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ABSTRACT

Genomic evaluation of French dairy goats is rou-
tinely conducted using the single-step genomic BLUP 
(ssGBLUP) method. This method has the advantage 
of simultaneously using all phenotypes, pedigrees, and 
genotypes. However, ssGBLUP assumes that all SNP 
explain the same amount of genetic variance, which 
is unlikely in the case of traits whose major genes or 
QTL are segregating. In this study, we investigated the 
effect of weighted ssGBLUP and its alternatives, which 
give more weight to SNP associated with the trait, on 
the accuracy of genomic evaluation of milk production, 
udder type traits, and somatic cell scores. The data 
set included 2,955 genotyped animals and 2,543,680 
pedigree animals. The number of phenotypes varied 
with the trait. The accuracy of genomic evaluation was 
assessed on 205 genotyped Alpine and 146 genotyped 
Saanen goats born between 2009 and 2012. For traits 
with unknown QTL, weighted ssGBLUP was less accu-
rate than, or as accurate as, ssGBLUP. For traits with 
identified QTL (i.e., QTL only present in the Saanen 
breed), weighted ssGBLUP outperformed ssGBLUP by 
between 2 and 14%.
Key words: genomic evaluation, quantitative trait 
loci, weighted single-step genomic best linear unbiased 
predictor, French dairy goat

INTRODUCTION

Genomic evaluation is routinely used in an increas-
ing number of species including dairy cattle (Hayes et 
al., 2009; Boichard et al., 2012), poultry (Wolc et al., 
2016), dairy sheep (Duchemin et al., 2012; Baloche et 
al., 2014), meat sheep (Auvray et al., 2014; Brito et 
al., 2017), pigs (Christensen et al., 2012), and dairy 
goats (Carillier et al., 2013, 2014; Mucha et al., 2015). 

Several genomic methods have been tested and imple-
mented but the most widely used is single-step genomic 
BLUP (ssGBLUP; Legarra et al., 2009). Single-step 
genomic BLUP has the advantage of simultaneously 
using the phenotypes of genotyped and nongenotyped 
animals, pedigrees, and genotypes. The method con-
structs a relationship matrix based on the numerator 
relationship matrix (A) and the genomic relationship 
matrix (G) called the hybrid relationship matrix (H). 
The use of ssGBLUP increases the accuracy of genomic 
evaluation in many contexts and species compared with 
pedigree-based BLUP or genomic BLUP (GBLUP; 
Chen et al., 2011; Carillier et al., 2014; Onogi et al., 
2015; Matilainen et al., 2016). However, the expected 
increase in the accuracy of genomic evaluation depends 
on several parameters including the size of the refer-
ence population (Lourenco et al., 2014; Andonov et al., 
2017), the relationship between the training and valida-
tion population (Meuwissen et al., 2001), the extent of 
linkage disequilibrium (LD; Zhou et al., 2018), or the 
genetic architecture of the trait concerned (Goddard, 
2009; Carillier-Jacquin et al., 2016; Zhou et al., 2018).

The main French dairy goats breeds are Alpine and 
Saanen, and their standard evaluation is based on milk 
production traits, udder type traits, and SCS. Caril-
lier et al. (2013, 2014) investigated the feasibility of 
genomic evaluation of French dairy goats using the 
goat SNP50 BeadChip (Illumina Inc., San Diego, CA). 
These authors showed that LD is less extensive than in 
dairy cattle (Carillier et al., 2013), and that the refer-
ence population is limited in the Alpine and Saanen 
breeds. In 2016, the reference population consisted of 
2,955 genotyped animals (2,050 females and 905 males; 
Teissier et al., 2018). Carillier et al. (2013, 2014) con-
cluded that ssGBLUP was more accurate than either 
the pedigree-based BLUP or GBLUP. Using a multi-
breed approach, the authors reported a −4 to 39% 
change in accuracy for milk production traits using 
ssGBLUP compared with a pedigree-based BLUP, a 
61 to 96% gain in accuracy for udder type traits, and a 
54% gain in accuracy for SCS.
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In another study, GWAS analyses were performed 
in dairy goats (French Alpine and Saanen, or mixed-
breed goats) to identify QTL that affect traits under 
selection. Martin et al. (2018) and Mucha et al. (2018) 
investigated the genetic architecture of different traits. 
These authors observed a large QTL associated with 
milk yield, fat yield, protein yield, udder floor position, 
rear udder attachment, and SCS on chromosome 19. 
For the standard traits, they also identified important 
genomic regions on different chromosomes in all breeds 
or in only one breed. In both French dairy goat breeds, 
the αS1 casein gene associated with protein content was 
found to be located on chromosome 6 (Grosclaude et 
al., 1987) and the DGAT1 gene associated with fat yield 
on chromosome 14 (Martin et al., 2017). Using these re-
sults, our aim was to investigate whether using informa-
tion on the location of the detected QTL would improve 
the accuracy of genomic evaluation in an appropriate 
ssGBLUP. To this end, we tested the incorporation of 
previous analyses of the effect of the αS1 casein gene 
in the genomic evaluation method (Carillier-Jacquin et 
al., 2016; Teissier et al., 2018): gene content (Gengler 
et al., 2007; Legarra and Vitezica, 2015), weighted 
ssGBLUP (WssGBLUP; Wang et al., 2012), WssG-
BLUP alternatives (Zhang et al., 2016), and TABLUP 
(Zhang et al., 2015). Gene content is a multiple-trait 
ssGBLUP model in which the genotype for a specific 
causal mutation is considered as a new trait, thus en-
abling the combination of information from SNP and 
genotypes for a causal mutation. It can be extended to 
multi-allelic genes and used when a causal mutation is 
missing. The WssGBLUP and alternatives are based 
on the ssGBLUP framework in which weights for SNP 
variances are used to form the genomic relationship 
matrix G. The WssGBLUP can give more weight to 
SNP that are in high LD with a causal mutation or 
associated with QTL with a relatively large effect. The 
weights were estimated from the variance explained by 
each SNP as described by Wang et al. (2012). G is trait 
specific and depends on the genetic architecture of the 
trait (traits with QTL or polygenic traits). With Wss-
GBLUP, one weight is allocated to each SNP, whereas 
alternative WssGBLUP use the same weight for SNP 
that are located within a defined window along the 
genome (Zhang et al., 2016). With alternatives Wss-
GBLUP, the weight in a defined window is calculated 
as the sum of all SNP weights of the window (WssG-
BLUPSum) or as the maximum of the SNP weights of 
the window (WssGBLUPMax). Finally, TABLUP is 
ssGBLUP with a genomic relationship matrix based 
on genotypes from a subset of pre-selected SNP. The 
SNP can be selected after GWAS analysis or based on 

