)
b Nowadays, B. weihenstephanensis strains are considered as heterotypic synonym of B. mycoides (Liu et al. 2018)

Table 1   (continued)

Strain (named as in NCBI database) Release date Assembly Chromosome Plasmids STs (MLST)

Size (Mb) %GC Nb Size (Mb) % ↑ genome

B. anthracis ‘Ames Ancestor’ A2084 2004 GCA_000008445.1 5.23 35.4 2 0.27 5% 1
B. weihenstephanensis KBAB4b 2007 GCA_000018825.1 5.26 35.6 4 0.61 12% 118
B. mycoides ATCC 6462 2015 GCA_000832605.1 5.26 35.5 3 0.38 7% 133
B. pseudomycoides DSM 12442 2012 GCA_000161455.1 5.78 35.4 – – – 132
B. cytotoxicus NVH 391-98 2007 GCA_000017425.1 4.09 35.9 1 0.01 0% 117
B. cereus group Average 5.35 35.4 4.1 0.46 9%

http://mlstoslo.uio.no
http://mlstoslo.uio.no
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of these species. All B. cereus and B. thuringiensis avail-
able strains were selected. However, as B. anthracis is a 
clonal species (Helgason et al. 2000; Rasko et al. 2005), 
only one representative genome sequence (Ames Ancestor 
strain) was selected, even if around 30 genomes of this 
species were available. Moreover, our preliminary results 
revealed identical Rap–Phr profiles in all the B. anthra-
cis isolates, thus confirming the clonal aspect of the B. 
anthracis strains (data not shown). For the other species 
(B. mycoides, B. pseudomycoides, B. weihenstephanensis, 
and B. cytotoxicus), only one genome for each species was 
chosen. When the same strain was sequenced twice, only 
one was selected. Following these criteria, 49 genomes 
were used in this study (Table 1).

The GC content of these genomes was around 35%, 
with minor differences among the strains. In the B. 
cereus strains, the chromosomal size ranged from 5.08 
to 5.46 Mb, while in B. thuringiensis the variation was 
from 5.21 to 6 Mb. All the other species showed chro-
mosomes larger than 5 Mb, except B. cytotoxicus NVH 
391-98, which was 4.09 Mb (Table 1). The analysis of 
the plasmid content of the 49 selected strains revealed 
a total of 197 plasmids with a size ranging from 2.1 to 
502 Kb (Online Resource Table 3). These plasmids can 
provide a significant increase in genome size (Table 1). In 
B. cereus, the average increase of the genome size is 5% 
with a maximum of 12% in the strain B. cereus 03BB108. 
In B. thuringiensis, the average increase of the genome 
size was 12%, with a maximum of 24% in the B. thuring-
iensis MC28 and B. thuringiensis IS5056 strains.

rap–phr genes distribution

In the 49 genomes sequences, 302 rap genes were identi-
fied (Online Resource Data 1 and Online Resource Table 4) 
whose 144 (47.7%) were correctly annotated as ‘response 
regulator aspartate phosphatase’ or ‘rap’. A phr gene was 
identified downstream from all rap genes, but 31 of them 
were not annotated as ORFs (Online Resource Table 4). The 
rap and phr genes were always located in the same DNA 
strand with a slight overlapping (usually 1 or 4 nucleotides). 
The average size was 1099 bp for the rap genes (from 1032 
to 1185 bp) and 166 bp for the phr genes (from 120 to 
330 bp).

From 2 to 16 rap–phr genes were identified in all strains 
(Fig. 1a, Online Resource Table 4). Two to eight chromo-
somal rap–phr systems were found by strain, representing 
70% of all the identified rap–phr genes (Fig. 1b). Plasmid 
rap–phr genes were found in 27 of the 49 strains and on 65 
of the 197 plasmids. Some strains harbor a large number of 
plasmid rap–phr genes, up to 12 plasmid systems for the 
B. thuringiensis strain IS 5056 (Online Resource Table 3). 
The size of plasmids harboring rap–phr genes varied from 
6.88 to 502 kb. However, the occurrence of these genes is 
most common (70%) in plasmids larger than 70 kb (Online 
Resource Table 3). Also, large plasmids (> 200 kb) might 
contain several rap–phr genes, up to five, such as the 
pBMB422 plasmid (422.7 kb) of the B. thuringiensis YBT-
1520 strain (Online Resources Table 3 and 4).

