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Abstract 1 

Forests are critical habitats for biodiversity and they are also essential for the provision of a wide range 2 

of ecosystem services that are important to human well-being. There is increasing evidence that 3 

biodiversity contributes to forest ecosystem functioning and the provision of ecosystem services. Here 4 

we provide a review of forest ecosystem services including biomass production, habitat provisioning 5 

services, pollination, seed dispersal, resistance to wind storms, fire regulation and mitigation, pest 6 

regulation of native and invading insects, carbon sequestration, and cultural ecosystem services in 7 

relation to forest type, structure and diversity. We also consider relationships between forest 8 

biodiversity and multifunctionality, and trade-offs among ecosystem services. We compare the concepts 9 

of ecosystem processes, functions and services to clarify their definitions. Our review of published 10 

studies indicates a lack of empirical studies that establish quantitative and causal relationships between 11 

forest biodiversity and many important ecosystem services. The literature is highly skewed; studies on 12 

provisioning of nutrition and energy, and on cultural services delivered by mixed-species forests are 13 

under-represented. Planted forests offer ample opportunity for optimising their composition and 14 

diversity because replanting after harvesting is a recurring process. Planting mixed-species forests 15 

should be given more consideration as they are likely to provide a wider range of ecosystem services 16 

within the forest and for adjacent land uses. This review also serves as the introduction to this special 17 

issue of Biodiversity and Conservation on various aspects of forest biodiversity and ecosystem services. 18 

 19 

Key words: Ecological processes, mixed-species forest, planted forest, tree diversity.  20 

 21 

 22 

 23 

Introduction 24 

 25 

Forests and woodlands harbour immense terrestrial and aquatic biodiversity and, especially in moist 26 

tropical regions, represent the most species-rich habitat type worldwide (Mace et al. 2005; Lindenmayer 27 

2009; Gibson et al. 2011). Pressures from human activities leading to forest loss, fragmentation and 28 

degradation (FAO 2015) have already caused much biodiversity decline and homogenization 29 

(Lindenmayer and Franklin 2002; Newbold et al. 2015; van der Plas et al. 2016b). These declines are 30 

expected to continue (e.g., Newbold et al. 2015), especially in the rich forests of Central and South 31 

America, South and Southeast Asia and Africa, although the rate of forest loss has been slowing in 32 

recent years (Keenan et al. 2015). Conversely, the area of planted forests (including plantation forests) is 33 

increasing and is currently ca. 7% of total forest cover (Payn et al. 2015).  34 

 35 
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Collectively, these trends in forest cover and condition are a major concern, not only because of the 36 

implications for the conservation of biodiversity, but also because forests provide a wide range of 37 

critically important ecosystem services such as climate regulation, biomass production, water supply 38 

and purification, pollination, and the provision of habitats for forest species (Bauhus et al. 2010; 39 

Thompson et al. 2011; Brockerhoff et al. 2013; Decocq et al. 2016; Liang et al. 2016; Mori et al. 2017). 40 

There is also increasing evidence that the provision of ecosystem services is related to aspects of 41 

biodiversity; there is a positive relationship between biodiversity and most ecosystem services (e.g., 42 

Hooper et al. 2005; Balvanera et al. 2006; Isbell et al. 2011; Gamfeldt et al. 2013). 43 

 44 

A wide range of mechanisms have been proposed to explain the relationships between biodiversity and 45 

ecosystem services. Niche complementarity in time and space, and complementarity of functional effect 46 

traits and functional response traits are all likely to be involved (Isbell et al. 2011). Facilitation between 47 

plant species growing together has often been found to lead to enhanced growth of certain tree 48 

mixtures (Thompson et al. 2014). For example, at nitrogen-limited sites, tree species that are nitrogen-49 

fixers may enhance the growth of other tree species in mixed stands (e.g., Binkley 2003; Forrester and 50 

Bauhus 2016).  Resistance to disturbance is facilitated by forest and tree diversity, leading to a reduction 51 

or dilution of resources (e.g., for herbivores), diversion or disruption, and multi-trophic interactions 52 

(e.g., enhanced abundance and action of natural enemies) (Jactel et al. 2017). Finally, the so-called 53 

‘sampling effect’ can enhance the provision of ecosystem services, simply because the presence of more 54 

species increases the likelihood that an ecosystem will contain a species that grows faster, is more 55 

resistant to a particular disturbance, or has some other advantageous trait that leads to enhanced 56 

ecosystem functioning or provision of services, compared to communities with fewer species (Wardle 57 

2001; Lefcheck et al. 2015). 58 

 59 

Given the role of biodiversity in the provision of ecosystem services, the widespread degradation of 60 

forests is likely to have far-reaching effects, such as reduced resistance (or increased susceptibility) to 61 

natural or anthropogenic disturbance. As such disturbances appear to be increasing in frequency and 62 

intensity (e.g., Pachauri et al. 2014, Brockerhoff and Liebhold 2017, Freer-Smith and Webber 2017) 63 

declines in biodiversity are likely to reduce forests’ resistance to climate extremes (e.g., Isbell et al. 64 

2015) and to pests, pathogens, invasive species, and other disturbance factors (e.g., Jactel et al. 2017), 65 

and to reduce the provision of ecosystem services in general (e.g., Vilà and Hulme 2016). 66 

 67 

Compared with ‘natural forests’ or mixed-species forests, planted forests usually have a lower level of 68 

biodiversity of canopy trees and other species (e.g., Barlow et al. 2007, Brockerhoff et al. 2008), and it is 69 

likely that their ability to provide certain ecosystem services is reduced. For example, mixed forests tend 70 
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to be more effective in delivering a range of provisioning services (e.g., Gamfeldt et al. 2013; Forrester 71 

and Bauhus 2016), and are more resistant to various disturbances than single-species planted forests 72 

(Jactel et al. 2017). These relationships between forest type, biodiversity and ecosystem services are 73 

highly relevant for informing forest policy and management. However, given the multitude of ecosystem 74 

services, it is difficult to generalise about the role of forest diversity. Furthermore, there are trade-offs 75 

between different ecosystem services depending on the tree mixture and stand type involved. Some 76 

tree mixtures are superior at providing certain services but other tree mixtures or even single-species 77 

forests are more effective for other services (e.g., van der Plas et al. 2016a).  78 

 79 

There has been much progress recently in this very active field of research, and the International Union 80 

of Forest Research Organisations (IUFRO) established a task force to facilitate multi-disciplinary research 81 

collaboration and literature reviews on the effects of forest biodiversity on single and multiple 82 

ecosystem services. The current paper provides a general literature review on this topic and serves as an 83 

introduction to a special issue consisting of 10 papers on various aspects of forest biodiversity, 84 

ecosystem services and related issues. Habitat provision is a central theme for several contributions. A 85 

review of analytical methods using readily-available forest inventory data for biodiversity assessments is 86 

provided by Corona et al. (2017). The effects of afforestation of open land on bird communities and 87 

biodiversity in Ireland and Argentina are examined by Graham et al. (2017) and Phifer et al. (2017), 88 

respectively, highlighting the importance of considering the previous land use context. For example, 89 

while afforestation of Irish peatlands and grasslands of high conservation value was considered 90 

detrimental for bird biodiversity, in the case of intensively managed grassland, afforestation can lead to 91 

higher densities of bird species of conservation concern (Graham et al. 2017). Such nuanced 92 

observations are particularly important in areas that have experienced severe deforestation 93 

(Brockerhoff et al. 2008), such as Ireland where only 1% of the land area remains in natural woodland 94 