weights estimated with WssGBLUP. The selected SNP 
are then given equal weights for the analyses (Zhang 
et al., 2011). Carillier et al. (2016) and Teissier et al. 
(2018) showed that only WssGBLUP and their alterna-
tives are able to outperform pedigree-based BLUP and 
ssGBLUP (Teissier et al., 2018). Compared with ssG-
BLUP, neither the gene content method nor TABLUP 
on protein content improved the accuracy of genomic 
evaluations in either breed. On the other hand, with 
WssGBLUP and their alternatives (WssGBLUPSum or 
WssGBLUPMax), improvements were observed, with 
+6 percentage points of accuracy over ssGBLUP. The 
advantage of WssGBLUP and alternative WssGBLUP 
over the gene content method is that only genotypes 
from SNP50 BeadChip are required.

The aim of this study was to investigate the use of 
WssGBLUP and WssGBLUP alternatives for other 
widely selected traits with different genetic architec-
tures and, in some cases, with QTL identified as having 
a relatively large effect. The accuracy of WssGBLUP 
methods and ssGBLUP were compared. The weights 
of SNP and their effect on the genomic relationship 
matrix were investigated for all the traits. The effect of 
this weighting on the accuracy of genomic evaluation 
was also investigated and compared with that obtained 
with the ssGBLUP method.

MATERIALS AND METHODS

Pedigree, Genotyped, and Phenotyped Animals

The data sets included phenotypes, pedigree, geno-
types (Illumina goat SNP50 BeadChip), and environ-
mental effects of the 2 main French dairy goat breeds 
(Alpine and Saanen) obtained from the French Nation-
al Milk Recording System (http:​/​/​fr​.france​-genetique​
-elevage​.org). Data from the official genetic evaluation 
in January 2016 were used in this study. All analyses 
were within breed.

The standard traits selected in French dairy goats 
include 4 milk production traits, milk yield (MY in 
kg), fat and protein yields (FY and PY, respectively, 
in kg), and fat content (FC in g/kg), 5 udder type 
traits, teat angle (TA: scored from 1 to 9), udder floor 
position (UFP: scored from 1 to 9), rear udder at-
tachment (RUA: scored from 1 to 9), fore udder (FU: 
scored from 1 to 9), and udder shape (US: scored from 
1 to 9), and SCS (log-transformed SCC) were analyzed. 
Descriptive statistics on the number of records, and the 
mean and the heritability of each trait and each breed 
studied are presented in Table 1. Milk production traits 
were expressed as 250-d yields. Almost 4 million phe-

http://fr.france-genetique-elevage.org
http://fr.france-genetique-elevage.org
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notypes in Alpine and 3 million phenotypes in Saanen 
were recorded for milk production traits. More than 
150,000 phenotypes were available in the Alpine breed 
and more than 100,000 phenotypes in the Saanen breed 
for udder type traits, and 1.2 million phenotypes in the 
Alpine breed and 1 million phenotypes in the Saanen 
breed for SCS.

The pedigree file contained animals born between 
1936 and 2012. For milk production traits, 1,446,296 Al-
pine animals and 1,097,384 Saanen animals were used. 
For udder type traits, the pedigree file included 290,656 
Alpine animals and 206,154 Saanen animals. For SCS, 
the pedigree file contained 788,576 Alpine animals and 
648,461 Saanen animals. The pedigree file was then 
completed with unknown parent groups: one group was 
created for animals born before 1975 and then pooled 
groups (sires and dams) were defined every 2 yr. Males 
and females were pooled together in unknown parent 
groups because few animals had unknown dams.

