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Abstract Above-ground vegetation biomass is one of the major carbon sinks and provides both
provisioning (e.g., forestry products) and regulating ecosystem services (by sequestering carbon).
Continuing deforestation and climate change threaten this natural resource but can effectively be countered
by national conservation policies. Here we present time series (1999–2017) derived from complementary
satellite systems to describe a phenomenon of global significance: the greening of South China Karst. We find
a major increase in growing season vegetation cover from 69% in 1999 to 81% in 2017 occurring over ~1.4
million km2. Over 1999–2012, we report one of the globally largest increases in biomass to occur in the
South China Karst region (on average +4% over 0.9 million km2), which accounts for ~5% of the global areas
characterized with increases in biomass. These increases in southern China’s vegetation have occurred
despite a decline in rainfall (�8%) and soil moisture (�5%) between 1999 and 2012 and are derived from
effects of forestry and conservation activities at an unprecedented spatial scale in human history
(~20,000 km2 yr�1 since 2002). These findings have major implications for the provisioning of ecosystem
services not only for the Chinese karst ecosystem (e.g., carbon storage, water filtration, and timber
production) but also for the study of global carbon cycles.

1. Introduction

The availability of long time series of dense satellite imagery has enabled the scientific community to observe
a globally increasing vegetation cover (Fensholt et al., 2012; Nemani et al., 2003; Zhu et al., 2016). This global
greening is commonly attributed to an elevated level of atmospheric CO2 (Piao et al., 2015; Zhu et al., 2016)
and changes in the amount and seasonality of rainfall, causing increased plant productivity and encroach-
ment of woody vegetation (Brandt et al., 2017). Several studies have assessed the direct impact of forestry
and conservation projects on vegetation (Cao et al., 2014, 2016; Cao & Zhang, 2015; Fang et al., 2014; Tong
et al., 2017, 2018; Xiao, 2014; Y. Zhang et al., 2016), yet the significance of such projects on global biomass
and vegetation cover trends is rarely studied.

The South China Karst region is one of the largest exposed carbonate rock areas in the world, covering
~1.9 million km2 (~0.54 million km2 underlain by carbonate rocks) and hosting more than 200 million
people in eight provinces (Zhang et al., 2017). Accelerating land degradation has been reported as a
result of increased exploitation of natural resources during the last half century (Jiang et al., 2014).
Population pressure led farmers to increasingly expand to sloping areas and as a result, large parts of
the karst area were deforested, exposing the soil to erosion. Consequently, a significant area of karst
(~0.13 million km2) previously covered by shrubs and trees was gradually converted to bare soils. The loss
of soil and vegetation cover was detrimental from both an ecological and economical point of view: The
karst aquifer is an important water reservoir, but the reduction in vegetation cover resulted in surface run-
off and decreased infiltration rates. Moreover, local livelihoods depending on agriculture lost their source
of income resulting in aggravated rate of poverty, which is estimated to affect 50 million people (Jiang
et al., 2014; J. Zhang et al., 2016).
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To combat this case of land degradation and to alleviate poverty, the Chinese government has invested more
than US$19 billion in mitigation initiatives since the turn of the new millennium. Considering this investment
and the spatial extent, China’s ecological engineering projects are known as the most ambitious afforestation
and conservation projects in human history (Moore et al., 2016). These projects are aimed at converting farm-
lands and degraded lands into conservation or production forests and grasslands (Delang & Yuan, 2015).
Farmers are provided with tree saplings and a compensation payment if trees are planted on sloped farm-
lands. The trees provide ecosystem services, and the wood and nontimber products can be sold. In this
way, tree plantations have effectively been implemented and most farmlands on sloped hills have been
abandoned and are currently covered by shrubs, tree plantations, or secondary and man-made forests
(Hua et al., 2016; Ouyang et al., 2016). Furthermore, strict protection laws limit the general use of woody
resources, leading to a natural regeneration of the region. Almost two decades after the initiation of project
implementations, the humid climate and the selection of robust and fast growing tree species (e.g. Eucalyptus
spec. and Zenia insignis) have led to a significantly increased vegetation cover in large parts of the karst eco-
system (Cai et al., 2014; Tong et al., 2017). While the negative aspects of monocultural plantations have been
discussed elsewhere (Chen et al., 2015; Cao, 2008, 2011), the increase in above-ground biomass and the asso-
ciated carbon sequestration may contribute considerably to the national goals of climate mitigation and
could have the potential to be of global impact. Several remote sensing-based studies monitoring land
degradation and vegetation cover of South China Karst exist and have shown that trends in both leaf area
index and carbon stocks have been considerably altered in conservation areas located in the southern parts
of the karst region (Tong et al., 2018; Zhang et al., 2017). Yet the scope of these studies remains local and data
sources do not include recent advances in the monitoring of vegetation from space (Brandt et al., 2018;
Verger et al., 2014).

