E. Diamanti-kandarakis, J. P. Bourguignon, L. C. Giudice, R. Hauser, G. S. Prins et al., Endocrine-disrupting chemicals: An Endocrine Society scientific statement, Endocr. Rev, vol.30, pp.293-342, 2009.

E. C. Dodds and W. Lawson, Synthetic strogenic Agents without the Phenanthrene Nucleus, Nature, vol.137, p.996, 1936.

H. Mackay and A. Abizaid, A plurality of molecular targets: The receptor ecosystem for bisphenol-A (BPA)

, Horm. Behav, vol.101, pp.59-67, 2018.

W. Qiu, Y. Zhao, M. Yang, M. Farajzadeh, C. Pan et al., Actions of bisphenol A and bisphenol S on the reproductive neuroendocrine system during early development in zebrafish, Endocrinology, vol.157, pp.636-647, 2016.

D. A. Crain, M. Eriksen, T. Iguchi, S. Jobling, H. Laufer et al., An ecological assessment of bisphenol-A: Evidence from comparative biology, Reprod. Toxicol, vol.24, pp.225-239, 2007.

D. A. Crain, L. J. Guillette, and . Jr, Endocrine-disrupting contaminants and reproduction in vertebrate wildlife, Rev. Toxicol, vol.1, pp.47-70, 1997.

J. Chen, Y. Xiao, Z. Gai, R. Li, Z. Zhu et al., Reproductive toxicity of low level bisphenol A exposures in a two-generation zebrafish assay: Evidence of male-specific effects, Aquat. Toxicol, vol.169, pp.204-214, 2015.

J. Chen, K. S. Saili, Y. Liu, L. Li, Y. Zhao et al., Developmental bisphenol A exposure impairs sperm function and reproduction in zebrafish, vol.169, pp.262-270, 2017.

L. V. Laing, J. Viana, E. L. Dempster, M. Trznadel, L. A. Trunkfield et al., Bisphenol A causes reproductive toxicity, decreases dnmt1 transcription, and reduces global DNA methylation in breeding zebrafish (Danio rerio), Epigenetics, vol.11, pp.526-538, 2016.

S. González-rojo, M. Lombó, C. Fernández-díez, and M. P. Herráez, Male exposure to bisphenol a impairs spermatogenesis and triggers histone hyperacetylation in zebrafish testes, Environ. Pollut, vol.248, pp.368-379, 2019.

A. Hatef, S. M. Alavi, A. Abdulfatah, P. Fontaine, M. Rodina et al., Adverse effects of bisphenol A on reproductive physiology in male goldfish at environmentally relevant concentrations, Ecotoxicol. Environ. Saf, vol.76, pp.56-62, 2012.

E. Haubruge, F. Petit, and M. J. Gage, Reduced sperm counts in guppies (Poecilia reticulata) following exposure to low levels of tributyltin and bisphenol A, Proc. R. Soc. Lond. Ser. B Biol. Sci, vol.267, pp.2333-2337, 2000.

F. Lahnsteiner, B. Berger, M. Kletzl, and T. Weismann, Effect of bisphenol A on maturation and quality of semen and eggs in the brown trout, Salmo trutta f. fario, Aquat. Toxicol, vol.75, pp.213-224, 2005.

M. Lombó, C. Fernández-díez, S. González-rojo, C. Navarro, V. Robles et al., Transgenerational inheritance of heart disorders caused by paternal bisphenol A exposure, Environ. Pollut, vol.206, pp.667-678, 2015.

J. Hu, S. Sun, M. Guo, and H. Song, Use of antagonists and morpholinos in loss-of-function analyses: Estrogen receptor ESR2a mediates the effects of 17alpha-ethinylestradiol on primordial germ cell distribution in zebrafish, Reprod. Biol. Endocrinol, vol.12, pp.2-7, 2014.

M. Doitsidou, M. Reichman-fried, J. Stebler, M. Köprunner, J. Dörries et al., Guidance of primordial germ cell migration by the chemokine SDF-1, Cell, vol.111, pp.647-659, 2002.

