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For perennial plants, bud dormancy is a crucial step as its progression over winter
determines the quality of bud break, flowering, and fruiting. In the past decades, many
studies, based on metabolic, physiological, subcellular, genetic, and genomic analyses,
have unraveled mechanisms underlying bud dormancy progression. Overall, all the
pathways identified are interconnected in a very complex manner. Here, we review early
and recent findings on the dormancy processes in buds of temperate fruit trees species
including hormonal signaling, the role of plasma membrane, carbohydrate metabolism,
mitochondrial respiration and oxidative stress, with an effort to link them together and
emphasize the central role of reactive oxygen species accumulation in the control of
dormancy progression.
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INTRODUCTION

In the context of perennial plants, bud dormancy is a crucial step in the phenology cycle, as its
progression over winter determines the quality of bud break, flowering and fruiting. The term
“dormancy” is associated with temporary suspension of visible growth. It comprises true dormancy
(“rest” or “endodormancy”) triggered by internal factors, and climatic dormancy (“quiescence” or
“ecodormancy”) controlled by external factors (Lang et al., 1987; Considine and Considine, 2016).
These phases of dormancy are alleviated by different elements: release of endodormancy requires
cold accumulation whereas ecodormancy advances with heat accumulation toward bud break. For
perennial fruit species, in the context of global warming, endodormancy release may be a critical
step in the future due to insufficient chill accumulation, directly affecting flowering quality and
uniformity, and thus leading to a drastic reduction of fruit production. In the past decades, much
work has been done to unravel the mechanisms underlying dormancy period, and the diversity
of approaches used is indicative of the complexity of the trait. Early studies at the beginning of
the 20th century mainly dealt with the observation of the phenomenon itself and the effects of
dormancy alleviating molecules. In the 70s, advances in microscopy and subcellular techniques
allowed novel observations of cellular modifications over the dormancy period. Later, between 1980
and 2000, physiological studies including metabolic analyses led to further description of the main
pathways involved, more recently highlighted by genetic and genomic studies. Numerous studies,
notably transcriptomic analyses, have led to the identification of common molecular pathways
regulating bud dormancy in trees (Rohde et al., 2007; Ruttink et al., 2007; Yamane et al., 2008;
Jiménez et al., 2010; Leida et al., 2010; El Kayal et al., 2011; Liu et al., 2012; Bai et al., 2013; Zhong
et al., 2013; Xu et al., 2016; Tarancón et al., 2017). Specific gene expression patterns over the course
of dormancy featured hormone signaling, carbon metabolism, stress response and chromatin
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modification (Regier et al., 2010; Rios et al., 2014; Saito et al.,
2015; Wisniewski et al., 2015; Wen et al., 2016). Among the
main pathways identified, the Dormancy-Associated MADS-BOX
(DAM) genes have been a constant interest since they were
proposed to cause the non-dormant phenotype of the evg mutant
of peach (Rodriguez et al., 1994; Bielenberg et al., 2004, 2008;
Howe et al., 2015). In peach, the six tandem-arrayed DAM genes
display distinct seasonal patterns with peaks in expression at
different times during dormancy (Li et al., 2009), supporting their
role in promoting and maintaining dormancy (Jiménez et al.,
2010; Hao et al., 2015). Following this finding, DAM genes and
their involvement in dormancy have been extensively studied
in perennial plants including leafy spurge (Horvath et al., 2008;
Anderson et al., 2010), apple (Mimida et al., 2015), Japanese
pear (Ubi et al., 2010; Saito et al., 2013), tea plant (Hao et al.,
2017), Kiwifruit (Wu et al., 2017), and Japanese apricot (Yamane
et al., 2008; Sasaki et al., 2011). In poplar, genes homologous to
CONSTANS (CO) and FLOWERING LOCUS T (FT) have key
roles in the control of dormancy (Böhlenius et al., 2006; Hsu
et al., 2011; Srinivasan et al., 2012) and the chill-induced release
of endodormancy (Rinne et al., 2011). Recent reviews have nicely
described the molecular advances in dormancy studies (Cooke
et al., 2012; Rios et al., 2014; Sanchez-Perez et al., 2014) therefore
we will not focus our attention on these aspects. Overall, all these
pathways are interconnected in a very complex manner and so far
no integrative scenario has been proposed to precisely describe
their interactions. Nonetheless one particular pathway seems
central and is almost always highlighted in the recent studies:
the response to oxidative stress and the reactive oxygen species
(ROS). Notably, most of the studies using dormancy release
substances such as HC (Hydrogen Cyanamide) show they induce
the ROS scavenging systems. Interestingly, ROS are also thought
to be a key signal during plant development for many aspects
including dormancy (Considine and Foyer, 2014), as shown by
their link to the hormonal interplay, cell wall loosening, and
ion channels in seeds. Here, we review both early and recent
findings on the dormancy processes in buds of temperate fruit
trees species including hormonal signaling, the role of plasma
membrane, carbohydrate metabolism, mitochondrial respiration
and oxidative stress, with an effort to link them together and
emphasize the central role of ROS accumulation in the control
of endo- and ecodormancy progression.