(O’Callaghan et al. 2017). Under such circumstances, even plantations of exotic trees can provide 95 

important habitats for forest species, although attention needs to be given to management options that 96 

enhance the value for forest specialists and species of conservation concern (O’Callaghan et al. 2017). 97 

The maintenance of ecosystem services provided by aquatic biota in managed forests in north-western 98 

North America is examined by Penaluna et al. (2017). They highlight the complex nature of relationships 99 

between aquatic biodiversity and numerous ecosystem services and the need for better quantification 100 

and understanding of process interactions. Pollination of crop plants and wild plants is an important 101 

ecosystem service worldwide. Taki et al. (2017) explore the use of stable isotope analysis to investigate 102 

how land use and climate affect wild bee populations. This provides a useful approach for the study of 103 

relationships between biodiversity, land use and the provision of pollination services. The effects of 104 

invasions of tree pests and pathogens on forest biodiversity and ecosystem services are assessed by 105 
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Freer-Smith and Webber (2017), highlighting the urgent need to mitigate the risk of future invasions and 106 

to increase our ability to manage those that have already occurred. Cultural ecosystem services are 107 

highly relevant in indigenous communities. Lyver et al. (2017) use interviews with members of an 108 

indigenous tribe in New Zealand that has strong connections with the surrounding forest to assess 109 

temporal changes in forest use and perceptions of forest health. Finally, Vangansbeke et al. (2017) 110 

examine trade-offs between biodiversity, wood production and recreation in planted pine forests and 111 

how forest management planning can be optimised spatially to integrate the delivery of multiple 112 

ecosystem services.  113 

 114 

The objectives of this paper are to: (1) provide an overview of the various ‘ecosystem services’ that are 115 

provided by forests; (2) clarify the definitions of ecological processes, ecosystem function, and 116 

ecosystem services and goods; and (3) review and synthesise the current state of knowledge regarding 117 

forest ecosystem services and the role of forest biodiversity in the provision of these ecosystem 118 

services. 119 

 120 

 121 

Ecosystem processes, functions, services are distinct concepts 122 

 123 

It is widely recognized that biodiversity is a major driving force in ecosystem function (Hooper et al. 124 

2005; Schulze and Mooney 2012). Hundreds of studies have addressed the effects of tree species 125 

diversity on many forest ecosystem functions, including primary production (e.g., Liang et al. 2016). In 126 

this very active field of research, the statement that tree diversity can improve "forest ecosystem 127 

function and (associated) services" has become very common. However, the concepts of ecosystem 128 

function and ecosystem services are often confused, even though they are different in terms of their 129 

definition and relevance to scientists and managers. Whereas “function” is an ecosystem-centred 130 

concept, “ecosystem service” is human-centred (see Box 1 for definitions and an example). Focusing on 131 

function allows scientists to understand how changes in forest biodiversity can modify the key ecological 132 

processes that are driving the functioning, integrity or maintenance of forest ecosystems. Given the 133 

linkages and relationships between ecosystem functions and services, forest managers or policy makers 134 

may use such information to predict how biodiversity management or enhancement can affect the 135 

delivery of goods and services beneficial to the economy and to human well-being.  136 

 137 

Insert Box 1 about here 138 

 139 
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Forests generally are well-placed to deliver most of the ecosystem services (ESs) listed in current 140 

frameworks such as the Millennium Ecosystem Assessment (Millennium Ecosystem Asessment 2005) or 141 

CICES (CICES 2013), because of their wide distribution, rich biodiversity and long history of human use 142 

(see Table 1 for an overview of ESs relevant to forest ecosystems). However, empirical studies that 143 

establish quantitative and causal relationships between forest biodiversity and ecosystem services are 144 

lacking for many important ESs (Mori et al. 2017). For example, focusing only on the effect of tree 145 

species diversity, we found that the number of published articles (see Online Resource 1 for details on 146 

the methodology) addressing ESs provided by mixed forests was highly skewed towards provisioning 147 

services, particularly the provision of wood biomass, and regulating services such as the regulation of 148 

pests and diseases (Figure 1). The provisioning of nutrition and energy services, and the cultural services 149 

delivered by mixed-species forests, are largely under-represented in the literature. 150 

 151 

 152 

Tree diversity effects on biomass production 153 

 154 

Productivity is often higher in mixtures than in monocultures, and this effect can increase with tree-155 

species richness (Forrester and Bauhus 2016; Liang et al. 2016). A recent global meta-analysis of 156 

mixture-monoculture comparisons found that the productivity of mixtures was, on average, 26.5% 157 

greater than the mean of the respective monocultures (i.e., overyielding) and 9.8% greater than the 158 

most productive of the respective monocultures (i.e., transgressive overyielding) (this excludes very 159 

young mixtures where the effects were smaller) (Gritti et al., cited in Pretzsch and Forrester 2017). 160 

However, while productivity has often been found to increase along gradients of increasing tree-species 161 

richness, there are also instances where there is no increase, or even a decrease in productivity 162 

(Forrester and Bauhus 2016). Even when there is an increase in growth with increasing tree-species 163 

richness, it does not mean that the mixtures are always more productive than all the monocultures; it 164 

only indicates that the mean productivity of a given diversity level is greater than the mean productivity 165 

of a lower diversity level, such as the monocultures. Therefore increasing tree-species richness within a 166 

given stand will not necessarily result in greater productivity. This would require that the species 167 

interact in complementary ways, and therefore when considering specific stands (as opposed to regional 168 

patterns), species identity is likely to be more important to consider than species diversity per se.  169 

 170 

Positive mixing effects, or complementarity effects, can result from many different processes and 171 

species interactions. These have been the subject of several reviews (Kelty 1992; Richards et al. 2010; 172 

Forrester and Bauhus 2016) and can be described as nutrient-related, water-related or light-related 173 

interactions in addition to biotic interactions (e.g., reduced pest damage) (Forrester and Bauhus 2016). 174 
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Examples of nutrient-related processes are symbiotic nitrogen fixation and accelerated rates of nutrient 175 

cycling, or where the abundance and composition of mycorrhizae change under mixtures leading to 176 

greater the uptake of different forms of a given nutrient (Lovelock and Ewel 2005; Richards et al. 2010). 177 

Water-related interactions include differences in rainfall interception by the canopy, transpiration, 178 

water infiltration or storage in the O horizon and hydraulic redistribution. Light-related interactions 179 

include differences in crown architecture and canopy structure that influence light absorption, or 180 

differences in physiology or phenology that influence the efficiency of light use and the timing of light 181 

absorption.  182 

 183 

Many of these processes or interactions are related to stand structure or tree architecture, rather than 184 

tree species diversity per se. This is the case for most light-related interactions, many water-related 185 

interactions and a small proportion of the nutrient-related interactions (Forrester and Bauhus 2016). 186 

This suggests that many of these processes and interactions could be important in monocultures that 187 

are heterogeneous, especially uneven-aged monocultures. However, just as tree species diversity does 188 

not necessarily increase productivity, structural diversity has also been found to have negative effects 189 

on productivity, and in some forest types increasing size heterogeneity can reduce productivity by 20% 190 