The average number of chromosomal rap–phr genes is 
similar between B. cereus and B. thuringiensis (4.04 and 
4.45, respectively). However, the average number of plasmid 
rap–phr genes is sixfold higher in B. thuringiensis than in B. 
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Fig. 1   Distribution of the identified rap–phr genes in the B. cereus group. a The number of rap–phr genes by strain with the chromosomal sys-
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cereus (3.6 and 0.6, respectively; P = 0.001). The percentage 
of plasmids harboring rap–phr genes is higher in B. thuring-
iensis than in B. cereus (38.6% versus 22.0%, respectively, 
P = 0.03). Moreover, B. thuringiensis strains show a similar 
amount of chromosomal and plasmid rap–phr genes, while 
in the B. cereus strains the number of chromosomal rap–phr 
genes is almost seven times higher (P < 0.001) than plasmid 
genes (Table 2).

As the genome of B. cereus group strains are rich in 
mobile and repeated elements (Kolstø et al. 2009), the pres-
ence of these elements in the vicinity of rap–phr genes 
was analyzed. A mobile element was found in the vicinity 
of 48% of all the rap genes, corresponding to 39% of the 
chromosomal genes and 68% of the plasmid ones (Online 
Resource Data 1). The prevalence of mobile elements in the 
20-kb region around rap–phr chromosomal genes is similar 
between B. cereus and B. thuringiensis (Table 2). However, 
these elements were found in the vicinity of 36% of plasmid 
rap genes from B. cereus against 72% of B. thuringiensis 
ones (P < 0.01).

Rap protein clustering

Among the 302 Rap and Phr proteins initially identified, 
we distinguished 192 different Rap protein sequences and 
152 different Phr pro-peptide sequences, corresponding to 
63.5% and 50.3% of all sequences, respectively. Rap pro-
tein sequences with 100% of identity were found in sev-
eral strains from different species (Fig. 2). The identical 
sequences are always identified on different strains and on 
the same type of replicon (chromosome or plasmid), except 
for the chromosomal Rap1 from the B. cereus 03BB87 
strain, which is identical to the plasmid Rap3 of the pBCX01 
plasmid from the B. cereus G9241 strain. To investigate this 
unique case, a 10-kb region around the rap1 gene from the 
B. cereus 03BB87 strain was analyzed with BLASTn. By 
this approach, we detected 99–100% identity to the pXO1 
and pXO1-like plasmids. A BLAST alignment between the 
pXO1 plasmid and the entire B. cereus 03BB87 chromosome 

highlighted a region corresponding to 3% of the chromo-
some with 98% of coverage and 99% of identity with the 
plasmid. Moreover, the B. cereus 03BB87 strain also carries 
a pXO1-like plasmid, the pBCX01, sharing 97% identity 
with pXO1 with less than 10% of coverage (data not shown). 
This might be due to a mistake in the genome assembly or to 
the integration of DNA regions from the pBCX01 plasmid 
in the chromosome.