OXIDATIVE STRESS AND REDOX CUES

In contrast to chilling-induced breaking of dormancy, exposing
dormant buds to sub-lethal freezing and high temperatures
as well as other sub-lethal treatments for a short period of
time can overcome rest relatively rapidly (Orffer and Goussard,
1980; Nee and Fuchigami, 1992). Following these observations,
numerous lines of evidence have highlighted that stresses,
especially oxidative and respiratory stresses, are involved in
the release of buds from dormancy. These stresses trigger the
production of ROS, which have been shown to be critical
throughout plant life and development (Considine and Foyer,
2014). This production of ROS including H2O2 in buds suggests

that they may act as key signaling molecules for dormancy
release (Kuroda et al., 2002, 2005; Pérez and Burgos, 2004;
Prassinos et al., 2011; Vergara et al., 2012; Hussain et al., 2015;
Tan et al., 2015). These hypotheses are further supported by
observations that exogenous H2O2 can substitute for chilling,
thus confirming that an increase in H2O2 levels may activate the
sequence of reactions involved in the breaking of bud dormancy
(Pérez and Burgos, 2004; Kuroda et al., 2005; Pérez et al.,
2008). Conversely, treatment of potato tuber with a NADPH
oxidase inhibitor leads to decreased ROS production and delayed
dormancy release (Liu et al., 2017). In plant cells, ROS are
continuously produced as a consequence of aerobic metabolism
in all the intracellular organelles. Cells have the capacity to
rapidly produce and scavenge different forms of ROS levels,
as a result of a balance between formation and detoxification
rates, with a tight link to cellular metabolism, making ROS good
signals to monitor changes in cellular metabolism (Mittler et al.,
2011). Another indication that oxidative stress is an important
part of the process of dormancy is that antioxidant defense
and detoxification pathways are upregulated during dormancy
release, including catalase (CAT), glutathione peroxidase (GR),
superoxide dismutase (SOD), ascorbate peroxidase (APX) and
peroxidase superfamily proteins (Scalabrelli et al., 1991; Or et al.,
2000; Halaly et al., 2008; Leida et al., 2010; Prassinos et al., 2011;
Vergara et al., 2012; Viti et al., 2012; Bai et al., 2013; Zhuang
et al., 2013; Guzicka et al., 2017). This is especially true for
buds treated with dormancy-breaking compounds. In apricot
flower buds, gibberellic acid 4 (GA4) treatment upregulates
oxidation-reduction proteins and the authors hypothesized that
GA4 application led to the development of oxidative stress and
to subsequent dormancy release (Zhuang et al., 2013). HC has
been widely used by growers to overcome low and uneven
bud break and the mechanisms that underlies its dormancy-
breaking effect is extensively studied in fruit species. Many
studies show that a significant increase in H2O2 levels is the
main metabolic change produced by HC, often linked to an
inhibition of CAT activity (Bartolini et al., 1996; Pérez and Lira,
2005; Halaly et al., 2008; Pérez et al., 2009; Tan et al., 2015).
However, recent genomic studies show that a wide range of
genes is differentially regulated after HC application such as genes
related to cell wall loosening, hormonal response, carbohydrate
and protein metabolism (Ophir et al., 2009; Pérez et al., 2009;
Liu et al., 2015; Sudawan et al., 2016; Ionescu et al., 2017)
thus linking oxidative stress, mitochondrial activity, hypoxia,
cytokinins, auxin, jasmonate and ethylene signaling pathways
to HC-induced dormancy release. Based on these findings, HC
application is thought to trigger transient oxidative stress and
activate detoxification systems. Subsequently, most pathways
proposed to be involved in dormancy release are activated:
degradation of callose, inhabitation of abscisic acid (ABA), GAs,
glycolysis, cytokinins (Ophir et al., 2009; Pérez et al., 2009;
Zheng et al., 2015; Ionescu et al., 2017). Another clue for the
involvement of ROS during dormancy is the response of several
ROS scavenging systems that were closely analyzed during bud
dormancy. The glutathione and ascorbate pathways are crucial
for the detoxification of H2O2. The overall content of glutathione
was shown to increase in concomitance with the endodormancy
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overcoming. Moreover, the ratio between reduced (GSH) and
oxidized (GSSG) glutathione, was reported to be associated to the
dormancy stage: higher levels of GSH at the end of rest compared
to beginning of the phase (Siller-Cepeda et al., 1992; Wang and
Faust, 1994; Kocsy et al., 2001; Bartolini et al., 2006). This ratio
has been shown to be under the control of the glutathione
reductase (GR) activity in Japanese pear (Zanol et al., 2010).
In dormant grapevine buds, HC upregulates genes involved in
ascorbate, glutathione and pentose phosphate pathway (PPP)
detoxification pathways (Pérez et al., 2009; Sudawan et al.,
2016). Temporary induction of the PPP in response to oxidative
stress may provide a way to recharge the system with NADPH
for detoxification through the ascorbate/glutathione system
(Figure 1). Such an induction has been observed in apricot buds
after a treatment with GA4 (Zhuang et al., 2015), thus allowing
the production of NADPH in the absence of mitochondrial
respiration. All these studies provide evidence that ROS play
a crucial role during dormancy and raise the questions of the
mechanism involved in the oxidation system, especially how
other pathways interact or are directly controlled by oxidative
cues.