French dairy goats were genotyped with the Illumina 
goat SNP50 BeadChip (50K SNP; Tosser-Klopp et al., 
2014). Quality control (QC) was applied to 2,056 geno-
typed Alpine and 1,349 genotyped Saanen animals (born 
between 1983 and 2012) for 53,347 SNP, independently 
for each breed. During the QC, SNP with a minor allele 
frequency (i.e., less than 1% and a call rate of less than 
95%) were removed. The Hardy-Weinberg equilibrium 
for each SNP was tested by calculating the associated 
chi-squared statistic. The SNP with a P-value lower 
than 1.10−6 were removed (threshold of 5% corrected 
for multiple testing). Animals with a SNP call rate of 
less than 90% were discarded from the analyses. Fi-
nally, parent-progeny Mendelian conflicts were checked. 
After the QC, 1,749 genotyped Alpine (512 males and 
1,237 females) and 1,206 genotyped Saanen (393 males 
and 813 females) for 46,849 SNP remained for analyses. 
These animals were born between 1993 and 2012.

ssGBLUP

The ssGBLUP is a routinely used method for genom-
ic evaluation of 11 traits selected in the 2 main French 
dairy goats (Carillier et al., 2014; Venot et al., 2017). 
It can simultaneously combine information on female 
phenotypes, pedigrees, and genotypes. Each trait was 
analyzed with a single trait model. For milk production 
traits (MY, FY, PY, FC) and SCS, the same model as 
in the routine genetic evaluation was used (Clément et 
al., 2002):

	 y X Zu Wp e= + + +β , 	 [model 1]

where y is a vector of phenotypes, β is a vector of fixed 
effects including 4 combined effects: herd, age and 
month at kidding, and length of the dry period. The 
herd effect was estimated within year (32 yr from 1980 
to 2012) and parity (1, 2, and ≥3); age and month were 
within year and region estimations (4 regions in France 
depending on goat breeding management). The length 
of the dry period was an estimation within a year and 
region. u is a vector of genomic breeding values 
(GEBV) assumed to be normally distributed N u0, ,Hσ2( )  
where H represents the relationship matrix and σu is 
the variance of the random additive genetic effect, p is 
a vector of random permanent environmental effects 
assumed to be normally distributed N p0, ,Iσ2( )  with σp 
the variance of the permanent environmental effect, 
and e is a vector of random residual normally distrib-
uted N e0, .Iσ2( )  with σe the variance of residuals. X is 
the incidence matrix relating phenotypes to fixed ef-
fects (β); Z is the design matrix which allocates pheno-
types to genomic breeding values (u) and W is the in-
cidence matrix that links phenotypes to permanent 
environmental effects (p). Solutions of β, u, and p were 
obtained by solving the following system:

Table 1. Number of records, mean, and heritability (h2) for the traits studied in the Alpine and Saanen breeds

Item

Alpine

 

Saanen

Performances (no.) Mean h2 Performances (no.) Mean h2

Milk yield1 (kg) 3,844,314 802.12 0.31   2,923,531 823.08 0.26
Fat yield1 (kg) 3,742,129 28.4 0.28   2,887,051 27.44 0.25
Protein yield1 (kg) 3,844,071 24.36 0.31   2,923,419 24.32 0.25
Fat content1 (g/kg) 3,742,129 35.33 0.48   2,887,051 33.39 0.51
Teat angle (score) 150,676 3.63 0.42   102,967 4.05 0.45
Udder floor position (score) 150,676 6.37 0.51   102,967 6.16 0.57
Rear udder attachment (score) 150,676 4.57 0.47   102,967 4.96 0.52
Fore udder (score) 150,676 3.19 0.44   102,967 3.38 0.42
Udder shape (score) 150,676 5.76 0.40   102,967 6.22 0.47
SCS 1,262,187 165.03 0.20   1,031,450 158.99 0.16
1Expressed as 250-d yields.
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A different model was used to analyze udder type traits. 
The only difference is that no permanent environmental 
effect was estimated because the animals were scored 
only once in their life (during their first parity). The 
model was the following:

	 y X Zu e= + +β , 	 [model 2]

where y, u, and e are the same vectors previously de-
scribed in model 1 and β is the vector of 3 combined 
fixed effects: herd, age at scoring, and stage at scoring. 
Herd effect and parity, age at scoring, and stage at 
scoring were within year estimations. The matrix H−1 
is expressed as

	 H A
G A

− −
− −= +
−
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which depend on the inverse of the relationship matrix 
estimated from the pedigree A (subscript 22 refers to 
genotyped animals) and on the inverse of the genomic 
relationship matrix G. The G matrix was estimated 
using genotypes as in Legarra et al. (2009) or Misztal 
et al. (2013):

	 G
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where m is the number of SNP, pi is the estimated allele 
frequency at the locus i, and M is a centered matrix of 
SNP genotypes.

Variance components were estimated using the 
REML method in the remlf90 software and ssGBLUP 
analyses were performed with the blup90iod2 software 
(Misztal et al., 2002).

Weighted ssGBLUP

The construction of the G matrix presented above 
assumes that each SNP explains the same amount of 
genetic variance. Consequently, this assumption is not 

valid for traits with a major gene or QTL. Wang et 
al. (2012) proposed another genomic approach called 
WssGBLUP based on a model similar to ssGBLUP, 
to include major genes or QTL with a relatively large 
effect using a weighted G (G*). This genomic relation-
ship matrix G* is constructed as follows:

	 G
M DM
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where A22, M, pi, and m are the same as in G and D is 
a diagonal matrix of size m × m, where each element of 
the diagonal corresponds to SNP weights.