(Binkley et al. 2010; Ryan et al. 2010; Stape et al. 2010; Aspinwall et al. 2011; Luu et al. 2013; Bourdier et 191 

al. 2016; Soares et al. 2016). In such stands, the heterogeneous size structure enables larger trees to 192 

acquire higher quantities of a given resource than smaller trees, which they also use more efficiently 193 

than smaller trees. The smaller trees acquire fewer resources and use them less efficiently, which has a 194 

greater negative effect on stand growth than the positive effect experienced by the larger trees (Binkley 195 

et al. 2010).  196 

 197 

Mixing effects for any given species composition will often change along spatial or temporal gradients of 198 

resource availability or climatic conditions. In general, complementarity for a given species has been 199 

found to increase as the availability of resource “A” declines (or climatic condition A becomes harsher) if 200 

the species interactions improve the availability, uptake, or use efficiency of resource A (or interactions 201 

improve climatic condition A) (Forrester and Bauhus 2016). If soil nitrogen availability is high then any 202 

nitrogen fixed by a nitrogen-fixing species is unlikely to have much of an effect on non-nitrogen-fixing 203 

species (Forrester 2014). For example, the growth of Pseudotsuga menziesii was greater when it was 204 

mixed with the N-fixing Alnus rubra on a low-N site, but not on a high-N site (Binkley 2003) (Figure 2a). 205 

The complementarity effect was as high as 100% and was related to greater nutrient uptake rather than 206 

changes in nutrient availability or nutrient-use efficiency. The rates of N, Mg and K uptake were greater 207 

in mixtures than in P. menziesii monocultures at both sites, but the relative increases were much greater 208 

at the low N site (Binkley et al. 1992). The same pattern can be expected for water- and light-related 209 
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interactions along gradients in water status or gradients in light competition, respectively (Forrester 210 

2014). For example, the drought sensitivity (%) of A. alba was reduced when mixed with P. abies but 211 

only on dry sites (Figure 2b; Lebourgeois et al. 2013). It was suggested that this resulted in species 212 

interactions that reduced competition for water, which was expected to be more useful on drier sites or 213 

during drier periods. In mixtures where complementarity increases as growing conditions improve, 214 

interactions that improve light absorption or light-use efficiency may be important. On sites with high 215 

nutrient and water availability, stands can develop large leaf areas and competition for light may be 216 

intense. Therefore, interactions that improve light absorption or light-use efficiency can be more useful. 217 

This was suggested to have caused the increasing complementarity effect for P. abies when it was mixed 218 

with A. alba (Figure 2c).  219 

 220 

In conclusion, many studies have identified the processes and interactions that cause mixing effects, and 221 

much recent attention has been given to the spatial and temporal dynamics of these interactions 222 

because such information is required for most practical applications of mixtures. Important next steps 223 

are to determine when and where each individual process or interaction is likely to have the greatest 224 

effect on growth or other forest functions and whether certain processes or interactions tend to have 225 

the largest effects. This could be combined with analyses of forest inventory data to provide regionally 226 

validated information across large spatial and temporal gradients (Forrester and Bauhus 2016). Such a 227 

process-based approach could benefit from being combined with modelling studies, which can 228 

summarize much of this information while simultaneously making it readily available to foresters 229 

(Forrester et al. 2017). 230 

 231 

 232 

Habitat provisioning and effects of forest type, structure and diversity 233 

 234 

Globally, forest specialist species are in decline (e.g., Gregory et al. 2007), particularly those associated 235 

with primary forests containing old trees and biological legacies. There is an urgent need to identify the 236 

impacts of management on habitat provisioning in forest ecosystems and to highlight potential 237 

mitigation measures so that the range of ecosystem functions and services directly supported by 238 

biodiversity are maintained.  239 

 240 

Most forest biota respond negatively to forest degradation and to fragmentation from pristine primary 241 

forests to small fragmented remnants. Some forest specialists tend to be more sensitive and also 242 

respond negatively to habitat conversion from native to exotic plantation forest (Farwig et al. 2008; 243 

Irwin et al. 2014; Lindenmayer et al. 2015). However, the relative habitat value of plantation forests 244 



8 
 

depends upon the forest history and context within a region (e.g., Neumann et al. 2017). For example, in 245 

countries that are dominated by agricultural landscapes, exotic plantation forests may play a significant 246 

role in supporting forest biodiversity by allowing native forest specialists to use an otherwise unsuitable 247 

non-wooded landscape matrix (Berndt et al. 2008; Ruffell et al. 2017; O’Callaghan et al. 2017). 248 

Nonetheless, increasing fragmentation and loss of primary forest fundamentally alters both the species 249 

and functional composition of forested landscapes (Lindenmayer and Franklin 2002; Barnes et al. 2017). 250 

 251 

Habitat provisioning across forested landscapes 252 

In fragmented forest landscapes the levels of isolation and connectivity are important factors 253 

determining habitat provisioning at this scale (Fahrig 2003). For instance, species with poor dispersal 254 

abilities, such as epiphytic lichens or small arboreal rodents, suffer significant declines in fragmented 255 

landscapes (Jönsson et al. 2017; Santaniello et al. 2017; Linnell et al. 2017), while the diversity of forest 256 

specialist plants in plantation forests is positively influenced by proximity to natural woodland patches 257 

providing opportunities for colonisation (Coote et al. 2013). Similarly, the amount of natural forest 258 

strongly influences the distribution of birds and bats because it provides a significant part of foraging 259 

and roosting requirements at the landscape scale (Burgar et al. 2015; Lindenmayer et al. 2015). Further, 260 

features such as hedgerows and shrubland patches form important habitat linkages facilitating 261 

movement between patches for forest invertebrates such as spiders (Oxbrough et al. 2007). By contrast, 262 

birds and bats that use both forest and non-forest habitats benefit from fragmented mosaic landscapes, 263 

and forest patchiness is a key landscape-scale resource for such species (Barbaro et al. 2012; 264 

Charbonnier et al. 2016). However, the quality of the landscape matrix itself has an effect on native bird 265 

distribution at the landscape scale, by mitigating or accelerating declines in bird species richness with 266 

increasing native habitat loss when the matrix is dominated by either wooded or non-wooded exotic 267 

habitats (Deconchat et al. 2009; Ruffell et al. 2017). Forest harvesting and the resulting interspersion of 268 

complementary habitats in the landscape mosaic is also critical to large herbivorous mammals, providing 269 

both cover and foraging areas (Côté et al. 2004; Nikula et al. 2004). However, large-scale habitat 270 

provisioning by mature and intact forests is vital for many declining forest specialists as well as for the 271 

conservation of functionally diverse forest taxa assemblages (Lindenmayer and Franklin 2002; Irwin et 272 

al. 2014). 273 

 274 

Habitat provisioning at within- and between-stands scales 275 

Large-scale forest management can lead to biotic homogenization of forest environments at stand and 276 

landscape scales; for example, when multispecies landscapes are replaced by even-aged monocultures, 277 

although in boreal forests the opposite effect may also occur. Diversification of tree species or age 278 

ranges either between stands in a forested landscape or within stands at a smaller scale generally 279 
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enhances habitat provision for invertebrates such as arboreal beetles, and for birds and mammals 280 

(Nikula et al. 2004; Plath et al. 2012; Styring et al. 2011). Mixtures of conifers and deciduous trees may 281 

enhance biodiversity by providing habitats suitable for species associated with different tree species. For 282 

example, such mixtures may lead to greater bat species diversity through increased habitat 283 

heterogeneity and feeding resources, compared to forest monocultures (Burgar et al. 2015; Charbonnier 284 

et al. 2016). Invertebrates (e.g., spiders and beetles) and plants tend to respond more to small-scale 285 

structural changes associated with the presence of individual tree species driven by light availability and 286 

litter inputs (Chavez & MacDonald 2012; Oxbrough et al. 2016).  287 

 288 

Diversification of age structures provides habitats for the range of species associated with each stage of 289 

the successional forest cycle and is a key driver of biodiversity. However, in tropical forests, gap-phase 290 

dynamics tend to be more important than successional cycling. Together with tree composition, stand 291 

stratification and age structure are important drivers of bat and bird diversity in forests because they 292 

directly affect their foraging (Barbaro et al. 2012; Jung et al. 2012; Phifer et al. 2017) whereas 293 

invertebrates, bryophytes and vascular plants respond more to changes in forest structure and light 294 

levels (Smith et al. 2008). Late successional stages have significant conservation importance due to their 295 

structural diversity and widespread rarity in the landscape (Lindenmayer 2017), whereas in regions that 296 

have experienced substantial loss of natural forest cover, older plantation forests can play an important 297 

role in supporting a range of native forest species (Berndt et al. 2008; Deconchat et al. 2009; Irwin et al. 298 