MITOCHONDRIAL RESPIRATION

Mitochondrial respiration is the primary cellular source of
ROS on non-photosynthetic tissues in the context of healthy
conditions (Van Aken et al., 2009), whereas plasma membrane
and cell-wall NADPH/NADH oxidases are major producers
in the context of defense response (Davies et al., 2006). An
elevation of ROS production is noted in abnormal conditions,
such as hypoxia or hyperoxia (Turrens, 2003). During dormancy,
hypoxia and the inhibition of mitochondrial respiration can be
responsible for the increase in ROS content observed in dormant
buds (Vergara et al., 2012; Meitha et al., 2015, 2018), potentially
by activating gluconeogenesis, and therefore enhances grape
bud dormancy release (Ophir et al., 2009; Rubio et al., 2014;
Sudawan et al., 2016). Likewise, O2 deprivation raises glycolysis
and ethanolic fermentation which could lead to the production
of ROS (Pérez et al., 2009). Moreover, treatment of isolated
grape bud mitochondria with sodium azide, another dormancy
release molecule, inhibited O2 uptake (Pérez et al., 2009) and
mitochondria under hypoxia have been shown to have less TCA
cycle enzyme activities and reduced ATP production in maize
and potato (Considine et al., 2017). In response to shortening
photoperiod and low temperature, respiration may be impaired
as part of the growth cessation and dormancy onset processes.
For example, ABA, which participates to dormancy maintenance,
has been shown to inhibit certain isoforms of the tricarboxylic
acid (TCA) cycle isozymes in floral buds of peach (Oncelay et al.,
1979) or sucrose transporters in vine (Murcia et al., 2015), thus
comforting the hypotheses that respiration processes are affected
during dormancy. All these elements suggest that a respiratory
stress must be involved in the release of buds from dormancy
through abnormal positive net production of ROS.

Regulation of respiration is central to the transition from rest
to metabolically active state, generating the ATP needed for cell

functioning and growth. In aerobic respiration, mitochondria
carry out the final steps of this process and generate the bulk of
ATP through (i) the TCA cycle, (ii) the oxidative phosphorylation
electron chain, (iii) the alternative oxidase (AOX), and (iv) the set
of carriers and channels that provide the substrates and cofactors
from the cytosol. Respiration rate and depth of dormancy were
shown to be inversely related in grapevine buds (Parada et al.,
2016), associated with contrasted response to temperature and
glucose, two stimuli that normally increase respiration in plant
tissues. While respiration in non-dormant buds rose sharply in
response to both stimuli, respiration in dormant buds was only
slightly affected, thus suggesting that respiration is inhibited in
dormant buds. Several processes can explain this repression of
mitochondrial respiration during dormancy. Firstly, some studies
report that mitochondria activity might be altered over dormancy
progression, with modifications in their number (Felker et al.,
1983) or their structure (Guzicka et al., 2017), and could be
linked to availability of oxygen and requirements of oxidative
phosphorylation (Considine et al., 2017). Thereafter, respiration
in dormant bud cells might be affected. Secondly, as described
before, dormant cells are subjected to carbon starvation and
repression of cell-to-cell transport, coupled with bud scales that
have low oxygen permeability. Analyses of gene expression and
O2 pressure measurements suggest that dormant buds reside
in a hypoxic state and return to the oxygenated state during
bud burst (Meitha et al., 2015). According to experiments on
O2 consumption and CO2 production of grapevine twigs in
hypoxic conditions (solution of chlorpromazine) or normal
conditions, fermentation pathway has been suspected to be
involved in dormancy release (Pouget, 1965). Recent findings on
transcript abundance of key genes such as lactate dehydrogenase
or alcohol dehydrogenase tend to confirm the activation of the
fermentation pathway in dormant bud cells under chilling or
dormancy-breaking reagent treatments (Or et al., 2000; Halaly
et al., 2008; Ophir et al., 2009; Pérez et al., 2009), which is
characteristic of low-oxygen conditions. Furthermore, plasma
membrane properties are modified during dormancy and we
hypothesize that chill modifies the properties of membrane-
bound proteins, as was shown for the succinate oxidase activity
for mitochondria of Jerusalem artichoke tubers (Chapman
et al., 1979): the Arrhenius activation energy was high during
dormancy and decreased at the termination of dormancy. Finally,
it has been proven that the level of ATP or the ATP/ADP
ratio change over dormancy progression: low levels of ATP are
characteristic of endodormancy while a steep rise in ATP/ADP
ratio marks the end of ecodormancy (Bonhomme et al., 2000).
The mitochondrial ATP synthase complex requires inorganic
phosphate delivery by the mitochondrial phosphate transporter
(MTP). The expression level of MPT is low during dormancy and
up-regulated to promote respiratory rate and energy metabolism
for bud dormancy release in tree peony (Huang et al., 2008; Zhang
et al., 2016). These results are consistent with the hypothesis that
phosphate is compartmentalized during dormancy (Bonhomme
et al., 2000) leading to the inhibition of respiration and ATP
production.