The WssGBLUP approach is based on an itera-
tive algorithm with different steps: (1) run ssGBLUP 
with the G* matrix (at iteration 1, SNP weights in 
the D matrix are equal to 1 and are equivalent to a 
ssGBLUP), (2) estimate SNP effects from solutions of 
genomic breeding values in the previous step, (3) esti-
mate variances of the effect of each SNP, (4) normalize 
the vector of variances of SNP effects to get the SNP 
weights (this normalization process ensures that the 
sum of the variances remain constant and equal to the 
number of SNP), (5) use SNP weights to construct the 
D matrix, and (6) loop to step (1).

The WssGBLUP was applied to each trait studied 
with model 1 and 2, respectively, using blupf90 family 
software (blup90iod2, Misztal et al., 2002). The SNP ef-
fects and SNP weights were estimated using postGSf90 
software. In this study, 3 WssGBLUP approaches were 
investigated, each one using a specific G*: WssGBLUP, 
WssGBLUPSum, and WssGBLUPMax. The WssGBLUP 
is the method presented by Wang et al. (2012), which 
consists in attributing one weight to each SNP. With 
WssGBLUPSum and WssGBLUPMax (Zhang et al., 
2016), SNP on the whole genome are split into different-
sized nonoverlapping windows, and the same weight is 
given to each SNP of the window. Windows of 2, 5, 10, 
15, 20, 25, 30, 35, 40, 45, and 50 consecutive SNP were 
tested. To compute these weights, the sum of all SNP 
weights present in the window was given to those SNP 
(WssGBLUPSum), or the SNP with the highest weight 
in the window was given to all SNP in the same window 
(WssGBLUPMax). The final step consists in normaliz-
ing the new vector of SNP weights to ensure that the 
sum of the variances remains constant and equal to the 
number of SNP. A previous study has shown that the 
2nd iteration of the WssGBLUP with 40 SNP was the 
most accurate for WssGBLUPMax and WssGBLUPSum 
(Teissier et al., 2018), and results were presented for 
this scenario.
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Accuracy of the Genomic Evaluation

The ssGBLUP used female phenotypes, pedigrees, 
and genotypes. In the French Alpine and Saanen dairy 
goat breeding scheme, genetic selection is performed 
on progeny-tested bucks and all these bucks born after 
1993 were genotyped. The reference population used to 
assess the accuracy of genomic evaluation comprised 
only genotyped males even if genotypes of females were 
also used in ssGBLUP and WssGBLUP evaluations. 
This reference population was split into 2 subsets: a 
training set and a validation set. The training popula-
tion included 307 Alpine bucks and 247 Saanen bucks 
born between 1993 and 2007, all the information on 
these animals (genotype, the pedigree of their ancestry 
and their progeny, and the phenotypes of their progeny) 
was kept in the data sets to estimate GEBV. The vali-
dation set included 205 Alpine bucks and 146 Saanen 
bucks born between 2008 and 2012. For these animals, 
the phenotypes of their progeny were removed from 
the analysis, and only the genotypes and pedigree of 
their ancestry were retained. The accuracy of genomic 
evaluation was calculated as the Pearson correlation 
between GEBV estimated using the validation set and 
daughter yield deviations (DYD) calculated using the 
official genetic evaluation of January 2016. The number 
of daughters used to calculate these DYD was between 
46 and 2,509 (with a median of 177 daughters), indicat-
ing that the DYD were relatively accurate. Accuracies 
of genomic evaluations were compared between ssG-
BLUP and WssGBLUP and its alternatives with the 
Hotelling-Williams test (Van Sickle, 2003).

Relationship Coefficients Estimated Using Pedigree 
and Genomic Information

Elements of the off-diagonal of the numerator rela-
tionship matrix for genotyped animals (A22) and the 
weighted genomic relationship matrix (G*) were com-
pared. To this end, the Pearson correlation between the 
2 vectors was calculated.

RESULTS AND DISCUSSION

Accuracy with WssGBLUP Over Iterations

WssGBLUP is based on an iterative process. The first 
iteration corresponds to ssGBLUP; SNP weights are all 
equal to 1. The accuracy of the genomic evaluations 
from iteration 2 to iteration 4 for each breed and each 
trait are presented in Figure 1. The average accuracies 
for the 10 traits in the Alpine and Saanen breeds were, 
respectively, 0.42 and 0.51 at iteration 2, 0.39 and 0.49 
at iteration 3, and 0.35 and 0.44 at iteration 4. For all 

traits in the Alpine breed, accuracy at iteration 2 was 
higher than the accuracy at iteration 3, which in turn 
was higher than accuracy at iteration 4. In the Saanen 
breed, MY accuracy increased at iteration 3 (0.58) 
compared with iteration 2 (0.56) and then decreased at 
iteration 4 (0.52). For (FY), accuracy at iteration 2 and 
3 was 0.47, then decreased to 0.43 at iteration 4. For 
all the other traits (i.e., PY, FC, TA, UFP, RUA, FU, 
US, and SCS), accuracy decreased over the 3 iterations. 
In both breeds, the decrease in accuracy between itera-
tions 3 and 4 was bigger than the decrease in accuracy 
between iterations 2 and 3.