2014; Ruffell et al. 2017). Primary forest and older stands provide important biological features such as 299 

habitats for flora and fauna associated with large or late successional tree species, a greater diversity of 300 

deadwood or more diverse stand structures (e.g., Burgar et al. 2015; Lindenmayer 2017; Linnell et al. 301 

2017). However, forest ecosystems provide habitats for differing suites of species at each stage of the 302 

forest cycle. For instance, at the early stages of tree establishment a range of open habitat and 303 

generalist invertebrate and plant species coexist (Smith et al. 2008), a role which may be important in 304 

landscapes dominated by intensive agriculture with low overall biodiversity (O’Callaghan et al. 2017). 305 

Large herbivorous mammals such as moose (Alces alces) select early successional forest stages due to 306 

the availability of food resources during winter (Nikula et al. 2004), as do hen harriers (Circus cyaneus), 307 

since such habitats provide suitable ground nesting sites and an abundance of small mammalian prey 308 

(Wilson et al. 2009). Further, modern silvicultural practices such as tree planting after logging have 309 

considerably improved habitat quality for deer. Increased plant diversity provides abundant and high-310 

quality food resources, and this contributes to problems from an overabundance of deer in many 311 

regions (Côté et al. 2004).  312 

 313 
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Deadwood is a significant contributor to habitat provision in forest ecosystems and is recognised 314 

internationally as an indicator of forest health. Deadwood tends to be more abundant in old growth or 315 

less managed stands (except in tropical forests) and provides both habitat and forage for a large suite of 316 

the forest biota (Seibold et al. 2015). Many forest bird and mammal species depend on the presence of 317 

tree cavities associated with deadwood for nesting and roosting (Cockle et al. 2011; Burgar et al. 2015). 318 

Saproxylic fungi, plants and invertebrates respond to changes in deadwood characteristics including 319 

volume, size classes, situation and decay stage, which provide variety in habitat structure and available 320 

food sources at differing stages of the decomposition process (Seibold et al. 2015). For instance, wood-321 

boring invertebrates may initially colonise early decay stage wood, providing mechanisms for fungi to 322 

enter and enhance the decomposition process for later successional species (Ulyshen 2016). 323 

 324 

Knowledge gaps and future challenges 325 

Forest ecosystems support a large proportion of species threatened with extinction, and more applied 326 

research is urgently needed to evaluate sustainable forest management practices that will contribute to 327 

the protection of threatened species. The diversity of forest structure and composition need to be 328 

maintained at landscape and regional scales as a spatial insurance to provide habitats for a large suite of 329 

specialist forest species. Habitat provisioning by forests for multiple taxa and trophic levels is a key 330 

ecosystem service, which in turn positively influences forest ecosystem functioning through a range of 331 

mechanisms (Barnes et al. 2017; Lindenmayer 2017). There is also a need for increased public and 332 

political support for sustainable forest management to reduce species losses. The impacts of large-scale 333 

forest harvesting, thinning and replanting with exotic species on habitat provisioning on well-known 334 

groups of mammals, birds and plants are relatively well-investigated using basic community-level 335 

metrics (e.g., species richness, abundance, species composition). However, for less charismatic groups 336 

such as some invertebrates and fungi, and for more complex community interactions and ecosystem 337 

functions, as well as longer-term impacts like climate change, the effects of forest management and 338 

mitigation measures remain largely unknown and present a significant future research challenge. This is 339 

particularly relevant for the biota associated with forest canopies and the flora and fauna of tropical 340 

forests, where the impacts of forest fragmentation and modern forest practices remain largely unknown 341 

despite these forests’ high conservation value and their considerable role in the provision of ecosystem 342 

services. 343 

 344 

 345 

Pollination and forest diversity 346 

 347 
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Animal pollination, which is fundamental to the reproduction and persistence of most flowering plants, 348 

is an important ecosystem service (Millennium Ecosystem Assessment 2005). As biodiversity contributes 349 

to various ecosystem processes, functions and services, the declining diversity and abundance of 350 

pollinators (mainly insects and birds) has raised concerns about the effects on both wild and crop plants 351 

(Potts et al. 2010). Experimental evidence indicates that greater pollinator diversity results in improved 352 

seed production in plants (Fründ et al. 2013). Furthermore, it has also been shown that pollinator 353 

species richness per se is not as important as the diversity and complementarity of functional traits of 354 

pollinators, such as different plant species and ambient temperature preferences (Fründ et al. 2013). 355 

 356 

In agricultural ecosystems, pollination services are provided by numerous species of wild insects and 357 

vertebrates, as well as some managed species that also rely on wild ecosystems for nesting and food 358 

resources (Garibaldi et al. 2013). Approximately 75% of the world’s leading food crops, such as cacao 359 

and oil palm in the tropics and almonds and apples in temperate regions, depend at least in part on 360 

animal pollination for yield and/or quality (Klein et al. 2007). The economic contribution to the current 361 

global crop production attributed to animal pollination is estimated to have an annual market value 362 

ranging between US$235 billion and US$577 billion (Potts et al. 2016). Diversified farming systems such 363 

as mosaic agricultural landscapes with forest remnants and agroforestry are more effective than large 364 

agricultural monocultures in providing nesting and floral resources for pollinators and in sustaining 365 

pollinator populations and communities throughout the year (Fahrig et al. 2015). The conservation of 366 

natural ecosystems such as forests, which may provide habitats for pollinators, is crucial, and the 367 

distance from these habitats to farms affects the success of seed and fruit set (Kennedy et al. 2013). 368 

 369 

In terrestrial ecosystems other than agricultural systems, it is estimated that over 85% of wild flowering 370 

plants globally are reliant to some degree on animals to transfer pollen (Ollerton et al. 2011). The wide 371 

variety of pollinator species contributes to the successful pollination of wild plants, and many flowering 372 

plants and their pollinators have close co-evolved relationships (Proctor et al. 1996). Greater diversity of 373 

pollinator species and functional groups generally enhances the success of pollination services 374 

(Tylianakis et al. 2008). Local pollinator loss can be a serious threat to plants that are dependent on 375 

certain pollinators, potentially causing their eventual extinction. Empirical studies in forest landscapes 376 

showed negative correlations between pollination success in wild plants and the extent of loss and 377 

fragmentation of forest remnants (Aizen and Feinsinger 1994). Although the economic value of 378 

pollination of wild plant species has not been quantified, it is certain that it contributes substantially to 379 

the provision of food, habitats and other resources for a wide range of organisms. 380 