Vegetation monitoring from traditional optical Earth observation (EO) data sets is generally limited to the
green canopy layer with less sensitivity to the biomass volume of the above-ground vegetation (Tian et al.,
2016). Moreover, for satellite systems operating in the optical domain, cloud contamination, signal saturation,
and climate induced interannual fluctuations in canopy density make it challenging to consistently assess
spatial and temporal patterns in above-ground biomass, of which a major proportion is stored in trunks
and branches (Latifi et al., 2015). Here we generate and use data sets based on the measurements of passive
microwave emission of land surfaces from different satellites. Two main parameters can be retrieved from
passive microwave observations: surface soil moisture and vegetation optical depth (VOD; Wigneron et al.,
2007, 2017). The most recent system is the Soil Moisture and Ocean Salinity (SMOS) mission, launched at
the end of 2009 and provides first observations at L-band (1.4 GHz; Kerr et al., 2016).

The retrieved VOD index is largely insensitive to atmospheric perturbations and closely related to the water
content of the entire vegetation layer, including all vegetation elements such as stems, leaves, and addition-
ally branches and trunks in the case of woody vegetation (Guglielmetti et al., 2007; Wigneron et al., 1995).
Contrary to the VOD index retrieved at higher frequencies (>5 GHz, hereafter termed X-VOD), the L-band
VOD (hereafter termed L-VOD) is not limited to the upper canopy, shows no saturation over densely vege-
tated areas, and is almost linearly linked to biomass volumes (Brandt et al., 2018; Konings et al., 2017;
Rodríguez-Fernández et al., 2018; Vittucci et al., 2016). This makes L-VOD a well suited proxy for monitoring
temporal changes in biomass of forest biomes and marks a new era in vegetation monitoring from space
(Wigneron et al., 2017). Our study generates both high- and low-frequency VOD data sets along with conven-
tional optical satellite data to monitor the recent greening and the associated above-ground biomass
changes in the South China Karst region. The extent of these changes is related to the spatiotemporal pat-
terns observed at the global scale.

2. Materials and Methods
2.1. Satellite Data

Satellite time series are prone to sensor shifts, orbital drifts, atmospheric conditions, and processing
algorithms and thus include considerable bias and uncertainty (Tian et al., 2015). We generate and use four
different data sets (Table 1) to study changes at global and regional scales: Two are based on optical remote
sensing (GEOV2 Fraction of Vegetation Cover [FCover] and Moderate Resolution Imaging Spectroradiometer
[MODIS] normalized difference vegetation index [NDVI]) and two based on passive microwave satellite
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observations (L-VOD and X-VOD). FCover (Figures 1a and 1b) and NDVI are widely used to study the
greenness of vegetation cover (Tucker, 1979; Verger et al., 2014), and VOD is a recently established proxy
for biomass volumes (Liu et al., 2015).