In a previous study, we investigated a similar ap-
proach (WssGBLUP) to the analysis of protein content 
in the same 2 French dairy goat populations (Teissier et 
al., 2018). We concluded that WssGBLUP at iteration 
2 provided the most accurate genomic evaluation. In 
the present study, we obtained the same results for all 
the standard traits selected in French national genomic 
evaluations. Our results are also in agreement with 
those of Wang et al. (2012), who reported WssGBLUP 
produced the most accurate genomic evaluation at it-
eration 2. However, after iteration 2, loss of accuracy 
in our study was much greater than that observed by 
Wang et al. (2012). These differences could be due to 
the fact that Wang et al. (2012) used simulation in 
their study to mimic a trait with a phenotypic mean 
of 5, variance of 1, and heritability of 0.5. They simu-
lated 2 chromosomes each with 15 QTL sampled from 
a gamma distribution with a shape factor of 0.4 and a 
scale factor of 1. They repeated the simulation 10 times. 
Overall, the average effect of the QTL was 0.16 (0.04). 
In our study, the situation was probably more complex 
because we analyzed real data concerning traits with 
different genetic architectures. According to Wang et 
al. (2012) and to our previous study (Teissier et al., 
2018), the decrease in accuracy could be due to over/
underweighting of some SNP across iterations. In the 
present study, we consequently investigated this point 
to check if our SNP weights across the WssGBLUP 
iterations were inflated.

Effects of Iterations on the WssGBLUP Method

Figure 2 presents the SNP weights for RUA in the 
Saanen breed between iteration 2 and iteration 4 using 
WssGBLUP. At iteration 2, the highest SNP weights 
located on chromosome 19 reached 46. On the whole 
genome, 95% of SNP had weights under 4. At the 4th 
iteration with WssGBLUP, SNP weights reached 8,621 
on chromosome 19 and 95% of the SNP had weights 
under 0.14. The results at iteration 3 are not shown but 
were intermediate between those at iteration 2 and it-
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eration 4 with a maximum of 1,409 for SNP weights on 
chromosome 19 with 95% of SNP weights under 2.93. 
We also observed this huge inflation of SNP weights 
in the Saanen breed on chromosome 19 for MY, PY, 
UFP, and SCS. For the other traits (FY, FC, TA, FU, 
and US), high SNP weights were attributed to some 
SNP at iteration 4 in both breeds. However, these high 
SNP weights were not located on a specific chromosome 
and their maxima were much lower than those observed 
for MY, PY, UFP, and SCS on chromosome 19 in the 

Saanen breed. For instance, in the Alpine breed, the 
highest SNP weights for RUA reached 2,000 at itera-
tion 4 with WssGBLUP whereas they reached 8,621 in 
the Saanen breed.

The SNP weights were very highly inflated between 2 
iterations; at iteration 4 for RUA in the Saanen breed, 
18% of SNP weights were allocated to only one SNP 
on chromosome 19. For all traits and the 2 breeds, we 
observed that some SNP strongly associated with the 
traits considered had very high weights and that SNP 

Figure 1. Validation correlations for 205 and 146 validation Alpine and Saanen males, respectively, for 4 milk production traits, 5 udder type 
traits, and SCS using the weighted single-step genomic BLUP (WssGBLUP) approach at iterations 2, 3, and 4.

Figure 2. Estimated weights of SNP for rear udder attachment in the Saanen breed at iterations 2 and 4 with the weighted single-step 
genomic BLUP (WssGBLUP) approach.
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weights increased markedly from one iteration to the 
next, whereas the other SNP weights decreased toward 
zero. The SNP weights estimated with WssGBLUP were 
used as weights in matrix D to construct the weighted 
matrix G*. This matrix, which is included in the H 
matrix, could affect the structure of the relationship 
matrix. We compared off-diagonal elements between 
G* and A22 to observe how much effect SNP weights 
have on elements of the genomic relationship matrix. 
Figure 3 shows the correlation between the off-diagonal 
elements of the G* matrix and those of the A22 ma-
trix for each breed and trait. In the Alpine breed, the 
average correlation for the 10 traits was 0.87 at itera-
tion 2. Few variations were observed among the traits 
with correlations ranging from 0.84 to 0.91. The best 
correlations were obtained for milk production traits 
(MY, FY, PY, and FC). At iteration 3, the average cor-
relation was lower (0.76), range: 0.72 to 0.80. Finally, 
at iteration 4, we observed a low average correlation 
(0.47), range: 0.41 to 0.51. In the Saanen breed, similar 
conclusions were drawn. The average correlation for the 
10 traits was 0.80, 0.45, and 0.28 at iterations 2, 3, and 
4, respectively, with values ranging from 0.70 to 0.90 at 
iteration 2, from 0.17 to 0.74 at iteration 3, and from 
0.12 to 0.48 at iteration 4.