 381 
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Tree types and human management of forests affect pollinators and pollination services. Planted forests 382 

that consist of one tree species, grown as even-aged monocultures and intensively managed, may result 383 

in reduced diversity and abundance of pollinators compared with natural forests that have greater 384 

structural and plant species diversity (Taki et al. 2011). However, there are cases where active 385 

management of planted forests results in positive effects on pollinators. For example, thinning trees 386 

may enhance the diversity and abundance of pollinators in planted forests (Taki et al. 2010). Even clear 387 

cutting and other disturbances of planted forest that create open environments that are preferred by 388 

early successional species that can act as pollinators (Rubene et al. 2015; Taki et al. 2013). Moderate 389 

levels of human disturbance of forest ecosystems and anthropogenic land use may result in greater bee 390 

abundance and species richness (Winfree et al. 2007). However, some pollinator species such as 391 

honeybees and stingless bees use old growth forest for nesting in cavities in large trees (Michener 392 

2007). 393 

 394 

Maintaining the quantity and quality of natural or semi-natural forest ecosystems across the landscape 395 

is important to conserve and restore habitats for pollinators. Retaining habitats within a landscape helps 396 

to safeguard an essential level of pollination services for both agricultural and forest ecosystems. 397 

Beyond the landscape scale, habitat conservation and restoration at the local scale are also necessary to 398 

provide nesting and feeding resources for pollinators (Taki et al. 2017). However, there are still gaps in 399 

our knowledge about how landscape and local scale management of forested ecosystems can be 400 

integrated for the best outcome for pollinators and pollination services. 401 

 402 

 403 

Biodiversity and seed dispersal 404 

 405 

Seed dispersal by mammals is a major factor in maintaining tree community structure over the long 406 

term in tropical forests (Seidler and Plotkin 2006) and is a key mechanism that explains the pattern of 407 

low aggregation of conspecifics on tropical forest plots. Evidence also suggests that tropical forests 408 

deprived of seed-dispersing animals exhibit replacement of fruiting trees by species with wind seed 409 

dispersal (Brodie and Aslan 2012). While the seeds of many tree species are dispersed by wind, others 410 

are dispersed by herbivores and frugivores (a process known as zoochory), especially in tropical forests. 411 

In Mexico, Cortes-Flores et al. (2013) found that 68% of tree species were dispersed through zoochory. 412 

Reduced or absent populations of seed-dispersing animals result in poor to no dispersal, especially of 413 

large-seeded trees that depend on large animals such as elephants (Anzures-Dadda et al. 2011; Brodie 414 

and Aslan 2012; Beaune et al. 2013). Some animal species play important co-evolved and 415 

complementary roles in maintaining plant communities (Gonzalez et al. 2009; Garcia and Martinez 2012; 416 
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Gonzalez-Varo et al. 2013). The rate of seed germination for some species is enhanced by passage of 417 

seeds through mammalian guts (endozoochory) (Traveset 1998; Campos-Arceiz and Blake 2011). 418 

Absence of dispersal processes results in a homogenisation of forest plant species and has long-term 419 

consequences for forest structure and other ecosystem services (Terborgh et al. 2008; Lehouck et al. 420 

2009; Markl et al. 2012). Proximity of seed sources affects seed dispersal processes to adjacent areas, so 421 

habitat connectivity can improve the influx of animal-dispersed seeds (Lehouck et al. 2009; Jesus et al. 422 

2012). Animal species that simply drop seeds have effective distances of generally under 0.5 km 423 

(Wehncke and Dominguez 2007) but dispersal distances by seed-eaters are often many kilometres 424 

(Beaune et al. 2013). Hence, the loss of seed dispersers and their habitats ultimately produces a decline 425 

in local or regional tree species richness (Lehouck et al. 2009; Beaune et al. 2013; Bueno et al. 2013).  426 

 427 

 428 

Resistance to wind storms 429 

 430 

Wind is a major disturbance agent in all forests (Payn et al. 2015) and a key part of the dynamics of 431 

many natural forest ecosystems, particularly temperate forests (Ulanova 2000; Wolf et al. 2004). 432 

However, wind damage can have large economic, environmental and social impacts on managed forests 433 

and the societies that depend on them (Gardiner et al. 2013). Therefore, mitigating the impact of wind 434 

damage in such forests is a way to help maintain the important ecosystem services that managed 435 

forests can provide to society. 436 

 437 

Natural forests are remarkably resilient to major damaging events such as storms and hurricanes 438 

(Cooper-Ellis et al. 1999) and it is possible that the mixed structure and mixed species of such forests 439 

contribute to both their resistance and resilience. However, very little is known about the processes 440 

involved in wind damage and recovery in natural forests and it has proven necessary to investigate the 441 

behaviour of managed forests to understand the functioning of natural forests in response to wind 442 

damage (Everham III and Brokaw 1996). For example, there is evidence that wind damage to managed 443 

forests can be reduced by the use of multiple species and variable forest structures, for a number of 444 

reasons. Firstly, there are differences between species in the level of resistance to wind damage 445 

(Hanewinkel et al. 2013) and the overall stability of a forest can be enhanced by using more resistant 446 

species to provide a framework. Secondly, more stable species can help stop damage propagation 447 

during a storm, which occurs when an unstable or weak tree is damaged and creates a gap in the forest, 448 

increasing the wind loading on the remaining trees and leading to further damage (Dupont et al. 2015). 449 

Thirdly, in systems with a mixture of species, the slower growing species may die and act as a self-450 

thinning system that removes the dangers of normal thinning where the canopy is opened up and 451 
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increases the wind loading on the remaining trees (Quine and Malcolm 2007). Fourthly, there is 452 

evidence that wind loading on broadleaves is reduced in the winter, which is the period with the 453 

strongest winds, because they lose their leaves and have reduced overall drag (Bonnesoeur 2016), so an 454 

admixture of broadleaves could be beneficial to overall stand stability. Fifthly, when the canopy is multi-455 

storied because of age and species variation, the momentum absorption from the wind appears to take 456 

place over a greater depth of the canopy and measurably reduces the wind loading on the tallest trees 457 

(Gardiner et al. 2005). Finally, multi-storied forests are less at risk following harvesting of the tallest 458 

trees, for example, in a single-tree selection system, or if individual trees start to blow down in a storm, 459 

because the under-storey trees are smaller and will experience lower wind loading even when gaps are 460 

created. 461 

 462 

Based on the discussion above it is probable that natural forests are more resistant and more resilient to 463 

wind damage because of their mixed structure due to variations in age and species. Therefore, managed 464 

forests that more closely mimic natural forests are almost certainly more resilient than even-aged 465 

stands, will recover more quickly after a damaging event, and ecosystem services from the forest will be 466 

restored more rapidly. In addition, mixed species and age stands will require less technical and financial 467 

input to recover after storm damage (Stanturf et al. 2007) because the understorey trees will be able to 468 

grow into the space previously occupied by the damaged trees and less intervention will be required. 469 

Therefore, by having a mixture of species and tree ages it is possible to have a forest with high 470 

biodiversity and compositional structure, as well as one that is more resistant and resilient to wind 471 

disturbance. However, it must be remembered that resilience in forests is a dynamic process, and 472 

following a large wind disturbance a forest will be different and so will be the level of ecosystem 473 

services it can provide. 474 

 475 

 476 

Fire regulation and mitigation 477 

 478 

Fire is an essential process in the natural dynamics of some ecosystems, and a potential selection force 479 

behind the current distribution of vegetation types worldwide (Bond and Keeley 2005). Although fire 480 

can diminish the well-being of people and drastically reduce ecosystem services, fire is a natural process 481 

in many ecosystems, and it is not necessarily a negative element per se. The maintenance of a natural 482 

fire regime is often required to sustain or even enhance the productivity of ecosystems that have 483 

coexisted, or even coevolved, with a specific fire regime (Brockway et al. 2002). Therefore, the impact of 484 

fire on a forest and its associated ecosystem services can be either positive or negative, depending on 485 

the forest type, the fire regime, and the ecosystem services (Thom and Seidl 2016). 486 
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 487 