Vegetation optical depth is considered here as proxy for above-ground biomass of living vegetation and
forms the basis of this study. Other data sets are used to provide complementary information on vegetation
cover and chlorophyll abundance, and we do not aim at a comparison of the different data sets, nor do we
expect the data to be free of uncertainty. As in Momen et al. (2017), rainforests are excluded here, because
uncertainties related with cloud cover and saturation are associated with the data sets over these types of
forests (Fernandez-Moran et al., 2017). Moreover, deserts and water bodies are removed from the analysis,
using the MODIS IGBP land cover mask from 2010 (classes 2, 16, and 0).

2.2. X-VOD and SMOS-IC L-VOD

In this study we consider a VOD index estimated at L-band (L-VOD) from the SMOS observations and a VOD
index estimated at X-band (X-VOD) from different satellite systems (Table 1). Unlike optical sensors, these sys-
tems are almost insensitive to atmospheric and Sun illumination effects and measure the passive microwave
emission of above-ground vegetation components (Wigneron et al., 1995). The satellite sensors can thus
sense deeper through the vegetation layer than optical data: the lower the frequency, the greater the depth
of emission below the canopy.

Soil Moisture and Ocean Salinity IC L-VOD is a unique data set based on low-frequency observations that
allows for monitoring of the vegetation water content (in kg m�2) of the entire vegetation layer but is avail-
able only since 2011. The sensitivity of L-VOD to the leaf component is low in comparison to its sensitivity to
branches and trunks (Guglielmetti et al., 2007). X-VOD is based on high-frequency VOD (Du et al., 2017), sen-
sing both the green and nongreen parts of the vegetation, and is thus also widely used as a proxy for biomass
(Liu et al., 2015; Tong et al., 2018). The higher frequency of the X-VOD sensor makes it more sensitive to smal-
ler vegetation components (such as leaves and twigs) than L-VOD, and X-VOD is mainly sensitive to the char-
acteristics of the upper canopy layer when the vegetation is dense, similar to vegetation indices computed in
the optical domain (Liu et al., 2015; Tian et al., 2015, 2016). Consequently, although both the L-VOD and
X-VOD indices can be used for biomass monitoring, L-VOD can be efficiently used to sense the entire biomass
volume even over dense vegetation canopies (Rodríguez-Fernández et al., 2018; Vittucci et al., 2016; Zhang
et al., 2011). The daily X-VOD and L-VOD observations are aggregated to annual medians, strongly reducing
undesired effects of noise (e.g., radio frequency interferences; RFIs). Effects of RFIs over China are generally
strong and a source of noise for SMOS data (Oliva et al., 2012) but mainly affect northern China. They are care-
fully filtered out in the generated L-VOD data set by using only observations that have a root mean square
error between the measured and modeled brightness temperatures lower than 15 K (Fernandez-Moran et al.,
2017). Moreover, we use SMOS data from only the descending orbit, which provides more high-quality
observations for the study area than the commonly used data from the ascending orbit. This is because
the multiangular SMOS antenna is tilted forward by 32°, meaning it is tilted toward the northern pole for
ascending orbits (southern pole for descending orbits). Over China, man-made RFIs are mainly located in
the northern part of the country. So due to the antenna tilt, RFIs affect the SMOS observations during
ascending orbits but to a much lesser extent during descending orbits.

Table 1
Overview of Contemporary Satellite Data Sets on Vegetation Monitoring Applied in This Study

Period Satellite systems Characteristics Proxy Reference

L-VOD (IC v105) 2011–2017
(25 km)

SMOS Passive microwave emissions
at low frequency

Above-ground biomass, more sensitive to
trunks and branches (whole vegetation
layer), less to leaves

Wigneron et al. (2017)

X-VOD (v2) 1999–2012
(25 km)

SSM/I, WindSat,
AMSR-E

Passive microwave emissions
at high frequency

Above-ground biomass, sensitive to leaves,
trunks and branches of the upper canopy

Liu et al. (2015)

GEOV2 FCover
(v2.0.2)

1999–2017
(1 km)

SPOT VGT, PROBA-V Optical bands (red, NIR, SWIR) Fraction of ground covered by green
vegetation in % (2-dimensional)