The profiles of the average correlations in the Al-
pine and Saanen breeds were similar at iteration 2 but 
differed markedly at iterations 3 and 4. The loss of 

correlation between iteration 2 and 3 in the Alpine 
breed was roughly equal to 10 percentage points and 
30 percentage points between iteration 3 and 4 for any 
trait included in this study. In the Saanen breed, the 
loss of correlation was trait dependent and reached 62 
percentage points for MY and 7.5 percentage points for 
US between iteration 2 and 3.

From iteration 3, the off-diagonal elements of G* 
and A22 differ significantly in the Saanen breed. Martin 
et al. (2018) found QTL for MY, FY, PY, UFP, RUA, 
and SCS in the French Saanen breed. These traits are 
those for which we observed the biggest decrease in the 
correlation between elements of A22 and G*. In the 
Alpine breed, no QTL were detected, suggesting that 
these traits have polygenic architecture (Martin et al., 
2018). We conclude that for those traits for which QTL 
have been detected, the weights assigned to the SNP 
most strongly associated with the trait are exacerbated 
from one iteration to another in the iterative process of 
WssGBLUP. These results suggest the iterative process 
of WssGBLUP should be stopped at iteration 2.

Estimation of Weights with WssGBLUP

We analyzed the estimation of SNP weights with 
WssGBLUP for the 10 traits in both the Alpine and 
Saanen breeds. These analyses were performed to high-
light important chromosomal regions associated with 

Figure 3. Correlation between off-diagonal elements of the genomic relationship matrix (G*) and off-diagonal elements of A22 (pedigree A 
with subscript 22 referring to genotyped animals) on 205 and 146 validation Alpine and Sannen males, respectively, with the different itera-
tions of the weighted single-step genomic BLUP (WssGBLUP) for 4 milk production traits, 5 udder type traits, and SCS in Alpine and Saanen 
populations.
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selected traits in French dairy goats. We identified 2 
different groups: (1) traits with high SNP weights de-
tected in the Saanen breed on one chromosome but not 
in the Alpine breed, and (2) traits with SNP weights 
homogeneously distributed along the chromosomes 
in the 2 breeds. Figure 4 illustrates these 2 different 
groups of SNP weights for UFP and US. For UFP (in-
cluded in the first group), SNP weights were below 30 
in the Alpine breed, whereas in the Saanen breed, SNP 
weights reached 68 for some SNP on chromosome 19. 
The SNP on other chromosomes had SNP weights be-
low 30. The top 10 SNP with the highest SNP weights 
on chromosome 19 were located between 26 and 28 Mb. 
The MY, PY, RUA, and SCS were included in the first 
group. Except for chromosome 19, the SNP weights for 
all chromosomes were below 30. On chromosome 19, 
the maximum weights observed were 48 for MY (top 10 
SNP were located between 26 and 29 Mb), 42 for PY 
(top 10 SNP between 26 and 29 Mb), 46 for RUA (top 
10 SNP between 20 and 28 Mb), and 37 for SCS (top 10 
SNP between 23 and 28 Mb). The top 10 SNP covered 
a chromosomal region between 20 and 29 Mb for all 
these traits. For US (included in group 2), we observed 
SNP weights below 30 for all SNP in both Alpine and 
Saanen breeds. The same profile was observed for FY, 
FC, TA, FU, and US. Martin et al. (2018) performed 
LD and linkage analysis in French dairy goats. They 
showed that chromosome 19 underlies a pleiotropic 
QTL located between 24.5 and 26.9 Mb (5% CI) affect-
ing MY, FY, PY, UFP, and RUA. In our study with 
WssGBLUP, the highest SNP weights were located on 
the same chromosome 19 and in the same region but 
with a slightly larger interval for MY, PY, UFP, and 
RUA. For FY on chromosome 19, we did not find any 
SNP with significant weights like those found by Martin 
et al. (2017). It is possible that our training population 
was too small, and that with more genotyped animals, 
we would have identified SNP with higher weights on 
chromosome 19. Surprisingly, the chromosomal region 
of DGAT1 on chromosome 14, which is known to be as-
sociated with FC, was not identified with WssGBLUP, 
whereas it was detected by Martin et al. (2017) with 
LD and linkage analysis. This result shows that SNP ef-
fects estimation with WssGBLUP had some limitations 
and could be improved in the future. This limitation 
may be due to the whole-genome regression performed 
to estimate SNP effects, resulting in unstable predic-
tion of SNP effects because of LD between SNP. Martin 
et al. (2018) found a QTL for SCS in the Saanen breed 
located between 33 and 42 Mb on chromosome 19. In 
our study, the highest SNP weights were located on 
the same chromosome 19 but in a neighboring chromo-
somal region (between 23 and 28 Mb). In a previous 

study Teissier et al. (2018), we conducted WssGBLUP 
analysis for protein content in which a major gene (αS1 
casein gene) was identified, but no SNP in the αS1 ca-
sein gene was on the 50K SNP after QC. We identified 
some SNP with high weights (between 90 to 101) in 
the αS1 casein gene region on chromosome 6, and this 
method provides a more accurate genomic evaluation 
than ssGBLUP in the 2 breeds. This shows that Wss-
GBLUP is able to capture the complexity of this gene.