However, it is also recognized that global change (climate change, population growth, change in land 488 

use practices, or even an increase in fire suppression efforts) has modified fire regimes worldwide, 489 

causing an increase in the frequency of large catastrophic fires and an associated decrease in the supply 490 

of ecosystem services (Schröter et al. 2005). In addition to the negative influence of large fires on a 491 

number of ecosystem services, such fires also have a direct and negative impact on the well-being of 492 

humans, due to air pollution, cost of suppression activities, and loss of property and human lives. In this 493 

context, fire risk mitigation, aiming to reduce the frequency and impact of catastrophic fires, and fire 494 

regulation to maintain a desirable fire regime, can be considered ecosystem services themselves. 495 

 496 

Fire regulation and mitigation require the maintenance of a certain fuel load and spatial continuity of 497 

fuels, using active management to reduce the risk that fire can impose on ecosystem services, while 498 

maintaining those ecosystem processes and services that depend on fire (Sturtervant et al. 2009). In this 499 

sense, forest biodiversity is often overlooked, unless one considers the clearance of trees and shrubs in 500 

the lower forest strata to mitigate fire risk as a strategy that influences biodiversity. Even though the 501 

impact of fire on biodiversity, either positive or negative, has been frequently addressed, the impact of 502 

species diversity on fire mitigation and regulation is usually neglected.  503 

 504 

It is assumed that a diverse landscape will help to modify fire behavior, minimize negative impact, and 505 

create more resistant and resilient landscapes and ecosystems (Fernandes et al. 2010). However, what 506 

applies to large-scale landscapes is not always true at the stand level. When considering the impact of 507 

increasing diversity on fire behavior and forest resistance, we have to assume that individual trees’ 508 

resistance to or survival capacity in a fire of a given intensity and duration depends on the capacity of 509 

each tree to protect sensitive tissues (Dickinson and Johnson 2004). This capacity is defined by each 510 

tree’s size and species. Mixing the right set of species in a stand may have a positive impact on tree 511 

growth – one of the desirable traits for resisting fires – but may also result in more continuous fuel 512 

supplies, leading to more intense fires. The limited number of studies that have analysed the impact of 513 

species composition and level of mixture on fire behavior and tree mortality have all identified higher 514 

resistance in conifer-broadleaf mixtures compared to pure conifer stands. Forest stands composed of 515 

broadleaved trees are usually more resistant to fire, even when pure, mainly due to their lower 516 

flammability and their resprouting capacity. Therefore, the impact of increasing species diversity on 517 

stand resistance should take into account the capacity of each species to resist fire, and the potential 518 

changes in fire behaviour caused by modifications of the forest and the fuel supply structure (González 519 

et al. 2006, 2007).  520 

 521 
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Reducing fire intensity and increasing forest resistance are, in most cases, achieved by the same 522 

management approaches, which aim to reduce the negative impact of fire on most ecosystem services 523 

and minimize the direct impact of fire on human well-being. However, when considering the long-term 524 

impact of fire on ecosystem services, the resilience of forest stands cannot be overlooked. Functional 525 

traits defining the resistance or resilience of trees to fire are often species-specific (Bond and Midgeley 526 

1995), especially in conifers. Mixing species with different traits may limit the resistance of a forest due 527 

to changes in fire regimes, but at the same time allow a faster post-fire recovery of the vegetation cover 528 

(Martín-Alcón et al. 2015) and the associated ecosystem services.  529 

 530 

In conclusion, the use of forest diversity as a means for fire mitigation and/or regulation needs to 531 

consider the spatial nature of fire. Generating a diverse and fragmented landscape, consisting of a 532 

mosaic of different forest types and land uses, is a clear strategy for minimizing the negative impacts of 533 

fire, inside and outside the forest. However, selecting a forest typology for mitigating fire is not a 534 

straightforward decision at the stand level. Any decision regarding forest composition and management 535 

should consider the fire regime (real or emulated) that is expected or will be regulated. It should also 536 

consider the response of the tree species to such fire regimes, according to their functional traits, and in 537 

the case of mixtures, the compatibility between species and traits. Finally, trade-offs between responses 538 

to fire and impacts on ecosystem services should be evaluated in order to efficiently manage different 539 

forest typologies.  In general, the impact of mixing species on a stand’s post-fire resistance has been 540 

poorly studied, or oversimplified. Past studies are scarce, local, and often based on broad species 541 

groupings (such as conifers and broadleaves). Further research is required to identify which species have 542 

compatible functional traits for inducing enhanced fire resistance, including an assessment of the 543 

combined accumulation and structure of living and dead fuels. Other aspects that call for further 544 

research include the impact of mixing species on forest humidity and fuel moisture, and the non-545 

additive effect of mixing different fuels on flammability.  546 

 547 

 548 

Effects of forest tree diversity on pest regulation of native and invading insects 549 

 550 

Insect damage can have major impacts on forest ecosystem functioning (Boyd et al. 2013). For instance, 551 

bark beetle outbreaks causing large-scale mortality have been observed to shift forests from carbon sinks 552 

to carbon sources (Kurz et al. 2008). Even minor chronic damage such as background defoliation (Kozlov 553 

et al. 2015) may result in significant growth loss in trees (Zvereva et al. 2012).  554 

 555 
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Although it is a common belief among foresters that forest monocultures are more susceptible to pest 556 

outbreaks and insect invasions than mixed forests, it has only recently been demonstrated, via meta-557 

analyses, that tree species grown in pure stands are, on average, significantly more affected by insect 558 

herbivory than the same species grown in mixed stands (Jactel and Brockerhoff 2007; Castagneyrol et al. 559 

2014a, Guyot et al. 2016; Jactel et al. 2017). This phenomenon has been termed ‘associational resistance’ 560 

(Barbosa et al. 2009). However, most stand-scale studies involved native insects, and there is 561 

comparatively little information on invasions by non-native insects. Two studies in Europe have shown 562 

negative relationships between tree species richness and the abundance of invasive tree-feeding insects 563 

at the plot or stand scale (Jactel et al. 2006; Guyot et al. 2015). Conversely, in the USA, a positive 564 

relationship between native tree species richness and the number of successful invasions by non-native 565 

tree-feeding insects was observed (Liebhold et al. 2013), although that study assessed larger-scale county-566 

level data that are not directly comparable with plot-level data.  567 

 568 

While forest insect damage has been found to decrease along gradients of tree diversity in temperate 569 

forests (Guyot et al. 2016), tree species composition appears to be more important than tree species 570 

richness per se in explaining diversity-resistance relationships in forest ecosystems. In particular, the 571 

likelihood of associational resistance increases with the functional dissimilarity of associated trees in 572 

mixed forests (Castagneyrol et al. 2014a). This would explain why there is weak evidence for better 573 

resistance of pure stands composed of several genotypes of the same species compared to single-574 

genotype monocultures (Moreira et al. 2014, Barton et al. 2015).  575 

 576 

Three main ecological mechanisms are proposed to explain why pest regulation is more effective in mixed 577 

forests. The first mechanism relates to the density of host trees, which is proportionally reduced in forests 578 

where host and non-host species are ‘associated’ compared to pure forests of host trees. The resource 579 

concentration hypothesis (Root 1973) predicts that herbivores are less likely to find, remain and feed on 580 

their host trees when they are less numerous and scattered amongst non-host trees in mixed stands 581 