E. Raz, Primordial germ-cell development: The zebrafish perspective, Nat. Rev. Genet, vol.4, pp.690-700, 2003.

L. Gamba, N. Cubedo, A. Ghysen, G. Lutfalla, and C. Dambly-chaudiere, Estrogen receptor ESR1 controls cell migration by repressing chemokine receptor CXCR4 in the zebrafish posterior lateral line system, Proc. Natl. Acad. Sci, vol.107, pp.6358-6363, 2010.

C. Yoon, K. Kawakami, and N. Hopkins, Zebrafish vasa homologue RNA is localized to the cleavage planes of 2-and 4-cell-stage embryos and is expressed in the primordial germ cells, vol.124, pp.3157-3165, 1997.

J. Bussmann and E. Raz, Chemokine-guided cell migration and motility in zebrafish development, EMBO J, vol.34, pp.1309-1318, 2015.

E. M. Eddy, Fine structural observations on the form and distribution of nuage in germ cells of the rat, Anat. Rec, vol.178, pp.731-757, 1974.

L. C. Olsen, R. Aasland, and A. Fjose, A vasa-like gene in zebrafish identifies putative primordial germ cells, Mech. Dev, vol.66, pp.95-105, 1997.

H. Knaut, H. Steinbeisser, and H. Schwarz, Nüsslein-Volhard, C. An evolutionary conserved region in the vasa 3 UTR targets RNA translation to the germ cells in the zebrafish, Curr. Biol, vol.12, pp.454-466, 2002.

T. Saito, R. Goto-kazeto, K. Arai, and E. Yamaha, Xenogenesis in Teleost Fish through Generation of Germ-Line Chimeras by Single Primordial Germ Cell Transplantation1, Biol. Reprod, vol.78, pp.159-166, 2007.

M. F. Riesco, D. G. Valcarce, J. Alfonso, M. P. Herráez, and V. Robles, In Vitro Generation of Zebrafish PGC-Like Cells1, Biol. Reprod, vol.91, pp.1-11, 2014.

D. C. Dolinoy, D. Huang, and R. L. Jirtle, Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development, Proc. Natl. Acad. Sci, vol.104, pp.13056-13061, 2007.

B. F. Hales, L. Grenier, C. Lalancette, and B. Robaire, Epigenetic programming: From gametes to blastocyst, Birth Defects Res. Part A Clin. Mol. Teratol, vol.91, pp.652-665, 2011.

H. Jammes, C. Junien, and P. Chavatte-palmer, Epigenetic control of development and expression of quantitative traits, Reprod. Fertil. Dev, vol.23, pp.64-74, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01018986

R. L. Hill and D. M. Janz, Developmental estrogenic exposure in zebrafish (Danio rerio): I. Effects on sex ratio and breeding success, Aquat. Toxicol, vol.63, pp.417-429, 2003.

J. B. Willey and P. H. Krone, Effects of endosulfan and nonylphenol on the primordial germ cell population in pre-larval zebrafish embryos, Aquat. Toxicol, vol.54, pp.113-123, 2001.

L. P. Weber, R. L. Hill, and D. M. Janz, Developmental estrogenic exposure in zebrafish (Danio rerio): II. Histological evaluation of gametogenesis and organ toxicity, Aquat. Toxicol, vol.63, pp.431-446, 2003.

S. H. Lam, M. M. Hlaing, X. Zhang, C. Yan, Z. Duan et al., Toxicogenomic and phenotypic analyses of bisphenol-a early-life exposure toxicity in zebrafish, PLoS ONE, vol.6, 2011.

M. Lombó, S. González-rojo, C. Fernández-díez, and M. P. Herráez, Cardiogenesis impairment promoted by bisphenol A exposure is successfully counteracted by epigallocatechin gallate, Environ. Pollut, vol.246, pp.1008-1019, 2019.

S. Santangeli, F. Maradonna, G. Gioacchini, G. Cobellis, C. C. Piccinetti et al., BPA-Induced Deregulation of Epigenetic Patterns: Effects on, Female Zebrafish Reproduction. Sci. Rep, 2016.

C. D. Metcalfe, T. L. Metcalfe, Y. Kiparissis, B. G. Koenig, C. Khan et al., Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes), Environ. Toxicol. Chem, vol.20, pp.297-308, 2001.