Three phylogenetic trees were constructed using Rap pro-
tein sequences, according to the location of their encoding 
genes in the genome (all sequences, chromosome or plas-
mid sequences) (Fig. 2 and Online Resource Fig. 1). These 
trees were built by the Neighbor-Joining method with cor-
rections based on the Jones–Taylor–Thornton matrix model 
that enables the assessment of the overall divergence among 
Rap proteins. The phylogenetic tree with all sequences 
showed a high number of branches with a dispersion of 
plasmid sequences in several branches. Closely related Rap 
sequences are encoded by similar kind of plasmids distrib-
uted in eight major sets (Fig. 2, sets A–H). Set A comprises 
rap genes harbored by an identical 8.5 kb plasmid present in 
different strains and set B by plasmids higher than 70 kb. Set 
C includes pXO1-like plasmids; set D plasmids larger than 
200 kb, while plasmids from set E are smaller than 20 kb. 
Set F includes plasmids around 70 kb and set G plasmids 
larger than 200 kb that can also harbor Rap sequences from 
set B. The set H is the most versatile since it comprises two 
distinct subsets: one with plasmids larger than 400 kb and 
another with plasmids ranging from 75 to 235 kb.

The chromosomal tree is divided into 12 Rap groups 
(Online Resource Fig. 1a). Some groups are composed of 
several sequences, such as Group C6 which includes 38 Rap 
sequences. However, some groups have few Rap sequences, 
such as Group C11 with Rap4 from B. anthracis Ames 
Ancestor and Rap5 from B. cytotoxicus NHV391-98. Also, 
Group C10 is formed by three identical sequences from two 
B. cereus emetic strains (B. cereus AH187 and B. cereus 
NC7401) and from BcQ1. The plasmid tree is separated into 
nine Rap groups (Online Resource Fig. 1b). Likewise in the 

Table 2   Comparison between 
B. cereus and B. thuringiensis 
concerning the Rap–Phr 
systems

Statistical analyses: aunpaired t test; bMann–Whitney test; cFisher’s exact test; dunpaired t test with Welch 
correction. ns not significant; *P < 0.05; **P < 0.01; ***P ≤ 0.001

B. cereus B. thuringiensis Significance

Number of strains 24 20
Number of plasmids 59 127
Number of chromosome rap–phr genesa 97 (4.0/strain) 89 (4.5/strain) ns
Number of plasmid rap–phr genesb 14 (0.6/strain) 72 (3.6/strain) ***
Chromosomal/plasmid rap–phr genes ratioc 6.9 1.2 ***
Plasmids with rap–phr genesc 13 (22%) 49 (38%) *
Chromosomal rap genes with nearby mobile elementsa 36 (37%) 35 (39%) ns
Plasmid rap genes with nearby mobile elementsd 5 (36%) 52 (72%) **
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chromosomal tree, many groups are composed of several 
sequences, such as Group P2 with 26 Rap proteins. However, 
Group P4 and Group P5 are composed of unique sequences 
and Group P6 by two identical sequences.

Phr peptides

In silico determination of the mature Phr sequences is com-
plex due to the high variability of these sequences within the 
B. cereus group. Indeed, the mature Phr already described 
from the B. cereus group revealed some differences in size 
and location within the pro-peptide. The BXA0205Phr from 

the pXO1 plasmid (Phr5-B. anthracis) is a pentapeptide 
while the Phr8 from the pHT8_1 plasmid (Phr8-B. thuring-
iensis HD73) is an heptapeptide but both are located in the 
C-terminal end. Moreover, the active form of the BA3791Phr 
from B. anthracis (Phr3-B. anthracis) is located within the 
C-terminal region of its precursor, but its exact sequence 
was not determined (Bongiorni et al. 2006; Fazion et al. 
2018). However, all these mature peptides present a posi-
tively charged residue, the typical feature of Phr active form 
(Pottathil and Lazazzera 2003). The Phr sequences from the 
B. cereus group present a great variability in their amino 
acid sequences and in their sizes (Online Resources Data 1). 