Verger et al. (2014)

MODIS NDVI
(MOD13C2 06)

2000–2017
(5.6 km)

Terra MODIS Ratio of two optical bands
(red, NIR)

Index for vegetation greenness and
cover (2-dimensional)

Tucker (1979)

Note. All data sets are freely available.
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There exists a good demonstration that X-VOD and L-VOD signal scale with above-ground biomass (Brandt
et al., 2018; Liu et al., 2015; Rodríguez-Fernández et al., 2018; Vittucci et al., 2016; Zhang et al., 2011). We thus
report relative changes in VOD as proxies of the relative changes in above-ground vegetation biomass at an
annual time scale.

2.3. GEOV2 FCover and MODIS NDVI

We apply two additional independent global EO data sets that are not able to assess biomass volumes but are
established proxies for the abundance of vegetation (e.g., Myneni & Hall, 1995). GEOV2 FCover and MODIS
NDVI are based on independent satellite platforms and cover the full period of conservation efforts in the
karst area. FCover corresponds to the fraction of ground covered by green vegetation, that is, the

Figure 1. Overview of the study area and major data sets. (a) Global annual mean vegetation cover (GEOV2 FCover 1999–2017). A red rectangle marks Southern
China which is zoomed in (b). (b) The study area (red line) is the China karst region spanning eight provinces. (c) Seasonality of FCover (for 2003 in 10-day steps)
with 95% confidence interval, SMOS-IC L-VOD, and SMOS-IC soil moisture (averaged 2011–2017 in 1-day steps and shown with a 30-day moving average) for the
pixels within the study area. (d) A series of photos taken in October 2017 (1) farmland abandonment and reforestation in the foreground and natural regeneration in
the background (2) tree plantings on sloping hills and (3) land degradation.
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vegetation cover (Verger et al., 2014). NDVI is a simple index based on
the ratio between red and near infrared bands reflecting the greenness
of plants, which is an indirect estimation of vegetation cover (Tucker,
1979). FCover (NDVI) data are delivered cloud-filtered and gap filled
in 10 (30)-day steps.

For each pixel and year, we calculate the 90th percentile in the FCover
data among the 36 images (12 images for MODIS NDVI), representing
the annual growing season conditions. This is preferred over the annual
peak value, which may be susceptible to noise. In the following, the
value at the 90th percentile in the FCover/NDVI data is termed growing
season FCover/NDVI.

2.4. Hydrological and Inventory Data

To study hydrological conditions we use CHIRPS annual rainfall esti-
mates (1999–2017; Funk et al., 2015) as well as soil moisture from the
ESA Climate Change Initiative (CCI; 1999–2016) and from the SMOS
mission (2011–2017; Kerr et al., 2016). Whereas ESA CCI soil moisture
is a combined product of several active and passive microwave satel-
lites (Enenkel et al., 2016), SMOS-IC soil moisture is derived from the
same satellite as L-VOD, but the products are independent due to the
multiangular and dual-polarization capability of the SMOS system
(Wigneron et al., 2017). CCI soil moisture is included because it has a
longer temporal availability. Monthly and annually averaged soil moist-
ure estimates serve as a proxy for the root zone soil moisture and are
considered as better suited than rainfall as indicators of plant water
availability (Momen et al., 2017).

Finally, we include inventory data provided by the State Forestry
Administration of China to evaluate annually summed conservation
areas and forest plantations (in km2) in the eight karst provinces