(Sholes 2008). This mechanism mainly occurs at the patch (‘stand’) level (Hambäck and Englund 2005), 582 

depending on the ability of herbivores to perceive the overall quality of the patch, thus influencing patch 583 

immigration and residence rates (Verschut et al. 2016).  584 

 585 

The second mechanism relates to the ability to locate and exploit individual host trees, depending on the 586 

frequency and identity of host and non-host trees. Non-host trees may reduce the visual apparency 587 

(Castagneyrol et al. 2014b) and chemical apparency (Jactel et al. 2011) of host trees, making them more 588 

difficult for insects to find. Neighbouring trees from other, associated species may also be preferred by 589 

insect herbivores, leading to a diversion process that benefits the focal tree species (Jactel et al. 2005). 590 
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This mechanism thus occurs within a patch (or ‘stand’), depending on insects' movement between 591 

resources, resource perception and dietary preferences (Hambäck and Englund 2005; Verschut et al. 592 

2016). Both mechanisms involve plant–herbivore interactions and are more effective against specialist 593 

insect herbivores (monophagous) than generalists (polyphagous) (Castagneyrol et al. 2014a). In some 594 

cases, generalist pests may even cause more damage in mixed forests (associational susceptibility, e.g. 595 

Schuldt et al. 2010) as a result of spill-over onto less preferred neighbouring species after the depletion 596 

of the favoured host tree species (White and Whitham 2000), or because of the potential benefits of 597 

dietary mixing (Unsicker et al. 2008).  598 

 599 

The third mechanism involves plant–herbivore–predator interactions and is related to the ‘enemies 600 

hypothesis’ (Root 1973). This states that more diverse forests can provide more diverse and abundant 601 

feeding and nesting resources for insect predators and parasitoids, thus increasing their capacity to 602 

control populations of prey (i.e., insect herbivores). Although an increasing body of evidence supports a 603 

positive correlation between tree diversity and natural enemy diversity (Castagneyrol and Jactel 2012; 604 

Staab et al. 2014), the actual contribution of predators to the top-down control of pest insects in mixed 605 

forests remains difficult to demonstrate (Jactel et al. 2006, Muiruri et al. 2016).  606 

 607 

All three mechanisms are likely to affect non-native invading insects, and they would be expected to 608 

mitigate invasions of species-rich forests to some extent. Conversely, because most tree-feeding insects 609 

are relatively host-specific, an unavoidable consequence of greater tree diversity is that it leads to an 610 

increase in the number of host trees that may be colonised by potential invaders (Liebhold et al. 2013). 611 

Ultimately, the extent of realised invasions depends on the combined net effect of negative and positive 612 

effects of tree species richness. 613 

 614 

The spatial extent of pest regulation services exhibits a nested pattern. While reduced individual tree 615 

damage is probably strongest at the scale of neighbouring trees, for example due to reduced host 616 

apparency (Guyot et al. 2015; Damien et al. 2016), improvement of forest health can be achieved at the 617 

stand scale (Guyot et al. 2016). Improved effectiveness of biological control by natural enemies may also 618 

provide benefits to adjacent land uses such as agricultural crops (Veres et al. 2013).  619 

 620 

The temporal dimension of forest diversity–pest regulation relationships remains the main knowledge 621 

gap. On the one hand mixed-forest dynamics are triggered by differences in tree species-specific growth 622 

rates, which may lead to changes in host apparency (e.g., Damien et al. 2016) and perhaps host 623 

palatability. These factors may change the magnitude and direction of effects on pest insects in the 624 

forestry cycle. On the other hand, insect populations have their own dynamics, sometimes with eruptive 625 



19 
 

or cyclic outbreaks, but little is known about whether diversity effects could vary depending on herbivore 626 

and predator abundance (Fernandez-Conradi et al. 2017). As a consequence, there is a need for long-term 627 

studies testing the influence of tree diversity on the population dynamics of forest insects and estimating 628 

the resilience of mixed forests to pest outbreaks. 629 

 630 

The pest regulation service provided by forest biodiversity is thus intimately linked with two main 631 

ecosystem functions: primary production (which controls for tree apparency and trade-offs with plant 632 

defences) and biotic interactions (e.g., predator-prey interactions). Increasing tree species diversity is 633 

likely to result in more complex forest structure and composition, thus providing more habitat for 634 

predators and parasitoids that may regulate pest populations through top-down biotic interactions. 635 

Bottom-up biotic interactions are also influenced by tree species diversity via both the relative abundance 636 

of host vs. non-host tree species for insect herbivores and the diversity of their traits, such as growth 637 

pattern and secondary metabolism, which ultimately influence the probability of host trees being found, 638 

colonized and damaged (Table 1). Pest regulation may have benefits for several forest goods and 639 

products. Pest damage reduction ultimately results in more wood biomass of better quality and also helps 640 

maintain forest cover, thus regulating air and water quantity and quality, preventing soil erosion, and 641 

improving the beauty of forest areas used for recreational activities. 642 

 643 

 644 

Biodiversity and carbon sequestration in forests 645 

 646 

Carbon in forests is sequestered through photosynthesis, and so is directly related to the species level of 647 

biodiversity, as follows. Carbon is stored in five distinct pools in forests: above-ground and below-648 

ground live biomass, in deadwood including snags, litter, and soil. Carbon in forests is a function of 649 

forest productivity (see above), but the question of the relationship of biodiversity to carbon storage 650 

differs somewhat from sequestration. In part this difference occurs because different tree (and plant) 651 

species have different wood densities, different rates of photosynthesis and respiration, and because 652 

decomposition occurs at different rates, depending on multiple factors. Therefore, in most studies, the 653 

functional characteristics and richness of plant communities are major drivers of carbon accumulation in 654 

all pools (Kirby and Potvin 2007; Conti and Diaz 2013; Harmon et al. 2013; Lange et al. 2015), although 655 

Finegan et al. (2015) found no relationship between species richness and biomass. For soils, Lange et al. 656 

(2015) found that elevated carbon storage at sites with high plant diversity is directly related to the soil 657 

microbial functional community (i.e., soil biodiversity), which in turn is related to plant species richness, 658 

suggesting that soil carbon storage is mainly limited by the integration of new carbon into soil and less 659 

by the decomposition of existing soil carbon. In many studies in tropical forests, planted forests and 660 
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second growth forests – which often lack species with high wood density, and generally have lower 661 

taxonomic diversity than primary forests – there is typically lower biomass stored in live and dead 662 

biomass pools (Cavanaugh et al. 2014; Gonzalez et al. 2014; Osuri et al. 2014; Shirima et al. 2015). Single 663 

species plantations result in reduced litter, or recalcitrant litter, followed by depletion of soil biodiversity 664 

and as a consequence less stored soil carbon (de Vries et al. 2013; Zhao et al. 2013; Aslam et al. 2015). 665 

 666 

 667 

Cultural ecosystem services in forest ecosystems 668 

 669 

Cultural ecosystem services (CESs) are defined as ecosystems’ contributions to the non-material benefits 670 

that arise from complex and dynamic relationships between ecosystems and humans (Chan et al. 2012; 671 

Fagerholm et al. 2012).  These services are often intangible, making them difficult to measure (Daniel et 672 

al. 2012).  Commonly recognized CES categories include: cultural diversity and identity, spiritual and 673 

religious values; knowledge systems, including education; inspiration; aesthetic values; cultural heritage 674 

values; and recreation and ecotourism (Costanza et al. 1997; Millennium Ecosystem Asessment 2005).  675 

The emphasis on CES benefits is heavily influenced by a country’s cultural, social, economic and political 676 

organisation.  Populations in societies with access to surplus wealth and leisure time frequently 677 

emphasize the importance of aesthetic values, recreation and tourism (Millennium Ecosystem 678 