Fig. 2   Phylogenetic tree of all Rap protein sequences (plasmid and 
chromosome sequences) inferred by Neighbor-Joining method (con-
ducted in MEGA6) and visualized by iTOL (Letunic and Bork 2019). 
RapH from B. subtilis 168 was used as outgroup. The evolutionary 
distances were computed using the JTT matrix-based method and are 

in the units of the number of amino acid substitutions per site. Chro-
mosome-encoded proteins are in blue and plasmid-encoded proteins 
are in red. Sets A–H represent related Rap proteins associated to the 
same kind of plasmid. Chromosome and plasmid groups are indicated 
in the two outer circles
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The mature Phr peptides from the B. cereus group described 
above were sought among the Phr sequences in our database. 
While the mature Phr8-B. thuringiensis HD73 (YAHGKDI) 
was identified only on identical Phr sequences, the Phr5-
B. anthracis (GHTGG) was found in several sequences. A 
great number of longer Phr possess the GDTGG/GDGGG/
GETGG repetition sequences duplication described by 
Even-Tov et al. (2016). These sequences were defined as the 
putative autoinducer sequences although they are not gener-
ally associated with a positively charged residue. However, 
the Phr peptides containing these repetitions also bear an 
ARPDY sequence, which could be the active form.

The relationship between MLST phylogenetic tree 
and Rap distribution

The 49 selected strains are distributed into six of the seven 
phylogenetic clusters determined by Guinebretière et al. 
(2008). These clusters, established from the Bacillus cereus 
group MultiLocus and MultiData Typing website (Tourasse 
et al. 2011), are supported by recent results of a pangenomic 
study of this clade (Bazinet 2017). Moreover, the MLST data 
are still effective in discriminating variation of biology, ecol-
ogy and host association among this group strains (Raymond 
and Federici 2017). The cluster III, including B. anthracis 
strains, emetic strains, and other pathogenic strains (mainly 
composed by B. cereus strains), and the cluster IV with B. 
cereus and B. thuringiensis strains from diverse environmen-
tal sources (mainly formed by B. thuringiensis strains) are 
the more extensively represented (Fig. 3). The Rap profile 
of each strain was analyzed in relation to the MLST tree 
of the B. cereus group. We observed that any Rap group 
was not present in all strains and that a Rap group was not 
exclusively related to an MLST cluster. None of the strains 
has more than five different Rap chromosomal groups, and a 
same Rap group can be present more than once in the same 
strain. As expected, the Cluster IV (mainly composed of B. 
thuringiensis strains) has a higher number of plasmid Rap. 
Additionally, phylogenetically related strains show a similar 
Rap profile both for chromosomal and plasmid groups. For 
example, the closely related strains B. thuringiensis Bt407 
Cry−, B. thuringiensis CT-43, and B. thuringiensis IS5056 
show an identical chromosomal profile and similar plasmid 
profile. These three strains might derive from a same paren-
tal strain, for example the B. thuringiensis strain 407 Cry+ 
from the serotype 1 (Lereclus et al. 1989).

Sporulation activity prediction

Considering the importance of sporulation for the survival 
and dispersion of Bacillus and the role of some Rap–Phr 
systems in this process, we aimed to predict the activity of 
Rap proteins from the B. cereus group on sporulation. The 

RapH residues E45, D46, Q47, L50, F58, L96, D134, E137, 
and Y175 have been described to be involved in the binding 
and the dephosphorylation of Spo0F in B. subtilis (Parashar 
et al. 2011). First, we used the sequences of Rap proteins 
interacting with Spo0F to define a consensual sequence 
of residues potentially involved in the sporulation process 
(Online Resource Table 5). Next, the Rap protein sequences 
of each chromosomal and plasmid groups were separately 
aligned with the RapH sequence, and the presence of the 
nine key residues was examined (Online Resource Table 5). 
Depending on the presence of these residues, the Rap pro-
teins from the B. cereus group were classified as Spo + (pre-
dicted phosphatase activity on Spo0F) or Spo− (no predicted 
phosphatase activity) (Online Resource Table 4).