According to all these knowledge, the role of the
mitochondrial respiration during the different phases of
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FIGURE 1 | Metabolism and reactive oxygen species (ROS) formation from endodormancy until ecodormancy. From endodormancy to ecodormancy, metabolism is
of primary importance. Storage lipids and amino acids are degraded through the gluconeogenesis pathway to yield glucose. Glucose car be interverted to starch
and/or sucrose. It can also be degraded through the glycolysis pathway to yield pyruvate that will migrate to the mitochondria and will be metabolized through the
tricarboxylic acid (TCA) cycle to enable oxidative phosphorylation to occur with reducing power in the form of nicotinamide adenine dinucleotide (NADH) and flavine
adenine dinucleotide (FADH2). This progressive reactivation of oxidative phosphorylation during endodormancy release is partly responsible for ROS formation with
gluconeogenesis. Glucose may also be oxidized via the pentose phosphate pathway (PPP) to yield reducing power in the form of nicotinamide adenine dinucleotide
phosphate (NADPH), enabling the detoxification system to operate. During endodormancy release period, there is a net positive accumulation of ROS that trigger
mechanisms of endodormancy release. During ecodormancy, oxidative phosphorylation is more efficient and enable energy production and mechanisms of growth
that are necessary for bud bursting and flowering.

dormancy is proposed in Figure 1: during endodormancy,
hypoxia and the inhibition of mitochondrial respiration can
be responsible for the increase in ROS content that reach a
maximum at the endodormancy release, and at this stage,
recovery of mitochondrial respiration during the ecodormancy
period.

CARBOHYDRATES METABOLISM

In addition to the role of mitochondrial respiration toward
positive ROS production, carbohydrate metabolism seems to be
crucial for ROS systems. During dormancy, a carbon starvation
is noted, and glucose is a key molecule. It may be produced via
storage molecules such as lipids, notably through beta-oxidation
and neoglucogenesis, responsible for a net ROS production
(Dieuaide et al., 1992). On one hand, glucose may be processed
in the glycolysis and then metabolized in the mitochondria
for ROS production; on the other hand, it may be processed
through the PPP to yield reducing power and participate to
ROS detoxification. For example, in yeast, it has been shown
that low glucose amounts induce a decreased mitochondrial ROS

production (Barros et al., 2004). Interestingly, it has been shown
that a switch from glycolysis to PPP during germination in
Arabidopsis seed is a scavenging system for oxidative stress (Arc
et al., 2011).

In addition to its crucial role in the response to cold,
carbohydrate metabolism appears essential in the transition from
dormancy to active bud growth (Figure 1), as suggested by Park
et al. (2009) and Signorelli et al. (2018). Changes in carbohydrate
dynamics were linked to changes in dormancy status in sweet
cherry with a degradation of starch into soluble sugars during
dormancy onset and an increase in starch just before budburst
(Kaufmann and Blanke, 2017). In parallel with starch dynamics,
soluble sugars were shown to increase between autumn and
winter followed by a significant decrease between winter and
spring (Charrier et al., 2017). The bud capacity to burst is
tightly linked to its supply in carbohydrates and as described
previously, the carbohydrate uptake capacity increases in the bud
after dormancy release with an increase in the expression and
activity of plasma membrane transporters. Just before budburst,
all sugars are transported in the sap toward the buds but
during endodormancy, carbohydrate dynamics are restricted to
the bud tissues. Tarancón et al. (2017) proposed that growth
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cessation and bud dormancy are consequences of carbon supply
starvation syndrome linked to the sugar deficit. Over dormancy
progression, and in response to winter conditions, soluble
compounds (sucrose, glucose) are synthesized from the reserves
accumulated during the growing season, such as starch grains
(Felker et al., 1983; Guzicka, 2001; Xu et al., 2016; Guzicka et al.,
2017). Interestingly, poplars overexpressing sucrose phosphate
synthase – which accumulate more sucrose and starch than the
wild-type poplars – are characterized by accelerated bud break,
raising the possibility that enhanced sugar and/or starch reserves
can promote accelerated dormancy breaking (Park et al., 2009).
However, in the context of low carbon supply, it is possible that
the gluconeogenesis pathway is activated to produce glucose from
non-carbohydrate sources (Figure 1) as reported by Ruttink et al.
(2007), associated with the generation of ROS. Similar pathway
was described in dormant seeds (Einali and Valizadeh, 2017).
In addition, a recent study showed that sucrose was synthesized
during GA4-induced dormancy release (Zhuang et al., 2015), thus
confirming the link between soluble sugars content and end of
endodormancy.

During dormancy, glucose is metabolized in at least three
pathways involved in the cell processes: the PPP leading to a
detoxification system, glycolysis that synthesizes the pyruvate
necessary for mitochondrial respiration, and fermentation
producing lactate (Figure 1). We propose that the balance
between all three pathways is key in the control of dormancy
release.

HORMONAL SIGNALING

Phytohormones are plant molecules that are produced within
the plant and control most, if not all, developmental aspects of
plant life (Davies, 2013). ROS and hormones have been shown
to act in an interdependent manner (Barba-Espin et al., 2010;
Bahin et al., 2011; Oracz and Karpiński, 2016). For example, a
recent study has shown this close link between the pathways
with an inhibition of ROS formation by ABA, and a promotion
of ROS formation by gibberellins (GAs) in seeds during cold
stratification (Amooaghaie and Ahmadi, 2017), and conversely
ROS mediate ABA and GA regulation through their catabolism
and biosynthesis, respectively (Liu et al., 2010).