E. J. Zillioux, I. C. Johnson, Y. Kiparissis, C. D. Metcalfe, J. V. Wheat et al., The sheepshead minnow as an in vivo model for endocrine disruption in marine teleosts: A partial life-cycle test with 17alpha-ethynylestradiol, Environ. Toxicol. Chem, vol.20, 1968.

T. Saito, T. Fujimoto, S. Maegawa, K. Inoue, M. Tanaka et al., Visualization of primordial germ cells in vivo using GFP-nos1 3 UTR mRNA, Int. J. Dev. Biol, vol.50, pp.691-699, 2006.

K. W. Tzung, R. Goto, J. M. Saju, R. Sreenivasan, T. Saito et al., Early depletion of primordial germ cells in zebrafish promotes testis formation, Stem Cell Rep, vol.4, pp.61-73, 2015.

Y. Matsui and K. Mochizuki, A current view of the epigenome in mouse primordial germ cells, Mol. Reprod. Dev, vol.81, pp.160-170, 2014.

L. Ribas, K. Vanezis, M. A. Imués, and F. Piferrer, Treatment with a DNA methyltransferase inhibitor feminizes zebrafish and induces long-term expression changes in the gonads, Epigenet. Chromatin, vol.10, 2017.

S. Houwing, L. M. Kamminga, E. Berezikov, D. Cronembold, A. Girard et al., A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish, Cell, vol.129, pp.69-82, 2007.

J. Drastichová, Z. Svobodová, M. Groenland, R. Dob?íková, V. ?lábek et al., Effect of Exposure to Bisphenol A on the Sex Differentiation in Zebrafish (Danio rerio), Acta Vet. Brno, vol.74, pp.287-291, 2005.

J. R. Mccarrey, Distinctions between transgenerational and non-transgenerational epimutations, Mol. Cell. Endocrinol, vol.398, pp.13-23, 2014.

C. Labbé, V. Robles, and M. P. Herráez, Epigenetics in fish gametes and early embryo, Aquaculture, vol.472, pp.93-106, 2017.

N. Aluru, Epigenetic effects of environmental chemicals: Insights from zebrafish, Curr. Opin. Toxicol, vol.6, pp.26-33, 2017.

M. F. Riesco and V. Robles, Cryopreservation Causes Genetic and Epigenetic Changes in Zebrafish Genital Ridges, PLoS ONE, vol.8, 2013.

C. Steilmann, A. Paradowska, M. Bartkuhn, M. Vieweg, H. C. Schuppe et al., Presence of histone H3 acetylated at lysine 9 in male germ cells and its distribution pattern in the genome of human spermatozoa, Reprod. Fertil. Dev, vol.23, pp.997-1011, 2011.

Z. Chen, X. Zuo, D. He, S. Ding, F. Xu et al., Long-term exposure to a "safe" dose of bisphenol A reduced protein acetylation in adult rat testes, vol.7, p.40337, 2017.

A. Soubry, C. Hoyo, R. L. Jirtle, and S. K. Murphy, A paternal environmental legacy: Evidence for epigenetic inheritance through the male germ line, Bioessays, vol.36, pp.359-371, 2014.

L. Marandel, C. Labbé, J. Bobe, and P. Le-bail, Nanog 5 -upstream sequence, DNA methylation, and expression in gametes and early embryo reveal striking differences between teleosts and mammals, Gene, vol.492, pp.130-137, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01205039

T. Le, K. Kim, G. Fan, and K. F. Faull, A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples, Anal. Biochem, vol.412, pp.203-209, 2011.

M. Karimi, S. Johansson, D. Stach, M. Corcoran, D. Grandér et al., LUminometric Methylation Assay)-A high throughput method to the analysis of genomic DNA methylation, Exp. Cell Res, vol.312, 1989.

S. González-rojo, C. Fernández-díez, M. Lombó, and M. P. Herráez, Distribution of DNA damage in the sperm nucleus: A study of zebrafish as a model of histone-packaged chromatin, Theriogenology, vol.122, pp.109-115, 2018.