This analysis showed that 97 of the 302 Rap proteins dis-
play a Spo + profile (32%) and the predicted Rap Spo + are 
more frequently found in plasmids (65% of plasmid Rap) 
than in chromosomes (18% of chromosomal Rap) (Fig. 4a). 
However, there is no correlation between Rap groups and 
predicted sporulation function because there are groups with 
only Spo− or Spo + Rap proteins, as well as mixed groups. 
Most of the chromosomal groups were exclusively Spo− and 
the plasmid groups are mainly mixed (Online Resource 
Table 5). Interestingly, the amount of Rap Spo + is signifi-
cantly higher (P < 0.01) in B. thuringiensis than in B. cereus 
(40% and 26%, respectively) (Fig. 4a). Ten B. cereus strains 
(42%) do not harbor chromosomal Rap Spo + , including 
four strains that do not have any Rap Spo + at all (Online 
Resource Table 4). The B. thuringiensis HD-1 strain, widely 
used as a biopesticide against lepidopteran insects, has nine 
Rap Spo +. In sharp contrast, five B. thuringiensis strains 
do not have chromosomal Rap Spo +, and the nematicidal 
B. thuringiensis YBT1518 strain is the only one B. thuring-
iensis to have no predicted Rap Spo + at all.

To validate the in silico prediction, ten Rap proteins 
representative of various plasmid or chromosomal groups 
with a predicted Spo + (seven Rap) or Spo− (three Rap) 
activity were selected to study their effect on sporulation 
(Online Resource Table 5). The corresponding rap genes 
were expressed under the xylose-inducible promoter PxylA 
in the B. thuringiensis HD73 strain, and the sporulation 
efficiency was measured after 48 h at 30 °C in a sporula-
tion-specific medium (HCT). The three Rap Spo− (rap6-
BtHD1, rap6-Bt407, and rap7-BtHD73) did not inhibit the 
sporulation efficiency compared to the control strain, con-
firming their prediction. Among the Rap Spo + analyzed, 
the expression of rap8-Bt407, rap10-BtHD1, rap7-Bt407, 
and rap5-HD73 strongly prevent the sporulation (P < 0.001) 
while the expression of rap1-BcATCC14579, and rap2-
BcATCC14579 slightly inhibited the sporulation efficiency 
compared to the control strain (P < 0.01) (Fig. 4b, Online 
Resource Table 6). However, the rap8-BtHD1, predicted 
Rap Spo + does not display a role in sporulation in our B. 
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Fig. 3   Distribution of the chromosomal and plasmid Rap–Phr sys-
tems groups in relation to the MLST phylogenetic tree (Bacillus 
cereus group MultiLocus and MultiData Typing website—http://
mlsto​slo.uio.no). MLST clusters proposed by Guinebretière et  al. 

(2008) are showed on the left. Chromosomal systems are in blue, and 
plasmid systems are in red. Numbers inside the boxes specify how 
many times (if > 1) that group is found in each strain

http://mlstoslo.uio.no
http://mlstoslo.uio.no
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thuringiensis HD73 model strain in this growth condition. 
Hence, the sporulation results allow us to confirm the pre-
dicted phenotype for nine of the ten tested Rap.

Discussion

Despite the importance of the Rap–Phr systems in the 
regulation of various essential pathways, they have been 
poorly studied in the bacteria of the B. cereus group (Bon-
giorni et al. 2006; Fazion et al. 2018; Slamti et al. 2014). 
Here, we provide a complete and detailed overview of 
these systems in this group, concerning their prevalence, 
sequence diversity, relevant association to plasmids and 
their role in sporulation. We show that the rap genes are 
widespread in all the studied strains of the B. cereus group 
and that a putative phr gene is always present immediately 
downstream from all rap genes. The rap–phr genes are 
always encoded on the same DNA strand but in different 
transcription frames, a characteristic of the RNPP family 
(Declerck et al. 2007). Genes coding for the Phr peptides 
were diverse in size and the occurrence of phr genes two 
times longer than the average could be explained by the 
duplication of the region coding for the mature signaling 
peptide, important for the evolutionary diversification of 
Rap–Phr specificity (Even-Tov et al. 2016). The rap–phr 
genes are located in all chromosomes and numerous plas-
mids. The total number of chromosome rap–phr genes is 
similar between B. cereus and B. thuringiensis species. 
However, chromosome size seems unrelated to the amount 
of chromosomal rap–phr genes as the B. cytotoxicus NVH 

391-98 strain (distantly related to other strains of the B. 
cereus group) presents the smallest chromosome and the 
largest number of chromosomal rap–phr genes.