Hormonal pathways, including ABA, GAs, ethylene, auxin
and cytokinins, have been demonstrated to be of great
importance in the bud dormancy process (Mielke and Dennis,
1978; Rodríguez and Sánchez-Tamés, 1986; Wang et al., 1987;
Piola et al., 1998; Ophir et al., 2009; Doǧramacı et al.,
2013; Zhuang et al., 2013; Wen et al., 2016; Signorelli
et al., 2018). Auxins were reported to be present at different
concentration in buds throughout dormancy progression.
Dormancy onset and cold treatment induces a reduction in
auxin while quantity of auxins rises in ecodormancy until
budburst as shown in hazelnuts (Rodríguez and Sánchez-
Tamés, 1986) and grapevine (Aloni et al., 1990). It has
been shown that auxins can be oxidized by two mechanisms
in plants, a H2O2−dependent pathway, and a molecular
dioxygen pathway, via peroxidases and membrane-bound

NADPH oxidases (Pfeiffer and Höftberger, 2001; Kawano, 2003).
Oxidation of auxin may thus yield ROS and be part of their
generation during endodormancy progression. In addition, it has
been shown in apple that genes related to auxin transport are
major regulators of dormancy (Porto et al., 2015), and thus we
could make the hypothesis that auxins may be involved to the
propagation of the ROS signal through different territories, as this
ROS signal propagation has been shown in grape buds during
bud bursting (Meitha et al., 2015). Transcriptomic analyses
of dormant buds suggest that brassinosteroid, salicylic-acid-,
and jasmonic-acid-associated genes are differentially regulated
during dormancy (Howe et al., 2015). The ethylene pathway
is interesting when focusing on dormancy and oxidative stress
signaling. Indeed, ethylene induced bud break in grapevine
buds (Ophir et al., 2009) and low-temperature stress and
HC treatment, closely linked to oxidative cues as stated
before, provoke ethylene biosynthesis, associated with chilling
requirement and dormancy release in peach and sweet cherry
(El-Shereif et al., 2006; Del Cueto et al., 2017). In addition, the
ethylene biosynthesis pathway, starting with ethylene precursors
methionine and ACC, increases during endodormancy, resulting
in the production of ethylene but also of hydrogen cyanide,
therefore leading to increased levels of ROS (Ionescu et al., 2017).
In seed dormancy, ABA and GAs act antagonistically thus it is
not surprising that both pathways and their interaction have been
closely studied in the context of bud dormancy (Rodríguez-Gacio
Mdel et al., 2009). ABA has been demonstrated to promote shoot
growth cessation and bud dormancy establishment (Le Bris et al.,
1999; Guak and Fuchigami, 2001) whereas GA promotes growth
and dormancy release (Rinne et al., 2011). In fruit trees, increases
in bud ABA content have been reported at the beginning of
endodormancy in the fall (Götz et al., 2014; Wang et al., 2016;
Tuan et al., 2017; Li et al., 2018) followed by a rapid drop in
response to cold (Leida et al., 2012) or dormancy-breaking agents
(Seif El-Yazal et al., 2014; Zheng et al., 2015), accompanied by
changes in the expression of genes related to ABA biosynthesis
and degradation. Several studies showed that the expression
of 9-cis-epoxycarotenoid dioxygenases (NCED), involved in
ABA synthesis, is activated during dormancy induction and
maintenance (Fennell et al., 2015; Wang et al., 2016; Chao et al.,
2017; Li et al., 2018). In addition, after chilling requirements
are satisfied, ABA levels decrease under the control of ABA
8′-hydroxylase (encoded by CYP707A), which is up-regulated
during dormancy release (Zhang et al., 2015; Wang et al., 2016;
Tuan et al., 2017; Li et al., 2018). Alternatively, inhibition of
active ABA might be related to the production of conjugated
forms of ABA that increases in response to cold temperatures:
glucose ester of ABA (ABA-GE) in Vitis (Koussa et al., 1994)
and an ABA-isomer in cherry (Götz et al., 2014). Interestingly,
recent studies have indicated that early cultivars of Japanese
apricot contained less ABA during dormancy than late cultivars
(Wen et al., 2016), thus suggesting a dose-dependent control
of dormancy. Interestingly, a close relationship between ABA
and ROS has been shown not only during stomatal closure but
also for seed dormancy. Notably, exogenous ROS application
diminished ABA concentration in barley seeds during the after-
ripening period (Wang et al., 1998), and increased its catabolism
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by up-regulating CYP707A genes in Arabidopsis during seed
imbibition (Liu et al., 2010). Moreover, treatment of sunflower
seeds during this after-ripening period enhances ROS production
(Oracz et al., 2007), similarly to many studies including HC
treatment on bud in various species. Thus, even though no
studies have demonstrated these connections of ROS and ABA
in buds, they are well known in various seed tissues. Therefore, as
proposed by Leida et al. (2012), similar mechanisms may occur
in bud dormancy. More precisely, we may compare the seed
after-ripening period with bud endodormancy stage, while the
imbibition process in seed may be similar to the ecodormancy
period in buds. Nevertheless, the effect of ABA on bud dormancy
is still not entirely understood, and ABA may control growth
inhibition rather than play a direct role on dormancy regulation
as suggested by Ramina et al. (1995) when they did not identify
any strict relationship between ABA quantity and dormancy
release in peach buds. Sensitivity to ABA may fluctuate as well,
as shown in dormant pea seedling, where ROS inhibits the ABA
signaling pathway during the imbibition period (Meinhard and
Grill, 2001; Barba-Espin et al., 2010).