(2002–2015; Figures 1a and 1b). The data include the following conservation projects: (1) Natural Forest
Protection Project starting in 2001 in 5 provinces, (2) The Grain to Green Programme starting in 2001 in
seven provinces with the aim to convert farmland on slopes greater than 25° into ecological and economical
forests, (3) Karst Rocky Desertification Comprehensive Control and Restoration Project launched in 2008 in
eight provinces with the aim to restore vegetation cover and improve water and soil conservation capabil-
ities, and (4) the River Shelter Forest Project launched in 6 provinces aiming at increasing forest and vegeta-
tion cover on the middle and upper reaches of the Yangtze and Zhujiang Rivers to control water and soil
erosion. Additionally to conservation activities, extensive tree plantations (e.g. Eucalyptus spec, Pinus
massoniana Lamb, and Cunninghamia lanceolate) with economic purposes were established in this area,
making the whole region one of the major forestry product producers in China (Chen et al., 2015). It should
be noted that the survival rate is around 70% (Delang & Yuan, 2015) and that forest plantations are
harvested regularly, making the cumulative number of yearly plantations greatly overestimating the overall
plantation area.

2.5. Trend Analysis

We apply a linear regression with the annual satellite time series (annual median for L-VOD and X-VOD and
90th percentile for FCover, NDVI) against time to identify temporal changes and use the P value to single out
significant trends (P < 0.05). To facilitate the comparability of trends between sensors, but also to highlight
major changes in areas of less dense vegetation, we report the trends as relative change in percent. This is the
per-pixel trend from the start to the end year, that is, the slope (of the linear regression variable against time)
multiplied with the number of years and divided by the mean. Anomalies are calculated by the z-score (sub-
tract by mean and divide by standard deviation). All analyses are performed in free and open software
(GRASS GIS, R, and GDAL).

Figure 2. Contribution of China karst (Figure 1b) to significant (P < 0.05) global
biomass and vegetation cover trends. (a) Histogram of pixels (25 × 25 km2) of
relative change in X-VOD biomass (1999–2012) for China karst and globally.
(b) Same as (a) but as a probability density plot. (c) Probability density plot for
vegetation cover (FCover) changes 1999–2017.
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2.6. Study Area

The study area is the entire South China Karst region, covering eight
provinces (~1.9 million km2) of which ~0.54 million km2 can be consid-
ered as karst (i.e., is underlain by carbonate rocks; Figures 1a–1d). The
natural vegetation is a mixed subtropical evergreen and broadleaf
forest, strongly modified or converted by management. Farmers grow
mainly rice in river valleys and other lowlands, but population pressure
caused farmlands to expand even to steeply sloping hills prior the
preproject implementation period. The above-mentioned conservation
and restoration programs encourage farmers to abandon farmlands on
slopes, and natural regeneration and active plantation projects
intended to convert vast areas to shrubland, plantations, and
secondary forests (Delang & Yuan, 2015; Jiang et al., 2014). No
rainforest/desert/water bodies are present in the study area.

The growing season of vegetation lasts from April to November, with a
clear seasonality in vegetation cover ranging from ~20% during boreal
winter up to ~80% during the peak time in summer (Figure 1c). The
seasonality of L-VOD is low, ranging from ~0.35 to ~0.4, which is caused
by the higher sensitivity of L-VOD to persistent vegetation as compared
to recurrent vegetation. A lag time in the seasonality between FCover
and L-VOD has often been observed over a variety of vegetation types
and is caused by the sensitivity of L-VOD to the whole vegetation stra-
tum, while FCover is related to the green canopy layer (Lawrence et al.,
2014). Soil moisture is high between March and July but drops to a
lower level for the remaining months (Figure 1c).

3. Results
3.1. Global and Regional Changes in Biomass

By using X-VOD (1999–2012) and L-VOD (2011–2017) as a proxy for
above-ground biomass, we map percent deviation from the mean for
the two periods at a 25 × 25 km spatial resolution. For the 1999–2012
period, there is an overall positive change in biomass at global scale
(+2% ±15; P < 0.05; Figures 2a and 2b). Areas with a significant
(P < 0.05) positive biomass trend cover globally ~22 million km2, of
which ~5% are located in the South China Karst region (Figure 2a), mak-
ing the study area one of the largest, spatially coherent, area of biomass
increase (Figures 3a and 4a). More specifically, 55% of the study area
show a significant (P < 0.05) increase in biomass (on average +4% ±6
over ~0.9 million km2), of which 0.3 million km2 are found in karst land-
scape (representing 64% of the 0.54 million km2 karst area). This
increase occurs in spite of a decrease in rainfall (�8% ±10) over the
same period (Figure 3d and Table 2).