A global analysis of rap genes in the genus Bacillus 
showed that species from the B. subtilis group contain 11 
(± 2) rap genes in opposition to six (± 3) for the B. cereus 
group species (Even-Tov et al. 2016). In agreement with 
this study, we found a similar number of rap genes in the 
B. cereus group (6.2 ± 3.2). Another difference between 
the two Bacillus groups is related to the phr gene occur-
rence. While 27% of the rap genes from B. subtilis strain 
168 do not have an associated phr gene (Perego 2013), a 
common pattern for the B. subtilis group (Even-Tov et al. 
2016), a putative phr gene is always located downstream 
from all identified rap genes in the B. cereus group. Inter-
estingly, Rap proteins from the B. subtilis and B. cereus 
species constitute two independent clusters, suggesting 
that the diversification of the Rap sequences occurred after 
the evolutionary separation of the two bacterial groups 
(Even-Tov et al. 2016). After this separation, Rap–Phr 
systems from the B. cereus group might have been sub-
jected to genetic variations that also evolved this quorum-
sensing system to the other RNPP family systems, like 
PlcR–PapR and NprR–NprX. The role of these QS systems 
in the production of extracellular proteases or sporula-
tion corresponds to functions performed by some Rap–Phr 
systems of B. subtilis (Auchtung et al. 2006; Ogura et al. 
2003). Interestingly, NprR, which presents a Rap-like 
structure combined with an HTH DNA-binding domain, 
was suggested to be the evolutionary intermediate between 
Rap proteins and the other regulators of the RNPP family 
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(Perchat et al. 2016a). This hypothesis could also explain 
the difference in the number of rap–phr genes between B. 
subtilis and B. cereus.

Our analysis revealed that 30% of the identified rap–phr 
genes were plasmid-born. The plasmid rap–phr genes have 
been described in diverse Bacillus species (Koetje et al. 
2003; Parashar et al. 2013b; Singh et al. 2013; Yang et al. 
2015), including the B. cereus group (Bongiorni et al. 2006; 
Chao et al. 2007; Fazion et al. 2018; Slamti et al. 2014; Van 
der Auwera et al. 2005). These plasmid rap–phr genes are 
carried by a wide range of plasmids but are mainly located in 
conjugative plasmids greater than 70 kb and are more abun-
dant in B. thuringiensis than in B. cereus. This difference is 
not only the consequence of a higher number of plasmids 
in B. thuringiensis, which has only twice as many plasmids 
as B. cereus and six-times as many rap–phr plasmid genes. 
Moreover, this difference might be explained by the higher 
presence of mobile elements close to plasmid rap genes in B. 
thuringiensis than in B. cereus. We have shown that plasmids 
larger than 200 kb can host multiple rap–phr genes, and it is 
also remarkable that rap–phr genes were found on virulence 
plasmids, such as pXO1 in B. anthracis and pCER270 in B. 
cereus, as well as in some Cry plasmids in B. thuringiensis. 
However, we did not find specific rap–phr genes associated 
to the Cry plasmids. The multiplicity of the rap–phr genes in 
the B. cereus group creates appropriate conditions for their 
diversity and evolution, as demonstrated by Even-Tov et al. 
(2016). Thus, different rap–phr genes can respond to various 
signals and be regulated differently at transcriptional level.