Gibberellic acids are particularly important as they may act
in the growth renewal process during dormancy release. In fruit
trees, several studies pointed out their implication in the control
of dormancy progression, although few studies quantified them
directly, but focused on their metabolism and on the effect of
exogenous application. GA application may even substitute for
chilling (Brown et al., 1960; Saure, 1985; Reinoso et al., 2002;
Rinne et al., 2011; Zhuang et al., 2013) and GAs synthesis is
promoted by dormancy breaking reagents (Seif El-Yazal et al.,
2014). Nevertheless, the highest levels of GA1 and GA3 were
found in dormant buds during endodormancy release and
diminished afterwards (Luna et al., 1990; Wen et al., 2016).
Overall, this is supported by expression analyses, with the up-
regulation of GA3-oxidase (GA3ox) and GA20-oxidase (GA20ox),
responsible for bioactive GA synthesis, under chilling treatment
(Rinne et al., 2011) or around dormancy release (Bai et al.,
2013; Wen et al., 2016). GA2-oxidase (GA2ox) genes, which
encode the enzymes responsible for the deactivation of bioactive
GA4 and GA1, are upregulated during dormancy and dormancy
release in Japanese apricot buds (Yamane et al., 2008) but
during ecodormancy as well in Japanese pear (Bai et al., 2013).
Thus it appears that GAs regulation is tightly balanced between
production and degradation, and they might enhance growth
rate when the conditions are favorable. Interestingly, endogenous
ROS application enhances endogenous GA concentration in
Arabidopsis seed (Bahin et al., 2011) through diminution of its
catabolism, and conversely GA4 application in apricot flower
buds led to the development of oxidative stress and subsequent
dormancy release (Zhuang et al., 2013). Thus there is obviously a
tight link between ROS and GA, both influencing each other.

Taken as a whole, we can postulate that, similarly to seed
dormancy, the hormonal balance between ABA and GA, which
promotes dormancy and growth, respectively, may mediate
the decision toward bud break, and as stated previously for
different hormonal studies. Furthermore, as shown for the
interaction between ethylene and ABA, ethylene modulating
ABA degradation and signaling (Zheng et al., 2015), all hormonal

pathways are interconnected and act together to control
dormancy progression this balance may be directly influenced by
ROS content, notably through redox control of the activity and
symplasmic and apoplastic transport of plant growth regulator or
transcriptions factors (Considine and Considine, 2016).

PLASMA MEMBRANE AND CELL WALL
MODIFICATIONS

On another scale, modifications of membrane structure may be
influenced by ROS concentration, or may be responsible for
changing metabolism and thus may enhance ROS production.
For example, O2 diffusion through membranes may be more
effective just before endodormacy release, inducing metabolism
activity and then the increase of ROS production. On the
other hand, as proposed above, ROS production may be caused
by hypoxia. It is therefore essential to understand whether
membrane modifications induce ROS production by raising
metabolism as oxygen is more available, or if oxygen shortage
generates ROS (Turrens, 2003). Molecular and metabolic changes
associated with seasonal cycle of dormancy have been studied
extensively in trees but structural changes at the cell level were
less examined. Cells are organized in different compartments
that enable their normal functioning. These compartments are
delimited by membranes that are bilayers of complex lipids,
partly permeable, associated with proteins (Figure 2). The
stability of the membranes under cold stress highly depends
on their functional and structural characteristics therefore the
role of its components, lipids and proteins, is crucial. During
winter, both dormancy and cold acclimation modify the cell
structure and the two processes are usually difficult to separate.
The lipid composition and membranous factors are modified
during dormancy, notably to protect the cells from freezing-
induced dehydration and lesions (Wang and Faust, 1990; Uemura
and Steponkus, 1999). For example, it has been shown that
the fluidity of the plasma membranes of bud cells in peach
increases with chilling during dormancy release (Portrat et al.,
1995), associated with a marked increase in total phospholipid
content and in the relative level of linolenic acid (C18:3) (Erez
et al., 1997). Moreover, low temperatures or thidiazuron, a growth
regulator, increases the degree of unsaturation of fatty acids in
the membrane lipids of apple buds, changes the polar head group
composition, and changes sterol levels and composition (Wang
and Faust, 1988, 1990). In addition, triggering dormancy release
by GA4 application further confirmed that the composition
in linoleic and linolenic acids are modified during dormancy
progression (Zhuang et al., 2015).