After this dry period, positive rainfall anomalies (+38% ±11) favor the
L-VOD observed biomass increase which occurs steadily over the

studied period (Figures 3b and 3d) from 2011 to 2017 (+11% ±25; Table 2). Note that L-VOD is more stable
with less fluctuation than X-VOD (Figures 3a and 3b).

3.2. Global and Regional Changes in Vegetation Cover

We apply GEOV2 FCover and MODIS NDVI to map global changes in vegetation cover from 1999 to 2017. The
application of two independent data sets minimizes uncertainty on trends and patterns. These data sets
cover the starting phase of forestry and conservation projects (2001) until present and document the karst
area as part of a globally increasing vegetation cover over 19 years (Figures 3b, 3c and 4). Overall, the

Figure 3. Vegetation and hydrological dynamics 1999–2017 in China karst
(Figure 1b). (a) High frequency X-VOD (1999–2012) and (b) low frequency
L-VOD (2011–2017). (c) GEOV2 growing season FCover (1999–2017) and MODIS
growing season NDVI (2000–2017) together with their 95% confidence intervals
(shaded areas). (d) CHIRPS annual rainfall (1999–2017) and CCI soil moisture
(1999–2016) with 95% confidence intervals. Annual values are anomalies calcu-
lated by the z-score. (e) Annual (right y axis) and cumulative (left y axis) extent of
forestry and conservation areas in the eight provinces (2002–2015).
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Figure 4. Global maps of significant (P< 0.05) increase/decrease. (a) X-VOD annual average 1999–2012, (b) GEOV2 growing
season FCover (1999–2017), and (c) MODIS growing season NDVI (2000–2017).

Table 2
Relative Changes in Terms of Trends (%) in the Karst Region (Figure 1b) of the Different Data Sets (Table 1) for Three Periods

1999–2012 2011–2017 1999–2017

Biomass (SMOS-IC L-VOD) NA +11% (0.32–0.35) NA
Canopy biomass (X-VOD) +4% (0.78–0.80) NA NA
Vegetation cover (GEOV2 FCover) +7% (69–76%) +7% (74–81%) +12% (69–81%)
Greenness (MODIS NDVI) starting 2000 +6% (0.73–0.76) +4% (0.76–0.79) +8% (0.73–0.79)
Rainfall (CHIRPS) �8% (1,341–1,298 mm) +38% (1,034–1,475 mm) +10% (1,341–1,475 mm)
Soil moisture (CCI) ending 2016 �5% (0.32–0.31 m3 m�3) +8% (0.29–0.32 m3 m�3) +1% (0.32–0.32 m3 m�3)

Note. The numbers in brackets show the rounded start and end values in the corresponding unit for the corresponding period (e.g., FCover was 69% in 1999, 74%
in 2011, and 81% in 2017). The start and end values do not always correspond with the trend (% change). No significance test is applied here.
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global change in the vegetation cover (FCover) is positive from 1999 to 2017 (+14% ±28; P< 0.05; Figure 2c)
on ~40 million km2, of which 1.4 million km2 (~4%) are located in the karst region of Southern China
(Figures 4b and 4c and 5a). The pattern was confirmed by MODIS NDVI, which is available from 2000 to
2017 (Figure 4c and Table 2).