Identical Rap protein sequences are located on the same 
type of replicon: (i) in the chromosome as a consequence of 
common ancestor, or (ii) in plasmids as a consequence of 
conjugation events. The proportion of identical Phr is higher 
than that of identical Rap. This characteristic might allow 
the Phr peptides to act cooperatively on various Rap proteins 
from different strains. The mature Phr can be located inside 
or at the C-terminal extremity of the pro-peptide (Pottathil 
and Lazazzera 2003), hampering the identification of the 
active form of some Phr. Due to this difficulty and to the 
wide variability of pro-Phr sequences, the Phr phylogenetic 
tree was not estimated and the evolutive correlation between 
Rap and Phr was not determined. Nevertheless, this coevo-
lution was described for the NprR–NprX and PlcR–PapR 
systems (Perchat et al. 2011; Slamti and Lereclus 2005).

The correlation between the Rap–Phr system distribution 
and the MLST tree based on housekeeping genes revealed 
that closely related strains harbor a similar Rap–Phr system 
pattern, suggesting a similar evolutionary history of both 
genetic characters. This correlation was not observed for 
the PlcR and NprR regulators from the RNPP family (Ko 
et al. 2004; Perchat et al. 2011). Also, the closest strains 
have a similar profile, even for plasmid genes, suggesting 
a beneficial association of particular plasmid–chromosome 

combinations that leads to the maintenance and propagation 
of these proficient combinations (Méric et al. 2018).

One-third of the Rap proteins of the B. cereus group are 
predicted to have phosphatase activity on Spo0F. However, 
some strains did not have any predicted Rap Spo + (four 
B. cereus strains, one B thuringiensis strain, B. mycoides 
and B. pseudomycoides). This absence of Rap Spo + could 
be compensated by NprR, which has a Rap-like activity on 
the sporulation phosphorelay and which is conserved in all 
the strains of the B. cereus group (Perchat et al. 2016b). In 
these strains, Rap proteins might have undergone genetic 
variations leading to the loss of sporulation function and 
the acquisition of new undetermined functions. Interestingly, 
Rap proteins predicted to regulate sporulation are mainly 
encoded by plasmid genes and, therefore, are more abundant 
in B. thuringiensis. These plasmid Rap–Phr systems could 
help B. thuringiensis to adapt and survive in its complex 
ecological niche, the insect. Moreover, many Rap–Phr plas-
mid systems are located on cryptic plasmids less than 16 kb 
in size. These plasmid genes could regulate different benefi-
cial functions leading to the maintenance of these plasmids 
in the bacterial cell. Recently, the plasmid pHT8_1 from the 
B. thuringiensis HD73 strain has been characterized, and the 
role of its Rap–Phr system in the regulation of the sporula-
tion process in insect larvae has been demonstrated (Fazion 
et al. 2018).

Sporulation assays validated the in silico predic-
tion except for one Spo + Rap. The residues involved in 
RapH–Spo0F interaction are highly conserved in B. subtilis 
and B. cereus, and small differences are sufficient to lose this 
activity. However, these key residues are relatively well con-
served in Rap proteins that do not regulate the sporulation 
pathway, suggesting that the Rap activity on sporulation was 
the ancestral role of these proteins (Even-Tov et al. 2016). 
Thus, the presence of these residues is a good indicator but 
is not sufficient to predict the sporulation activity. The role 
of the Rap Spo− remains the main unsolved question. Given 
the large amount of plasmid Rap–Phr and of the role of these 
systems in plasmid conjugation in B. subtilis (Singh et al. 
2013), it will be interesting to study this phenotype.

Cell–cell communication systems enable a fine regulation 
of important processes in bacteria. Indeed, some Rap–Phr 
systems regulate sporulation that allows bacteria to adapt, 
survive and disseminate. This work highlights the impor-
tance of Rap–Phr systems linked to genetic mobile elements 
in the B. cereus group, especially in B. thuringiensis. This 
location on mobile elements could increase the spreading of 
these genes in bacteria of the B. cereus group.
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