Accuracy of Genomic Evaluation Using WssGBLUP

Figure 5 presents the accuracy of genomic evaluation 
using the validation set for the 10 traits. We compared 
the ssGBLUP method used as a reference method and 
the WssGBLUP at iteration 2. In the Alpine breed, ac-
curacy was on average slightly lower with WssGBLUP 
(0.42) than with ssGBLUP (0.44). The loss of accuracy 
ranged between +0 percentage points (TA or US) to 
−3 percentage points (SCS); however, these differences 
were not significant. For this breed, no QTL was identi-
fied for these traits (Martin et al., 2018) and no large 
SNP weight was identified with WssGBLUP. In the 
Saanen breed, the accuracy of the genomic evaluation 
was on average slightly higher with WssGBLUP (0.52) 
than with ssGBLUP (0.51). However, we observed 
an increase or a decrease in accuracy depending on 
the trait. With WssGBLUP, accuracy was the same 
or lower than with ssGBLUP for FC (+0 percentage 
points), TA (−1 percentage point), US (−2 percentage 
points); these differences were not significant. However, 
for FU (−3 percentage points) and SCS (−3 percent-
age points) significant decrease of accuracies at 0.05 
threshold were observed. Among these traits, all SNP 
weights were low, below 30, except for SCS where a 
QTL was identified on chromosome 19 (Martin et al., 
2018) and SNP weights were higher on a chromosomal 
region of chromosome 19. Increased accuracy was ob-
tained for the remaining traits with WssGBLUP: +1 
percentage point for RUA (not significant at the 0.05 
threshold), +4 percentage points for FY and UFP (P < 
0.05), +5 percentage points for PY (P < 0.05) and +7 
percentage points for MY (P < 0.001). For these traits, 
QTL were identified on chromosome 19 (Martin et al., 
2017, 2018), and except for FY, high SNP weights were 
also identified in the same chromosomal region with 
WssGBLUP.

With WssGBLUP, the accuracy of genomic evalua-
tion was improved for traits with segregation of QTL in 
French dairy goats. In our study, the Saanen breed was 
mostly concerned with the large QTL on chromosome 
19 for MY, PY, UFP, and RUA. These results are con-
sistent with those in our previous study (Teissier et al., 
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2018) on protein content, as the αS1 casein gene is well 
known to segregate in these populations. The results 
of that study showed that with WssGBLUP, accuracy 
was better than with ssGBLUP in both breeds (+2 and 
+4 percentage points in the Alpine and Saanen breeds, 
respectively). Only in Saanen was the WssGBLUP 
significantly more accurate than ssGBLUP. In another 
study on dairy cattle using WssGBLUP with a relatively 
small reference population (1,500 genotyped animals), 
Lourenco et al. (2014) showed that WssGBLUP could 
outperform GBLUP or BayesC for traits with QTL 
with large or moderate effects. On the other side, traits 
with a polygenic determinism did not benefit from the 
use of the WssGBLUP method, as a slightly decrease in 
accuracy was observed compared with ssGBLUP.

The average higher accuracy in Saanen than Alpine 
breed may be explained by the structure of the popula-
tion. The level of inbreeding in Saanen (2.3%) is higher 
than in Alpine (1.8%). There is also a higher kinship 
coefficient between the training and validation popula-
tion in the Saanen breed (2.4%) than in Alpine breed 
(1.1%; Carillier et al., 2013).

Fine Tuning of Weights in the WssGBLUP Method

We observed that with WssGBLUP, SNP weights 
increased considerably from iteration 2 to iteration 4. 
Zhang et al. (2016) reported that WssGBLUP alterna-
tives (WssGBLUPSum and WssGBLUPMax) increased 
the accuracy of genomic evaluation more efficiently 

Figure 4. Estimated weights of SNP for udder floor position and udder shape at iteration 2 with weighted single-step genomic BLUP 
(WssGBLUP) for 4 milk production traits, 5 udder type traits, and SCS in Alpine and Saanen populations.
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than WssGBLUP and limited the increase in SNP 
weights from one iteration to another. In our previous 
study (Teissier et al., 2018), we applied WssGBLUPSum 
and WssGBLUPMax to protein content and showed that 
the optimal length of the window was 40 SNP. Even 
though WssGBLUPSum and WssGBLUPMax limited the 
increase in SNP weights over iterations, the best ac-
curacies were obtained at iteration 2. In the present 
study, we obtained the same results. Table 2 compares 
the results obtained with ssGBLUP, WssGBLUP, Wss-
GBLUPSum, and WssGBLUPMax with a window size of 
40 SNP for the 10 traits at iteration 2 for the Alpine 

breed and Table 3 compares the same results for the 
Saanen breed.

We first compared WssGBLUPSum with WssGB-
LUPMax. In the Alpine breed, for MY, FY, FC, TA, 
and UFP, WssGBLUPSum was as accurate (no sig-
nificant difference at 0.05 threshold was observed) as 
WssGBLUPMax. For FU and RUA, WssGBLUPSum 
was slightly less accurate (−1 percentage point) than 
WssGBLUPMax. For PY, US, and SCS, WssGBLUPSum 
was slightly more accurate (+1 percentage point) than 
WssGBLUPMax. In the Saanen breed, for MY, FY, PY, 
TA, UFP, and SCS, WssGBLUPSum was as accurate 

Figure 5. Validation correlations for, respectively, 205 and 146 validation Alpine and Saanen males for 4 milk production traits, 5 udder type 
traits, and SCS using the single-step genomic BLUP (ssGBLUP) and weighted single-step genomic BLUP (WssGBLUP) at iteration 2. Gray 
area: traits with high SNP weights detected using WssGBLUP.