Following the start of the conservation and afforestation programs in 2001, the vegetation cover rapidly
increases (+7%) over the karst region in spite of a decreasing trend in annual rainfall (�8%) and soil moisture
(�5%; 1999–2012; Figures 3c and 3d). The increase in vegetation cover levels off around 2007, and further,
vegetation growth was impeded by abnormally dry years until 2011. After 2011, the increase in the vegeta-
tion cover continues in correspondence with increases in rainfall and soil moisture (Figures 3c and 3d and
Table 2). In absolute numbers, the growing season FCover increases from 69% in 1999/2000 to 81% in
2017, and growing season NDVI increases from 0.73 to 0.79 over the same period. Note that NDVI values
at that level are known to be in the range prone to saturation effects when compared to biomass volumes
(Tian et al., 2016). The strong increase can be related to an average tree plantation area of 19 183 km2 per
year (Figure 3e), which is likely to have a great impact on the vegetation cover and accumulated biomass.

Figure 5. Vegetation cover (FCover) trends in China’s karst region. (a) Changes in vegetation cover between 1999 and 2017
in % fractional cover at 1 × 1 km spatial resolution. (b) The relationship between terrain slope (in degree) and changes in
vegetation cover. (c) Same as (b) for terrain elevation in meters above sea level.
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Indeed, tree planting activities, which reach their maximum number in 2015 (~31,000 km2), primarily take
place on sloping hills, and there is a clear and significant (P < 0.01) relationship between changes in
vegetation cover and both terrain slopes and elevation, with a majority of the increases happening in
~2,500 m above sea level (Figures 5b and 5c). However, the spatial resolution of 1 km impedes a clearer
picture and higher resolution analyses are required.

To better analyze the co-variations of biomass and vegetation cover, we estimate the global areas with sig-
nificant positive trends (P< 0.05) both in growing season FCover and X-VOD for 1999–2012. We find that the
Chinese karst area is among the largest spatially coherent area with increases in both vegetation cover and
biomass for this period (Figure 6).

4. Discussion

All data sets applied in this study highlight South China Karst as a global hot spot of vegetation growth. We
find that the area is globally one of the largest coherent regions with positive biomass and vegetation cover
trends (1999–2017). This result underlines the region as being unique in relation to recent vegetation
dynamics, and also in relation to the fact that other large hot spots of greening, like the Sahel (Hickler
et al., 2005), the tropics (Nemani et al., 2003), or the northern ecosystems (Forkel et al., 2016), are mostly dri-
ven by climatic factors. In contrast, rainfall trends are negative in the earlier years (1999–2011) and the karst
appears to have benefited from the effects of forestry practice and conservation management starting in
2001. This supports the results of Tong et al. (2018), which find positive vegetation trends in areas of high con-
servation efforts in the southern parts of the karst region. Only in the later years (2012–2017) favorable rainfall
and soil moisture conditions have supported the vegetation growth. Moreover, other studies assessing
global/regional greening primarily refer to vegetation primary productivity (Nemani et al., 2003; Zhang
et al., 2017; Zhu et al., 2016). The karst region is among the globally largest regions where a significant
increase in vegetation cover co-occurs with a significant increase in biomass.

Our study is limited to above-ground vegetation biomass, but an increase in soil carbon is likely to be linked
with the observed biomass changes, as solid evidence that conservation opens for sequestering carbon in
the soil exist (Liu et al., 2014). This increased biomass and carbon sequestration is not only important for
the provisioning of ecological services in the karst area at local and regional scale (Ouyang et al., 2016) but
also has likely impact on the global carbon budget. This shows that conservation, if applied at large scale,
may offset or at least partly balance global carbon losses from deforestation and land cover transformation
that happens in large parts of the world (Brandt et al., 2017). After several dry years around 2010 (Luo
et al., 2016), rainfall and soil moisture conditions in southwest China were increasingly favorable during
recent years (2012–2017) and the planted and protected woody vegetation certainly benefits from sufficient
rainfall. However, the strongly positive trends of vegetation cover and biomass contrasting the negative
trends in rainfall in the earlier years (1999–2010) suggest that tree plantings (on an average area of
~20,000 km2 per year) and land cover conversion have strongly impacted the observed phenomenon (Cai
et al., 2014; Xiao, 2014).