Thus, winter cold temperatures lead to modifications in the
membrane state as part of the cold acclimation process but
also potentially the dormancy state. Nevertheless, no studies
have been undertaken concerning the global lipid composition
during the dormancy period with a lack of chilling, thus allowing
a better understanding of the role of lipids over winter and
spring rest. Studies investigating ultrastructure changes during
dormancy are still rare but exceptions includes: plasmodesmata
and lipid droplets analyses (Rinne and van der Schoot, 2004;
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FIGURE 2 | Cellular structure modifications from endodormancy to ecodormancy. During transition from endodormancy to ecodormancy in dormant buds, several
structure modifications occur. The insaturation degree of plasma membrane lipids increases during transition from endo to ecodormancy. The number and size of
starch grains and lipid bodies decrease during the transition from endo to ecodormancy. Conversely, the number and size of mitochondria increases during the
transition from endo to ecodormancy. Transcripts of sucrose transporters, H+/ATPase channels and calcium channels increase during transition from endo to
ecodormancy. The size of plasmodesmata increases during transition from endo to ecodormancy, as a result of net callose degradation.

Rinne et al., 2011; Paul et al., 2014) and cell wall thickening and an
increase in vacuole precipitates during dormancy induction (Jian
et al., 1997). Currently, no study has shown a direct relationship
between ROS signaling and membrane modification in bud
dormancy but analyses on seed germination have shown that
hydroxyl radical OH- had a direct role on degradation involved
in cell wall loosening (Müller et al., 2009). Therefore, we can
hypothesize that ROS signaling may be involved in downstream
cell wall loosening during bud dormancy release and growth
resumption.

ROLE OF MEMBRANE BOUND
TRANSPORTERS

Apart from the changes in the saturation level of the lipids
and types of lipids, other properties of the membranes are
modified over dormancy progression (Figure 2). In particular,
movements through the plasma membrane and long-distance
transport change in response to chilling. In peach for example,
active absorption of sucrose and other nutrients is stopped when
the bud is in a state of deep dormancy while an active sucrose
import was observed during growth resumption (Marquat et al.,
1996). These modifications in cotransport H+/sucrose can
be explained by structural changes of the plasma membrane
(Wisniewski and Ashworth, 1986; Portrat et al., 1995), and
more specifically by changes in ATPases activity (Giaquinta,
1979) (Figure 2). Plasma membrane H+ extrusion pumps (PM
H+/ATPases) are key players in transport activity through their
role in energizing solute transport (Alves et al., 2001) and
studies revealed that H+/ATPases accumulation and activity
are inhibited during endodormancy (Aue et al., 2000) but
increase during endodormancy release or ecodormancy in peach
(Gévaudant et al., 2001), walnut (Alves et al., 2007), and pear
(Liu et al., 2012) (Figure 2). In the same time, the hydric status
of buds varies characteristically with a marked dehydration in

endodormancy and a water content increase in ecodormancy,
just before budburst (Rinne et al., 1994; Yooyongwech et al.,
2009; Götz et al., 2014; Kaufmann and Blanke, 2017). Water
content was reported to increase in peach buds after a treatment
with HC, a dormancy-breaking agent, suggesting that not only
cold regulates the hydric status (Yooyongwech et al., 2012).
The water status in buds is controlled by a range of membrane
bound channels like aquaporins. Transcripts for two aquaporins
showed differential spatiotemporal patterns in dormant peach
buds in an interesting study by Yooyongwech et al. (2008).
Their observations revealed that the activation of inter- and
intra-cell communication through aquaporins resulted in a
gradual increase in water content before growth resumption,
which occurs earlier in low-chill cultivars than in high-chill
cultivars.

Furthermore, connections between cells and organs over
dormancy progression rely on the plasmodesmata functioning
for carbohydrate and nutrient supply as well as signaling
molecules. Plasmodesmata are not only essential for cell-to-cell
transport, thus crucial for the bud functioning during dormancy,
but they also control the supply route through the phloem
between the buds and the shoot. Consequently, modifications
of the transport activity by obstruction of the plasmodesmatal
system lead to growth cessation, dormancy onset and dormancy
release (Rinne and van der Schoot, 1998; Rinne et al., 2001;
Xu et al., 2016). In their exhaustive review on plasmodesmata,
Rinne and van der Schoot (2003) demonstrated the key role
of plasmodesmata activity for symplasmic uncoupling and
recoupling of vegetative bud cells during dormancy onset
and dormancy release, respectively. In dormancy-inducing
conditions, several studies have shown that callose (1,3-β-D-
glucan) is deposited at the bottleneck region of plasmodesmata
leading to diminished, if not stopped, transport and signaling
between cells (Rinne et al., 2001). Net callose deposition is
governed by the joint action of 1,3-β-glucansynthases and 1,3-
β-glucanases (glucan hydrolase family 17, GH17), and shifts in
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FIGURE 3 | Dormancy pathways and their interactions. During dormancy, several pathways have been shown to have a role and relate to each other. Hormones:
abscisic acid (ABA) turnover is regulated through action of 9-cis-epoxycarotenoid dioxygenases (NCED) genes which are repressed by the action of cold
temperatures, and is involved in dormancy maintenance and reactive oxygen species (ROS) generation. Ethylene production is under control of cold temperatures
(blue flake) and dormancy breaking reagents, and is involved in ABA diminution. Active gibberellic acids (GA) are produced by GA20ox and GA3ox, and are involved
in dormancy alleviation and favourise the detoxification system; they are inactivated by GA2ox. Auxins and cytokinins act through enhancing callose deposition at
plasmodesmata. Transport capacity: callose deposition at plasmodesmata is involved in dormancy maintenance; Glycoside Hydrolases 17 (GH17) are involved in
digesting callose. Cold temperatures enhance GH17 expression. Calcium channels inhibit dormancy maintenance. Metabolism: cold temperatures enhance
sucrose and monosaccharides concentration. Monosaccharides are also produced from the beta-oxidation and neoglucogenesis from fatty acids, and these
monosaccharides produce ROS via mitochondrial respiration or are oxidized via the Pentose Phosphate Pathway (PPP) and participate to ROS detoxification.
beta-oxidation produces ROS. Oxidative stress: cold temperatures (blue flake) and dormancy breaking reagents enhance ROS production, and ROS production
inhibits dormancy maintenance.