Table 2. Pearson correlation between genomic breeding values and daughter yield deviations for the traits 
studied in the Alpine breed1

Trait ssGBLUP WssGBLUP WssGBLUPMax WssGBLUPSum

Milk yield (kg) 0.45 0.43 0.44 0.44
Fat yield (kg) 0.31 0.30 0.30 0.30
Protein yield (kg) 0.30 0.28 0.28 0.29
Fat content (g/kg) 0.66 0.65 0.66 0.66
Teat angle (score) 0.42 0.41 0.41 0.41
Udder floor position (score) 0.43 0.41 0.44 0.44
Rear udder attachment (score) 0.40 0.38 0.42 0.41
Fore udder (score) 0.49 0.48 0.50 0.49
Udder shape (score) 0.48 0.48 0.48 0.49
SCS 0.45 0.42 0.44 0.45
Mean 0.44 0.42 0.44 0.44
1ssGBLUP = single-step genomic BLUP; WssGBLUP = weighted single-step genomic BLUP. Accuracies for 
the maximum of the SNP weights of the window (WssGBLUPMax) and the sum of all SNP weights of the win-
dow (WssGBLUPSum) are presented for a window size of 40 consecutive SNP.
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as WssGBLUPMax. For FC, FU, RUA, and US, Wss-
GBLUPSum was slightly more accurate (+1 percentage 
point) than WssGBLUPMax. With WssGBLUPSum, ac-
curacy was very similar to that obtained with WssGB-
LUPMax whatever the breed and the trait.

In both the Alpine and Saanen breeds, WssGB-
LUPSum and WssGBLUPMax were at least as accurate 
as, or more accurate than WssGBLUP, with differences 
ranging from +0 to +4 percentage points for RUA 
[WssGBLUPMax compared with WssGBLUP in the Al-
pine breed (P < 0.05)] or FU [WssGBLUPSum compared 
with WssGBLUP in the Saanen breed (P < 0.01)].

Finally, on average for all traits, WssGBLUPSum and 
WssGBLUPMax were significantly more accurate (+3 
percentage points) than ssGBLUP in the Saanen breed, 
whereas WssGBLUPSum and WssGBLUPMax were as ac-
curate as ssGBLUP in the Alpine breed. In the Saanen 
breed, for traits with a QTL on chromosome 19, Wss-
GBLUPSum and WssGBLUPMax were significantly more 
accurate than ssGBLUP, from +3 percentage points 
to +7 percentage points for MY, PY, and UFP (P < 
0.01). For RUA, improvement of accuracy with WssG-
BLUPSum and WssGBLUPMax (+3 percentage points) 
was not significant. For the other traits, WssGBLUPSum 
and WssGBLUPMax did not significantly outperform 
ssGBLUP (+0 to +2 percentage points). In the Alpine 
breed, no QTL was detected and the accuracy of all the 
methods was similar.

Our results are consistent with those reported by 
Zhang et al. (2016). We conclude that for polygenic 
traits, the same accuracy can be obtained with ss-
GBLUP, WssGBLUPSum, and WssGBLUPMax, but 
genomic evaluations made with WssGBLUP are less 
accurate than with ssGBLUP. However, when QTL are 
detected for a trait, a slight gain in accuracy can be 
obtained with WssGBLUPSum and WssGBLUPMax in 

addition to that obtained with WssGBLUP compared 
with ssGBLUP.

CONCLUSIONS

Our aim was to investigate different genomic evalua-
tion methods that allow information on the genetic ar-
chitecture of traits (with or without QTL identified) to 
be incorporated. We compared ssGBLUP with weighted 
ssGBLUP and its alternatives (WssBLUPSum and Wss-
GBLUPMax) for the standard traits selected in the 2 
main French dairy goat breeds. Weighted ssGBLUP is 
an iterative algorithm, and we confirmed that the high-
est accuracies were obtained at the second iteration. 
The weighted ssGBLUP and its alternatives were able 
to improve accuracy of genomic evaluations compared 
with ssGBLUP for traits with a QTL previously identi-
fied in a GWAS (MY, FY, PY, UFP, and RUA in the 
Saanen breed). Compared with ssGBLUP, the gain in 
accuracy was between 2 and 14% for weighted ssGB-
LUP and between 3 and 14% for WssGBLUPSum and 
WssGBLUPMax in the Saanen breed. For traits with 
no identified QTL (FC, TA, FU, and US in the Saa-
nen breed and all traits studied in the Alpine breed), 
Weighted ssGBLUP was less accurate than ssGBLUP 
(between −5 and 0%). With WssGBLUPSum and Wss-
GBLUPMax, the accuracy of the genomic evaluation was 
close to the accuracy achieved with ssGBLUP (between 
−2 and 4%). We will recommend the use of the Wss-
GBLUP at the second iteration to predict GEBV of 
animals in French dairy goat breeding program.
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