Figure 6. Spatial agreement of significant (P< 0.05) increase in vegetation cover (GEOV2 FCover) and biomass (X-VOD) for
1999–2012.
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Our study supports that conservation projects have caused a positive regreening effect in southern China,
helping to offset land degradation and contributing to climate change mitigation when studied at a large
spatial extent (Tong et al., 2018). The substantial investments in ecological conservation and restoration in
South China karst significantly improve the vegetation cover at large spatial scale, even under unfavorable
weather condition. To ensure rapid growth of the plantations and to provide potential future timber profits
to local livelihoods, some programs have, however, led to large scale planting of monocultures of nonnative
trees on land that was formerly used for agriculture or that could potentially have been restored to native
vegetation (Delang & Yuan, 2015). Such plantations may be highly vulnerable to disturbances other than
drought (e.g., pest and diseases), are poor habitats for native species, and are thus potentially less ecologically
resilient as compared to vegetation of higher biodiversity (Cao, 2011; Delang & Yuan, 2015). In addition, the
extent of afforestation has potentially negative effects on regional food production by reducing areas of ara-
ble land with consequences related to local community resilience, regional food security, and export of the
environmental cost of agriculture to other parts of the world (Delang & Yuan, 2015). On the other hand, farm-
ers were able to improve their farming techniques supporting a general increase in food production during
the Grain to Green Project phase (Cao, 2011; Cao et al., 2011). The increase in vegetation cover and biomass
can be considered a success of global significance, but local ecological and economical problems remain and
should not be overlooked (Cao et al., 2017; Cao, 2011; Chen et al., 2015). For further implementations of eco-
logical conservation in South China Karst and elsewhere, the specific restoration measures should also con-
sider the spatial and regional differences under various terrain and landform conditions.

Optical satellite sensors are able to reliably detect significant increases in the vegetation cover, but the bio-
mass increase observed by L-VOD over 2011–2017 is higher than the increase in vegetation cover. This could
be related to the fact that low-frequency microwave sensors are able to assess biomass accumulations below
the canopy of densely vegetated areas. However, a quantification of L-VOD dynamics in biomass units could
not yet be applied.

The data sets used here are state-of-the-art with unprecedented opportunities for exploring land surface
dynamics, yet not free of uncertainties. GEOV2 FCover time series include a shift from the VGT-2 to the
PROBA-V sensor in 2014. However, the data set has shown to be consistent with MODIS with the advantage
of an additional year (1999) and providing biophysical variables at a high temporal frequency (10-day),
continuity (gap-filled data), and smoothness (less affected by noise in the data). Also, the applied X-VOD time
series is a combination of several sensors (Liu et al., 2015); the temporal consistency is found to be high (Tian
et al., 2016). Finally, RFIs are a source of noise for SMOSbaseddata over China (Oliva et al., 2012). The generated
SMOS-IC data set is thoroughly filtered, but the impact of RFI needs to be further investigated as the data set is
new. Taken together, the general trends of all data sets are consistent for the study area and there is a conver-
gence of evidence that Southern China is a global hot spot of vegetation growth and biomass accumulation.

5. Conclusion

We have generated and used time series data sets derived from complementary state-of-the-art satellite sys-
tems to analyze a phenomenon of global significance: the greening of the South China Karst region. This
greening is associated with a substantial increase in biomass, detected by EO systems for quantifying tem-
poral changes in biomass that go beyond current capabilities of sensing vegetation changes primarily in
the upper canopy layer. The application of VOD in the context of Chinese tree planting and conservation pro-
jects has shown the relevance of the data sets at regional and global scales, as well as its usefulness for bio-
mass monitoring in the context of governmental initiatives and ecological assessments. Large parts of the
observed biomass increase in Southern China can be considered as a direct or indirect effect of forestry
and conservation efforts, supported by high annual rainfall and soil moisture in the later years providing
the necessary conditions for the vegetation to grow. The increase in biomass is found to be of global signifi-
cance, and future studies need to explore the effects of observed changes in terms of carbon stocks.
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