the balance of these enzymes are central to the dormancy status
and the growth potential of buds. Rinne et al. (2001, 2011)
have hypothesized that the balance shifted toward net deposition
as long as endodormancy lasts. Subsequently, during chilling-
induced dormancy release, blocked plasmodesmata connections
are restored within the bud by callose degradation. GAs seem
to be implicated in the up-regulation of specific 1,3-β-glucanases
involved in orchestrating the chilling-induced callose breakdown
to restore symplastic connections after endodormancy release
(Rinne et al., 2011). By focusing on the ultra-structure of
plasmodesmata Rinne et al. (2001) have shown that lipid
bodies are targeted to the plasma membrane in close proximity
to the plasmodesmata and may facilitate the restoration of
plasmodesmata functionality (Rinne et al., 2011). Lipid droplets
are membrane-bound storage organelles of universal occurrence.
Recent analyses have suggested their role as signaling platforms
that deliver proteins and signaling molecules (Murphy, 2012).
In plants, they have been described as globules containing
neutral lipids, triglycerids (TAG) or sterol esters, delimitated by
a phospholipid monolayer (Farese and Walther, 2009; Chapman

et al., 2012). van der Schoot et al. (2011) and Paul et al.
(2014) have hypothesized that in buds, lipid bodies function as
a vehicle that delivers proteins to the plasmodesmata, including
1,3-β-glucanases to the callose deposits in order to restore
plasmodesmata function (Rinne et al., 2011). Overall, explaining
the establishment and release of dormancy by the dynamics
of callose and plasmodesmata is tempting but genetic and
molecular evidence to support this hypothesis are still lacking and
causality remains unproven. Recently, observations on spruce
embryonic shoots have revealed that callose was still detected
in plasmodesmata during ecodormancy (Guzicka et al., 2017).
Furthermore, recent studies on architecture and permeability
of plasmodesmata have shed light on the fine mechanisms
regulating cell-to-cell connectivity. They show that, although
callose is a central regulator of plasmodesmata, it does not
necessarily mediate all changes to connectivity and to the size
exclusion limit (SEL) for the molecules (Tilsner et al., 2016;
Nicolas et al., 2017).

To our knowledge, no published study has uncovered
interactions between ROS signaling and intercellular transport
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during bud dormancy. However, these links have been firmly
suggested in other systems. For example, Nicotiana benthamiana
mutants exhibiting increased production of ROS also displayed
higher plasmodesmal transport (Stonebloom et al., 2012).
In Arabidopsis, a study measuring root cell permeability
also supports the hypothesis that ROS amounts regulate
plasmodesmata function: application of low concentrations of
H2O2 increased plasmodesmata permeability whereas high H2O2
concentrations induced plasmodesmata closure (Rutschow et al.,
2011). These results suggest that ROS may participate in
promoting the formation and alteration of plasmodesmata, or
callose deposit, thus controlling communication and transport.
Rutschow et al. (2011) speculate that this signaling is linked
to differential stress response: low amounts of ROS indicate
mild stresses that might be mitigated by increased cellular
transport while the response to extreme stressed revealed by acute
ROS signals necessitates cellular isolation. For bud tissues, the
question here is therefore which amount of ROS is produced
during dormancy progression and release and how this signal is
transduced for cellular transport.

CONCLUSION

Oxidative stress, carbohydrates metabolism highly linked to
the mitochondrial respiration, hormones and transport capacity
associated to plasma membrane and cell wall properties have
been shown to play important roles in bud dormancy process.
As these pathways interact between them, dormancy mechanism
is very complex. The main pathways involved in bud dormancy
are synthesized in Figure 3. Overall, these studies highlight the
pivotal role of ROS production and detoxification systems for
dormancy release. As a consequence of a combination of stresses

and the decrease of cell metabolism, dormant buds accumulate
ROS and their removal by scavenging and detoxification systems
seems to be associated with breaking of dormancy. Implication
of these mechanisms is further validated by the action of HC,
potentially linked to the generation of sub-lethal oxidation stress.
The question remains whether slow accumulation of ROS, as
a consequence of winter temperatures and low metabolism,
triggers dormancy release when a sub-lethal threshold is reached,
or a prompt shift into stress-inducible conditions leads to a
dormancy-alleviating response. In this case, the whole concept
of chilling requirements could be questioned. Further studies are
necessary to address these hypotheses, including the question
of toxicity of dormancy-breaking treatments, in relation to ROS
production.
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