Asessment 2005).  In contrast, indigenous peoples often express the importance of CES benefits relating 679 

to cultural identity and heritage, kinship, and knowledge integrity and transfer (Pert et al. 2015; Boafo et 680 

al. 2016; Sangha and Russell-Smith 2017). 681 

 682 

The global significance of forests to humans means CESs are deeply ingrained in the value-belief systems 683 

of many societies.  Indigenous forest peoples in particular have a complex matrix of values that shape 684 

and guide their attitudes, beliefs and relationships with the forests in which they live (Rickenbach et al. 685 

2017).  Since the majority of forests worldwide are populated and used by humans (Forest Peoples 686 

Programme 2017), the biodiversity contained within these ecosystems contributes extensively to the 687 

provision of CES benefits.  For example, indigenous peoples commonly link forest landscapes and 688 

biodiversity to tribal identities, association with place, kinship ties, customs and protocols, stories, and 689 

songs (Gould et al. 2014; Lyver et al. 2017).  Spatial patterns of CES identified by rainforest Aboriginal 690 

peoples in Australia were related primarily to variations in social structures (e.g., adherence to cultural 691 

protocols), rather than to ecological attributes such as forest biodiversity patterns (Pert et al. 2015). 692 

 693 

In developed nations the aesthetic value of forest landscapes has featured strongly in CES assessments 694 

of forests.  For example, peoples’ judgements of scenic beauty in forests of the north-western USA were 695 
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greater in areas where more green trees were retained by logging companies, provided the retained 696 

trees were evenly dispersed across the landscape rather than clumped in small groups (Ribe 2005).  697 

Similarly, the Black Wood of Rannoch is one the largest remnants of ancient Caledonian pine forest in 698 

Scotland and contributes significant CES values, such as aesthetic and spiritual benefits (Edwards et al. 699 

2016).  In East Germany, forests are considered a ‘hot-spot’ for CES in regard to education (learning 700 

about biodiversity), spirituality and recreation (e.g., hiking – Plieninger et al. 2013).  However, 701 

biodiversity in these forests also contributes a cultural ecosystem ‘disservice’ as local people have a fear 702 

of roaming wolves (Plieninger et al. 2013).  Recreation and tourism are by far the most commonly 703 

mapped CESs in forest-related assessments, largely because of the ease with which economic-based 704 

values can be measured, although estimates can vary widely.  An assessment of recreational services 705 

provided by forests in North Zealand, Denmark, varied from 5,200 to 14,850 EUR/ha/year for forests 706 

with the highest per hectare value, and from 200 to 320 EUR/ha/year for forests with the lowest per 707 

hectare value (Zandersen and Termansen 2012).  In northern Italy, tourism contributed almost 10% of 708 

the total economic value of ecosystem services for the forests of the Fiemma and Fassa Valleys (Häyhä 709 

et al. 2015).  While recreation and tourism values are critical for many local economies, rising human 710 

populations in some countries are increasingly placing pressure on forest resources and the quality of 711 

other non-monetary cultural services (Wear and Greis 2002).  712 

 713 

While CESs are a vital part of the ecosystem services complex, they are, on the whole, under-714 

researched.  Intangible and non-negotiable CES benefits continue to challenge valuation methods and 715 

processes.  New valuation tools and frameworks that can reliably account for non-material CES benefits 716 

need to be developed and tested.  Linking environmental conditions with human wellbeing was a 717 

common concept that emerged from the MEA process (Millennium Ecosystem Assessment 2005).  718 

Research that explores shared CES concepts between user groups and maps the diversity of CES benefits 719 

is therefore needed to assist in conflict resolution (e.g., between tourists and indigenous peoples), 720 

especially as activities like recreation and tourism expand globally (e.g., Fagerholm et al. 2012).  New 721 

frameworks that can consider the full range of CES benefits associated with forest biodiversity will result 722 

in solutions and trade-offs for real-world issues to accommodate different sectors of societies.  These 723 

frameworks can “foster new conceptual links between alternative logics” (i.e., alternative belief 724 

systems) “relating to a variety of social and ecological issues” (Milcu et al. 2013).  Research that supports 725 

the mapping of indigenous peoples’ CES to themes relevant to them will help prevent their values being 726 

overlooked or becoming institutionalized in current frameworks.   727 

 728 

 729 

Forest biodiversity, multifunctionality and trade-offs among ecosystem services 730 
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 731 

Forests are valued for multiple ecosystem services, including timber production, climate regulation and 732 

recreation, and for biodiversity in its own right (Mace at al. 2012). A major challenge for forest managers 733 

is to maximise as many of these services as possible, thereby maximising ‘ecosystem multifunctionality’ 734 

(Hector and Bagchi 2007). When different ecosystem services and biodiversity are all positively related 735 

to each other, meeting this goal is, at least in theory, relatively straightforward. However, in recent 736 

years, a number of studies have investigated relationships between forest ecosystem services and found 737 

that while some ecosystem services correlate positively, others show strong negative relationships at 738 

local scales (Chhatre and Agrawal 2009; Gamfeldt et al. 2013; Van der Plas et al. 2016a; Lutz et al. 2016) 739 

or large spatial scales (van der Plas et al. 2017). Because of these trade-offs, maximising all desired 740 

forest ecosystem services is challenging. 741 

 742 

Some trade-offs between ecosystem services occur because different tree species provide different 743 

ecosystem functions and services (Gamfeldt et al. 2013; van der Plas et al. 2016a), while others are 744 

driven by forest management, which often maximises certain ecosystem services at the cost of others 745 

(Chhatre & Agrawal 2009; Verkerk et al. 2014). Hence, at local scales, promoting certain tree 746 

communities may maximise some, but not all, ecosystem services of interest. As a result, forest 747 

ecosystem multifunctionality generally increases with both tree (Gamfeldt et al. 2013; van der Plas et al. 748 

2016a; Ratcliffe et al. 2017) and fungal (Mori et al. 2016) species diversity, although it is almost 749 

impossible to maximise all desired ecosystem services and functions underpinning them at local scales 750 

(Ratcliffe et al. 2017). Therefore, recent studies have investigated whether larger-scale biodiversity, 751 

caused by a high spatial turnover in species composition (i.e. high beta-diversity) can promote 752 

ecosystem multifunctionality at the landscape scale. This has turned out to be the case, as a high beta-753 

diversity ensures that different localities complement each other in the ecosystem functions and 754 

services they provide (Mori et al. 2016; van der Plas et al. 2016b). 755 

 756 

Because of the large amount of data that is required for research on biodiversity and ecosystem 757 

multifunctionality, this field has only taken off relatively recently. Hence, despite many recent advances, 758 

there are still many unresolved questions regarding how biodiversity and ecosystem multifunctionality 759 

can be simultaneously maximised in natural forests. For example, it is unknown whether the positive 760 

effects of local-scale tree species richness on ecosystem multifunctionality are even stronger when co-761 

occurring species differ significantly in their traits or evolutionary origins, although such information can 762 

be crucial for planting multifunctional forests. In addition, it is known that forests can provide multiple 763 

ecosystem services to neighbouring landscape units, such as agricultural fields (Mitchell et al. 2014). 764 

However, whether the benefits of diverse forests for neighbouring fields are greater than those of 765 
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species-poor forests is still an open question. With the increasing interest in understanding what drives 766 

multifunctional landscapes, it is likely that these and other related questions will be investigated in the 767 

future.  768 

 769 

 770 

Conclusions 771 

 772 

Our review confirms that forest type and tree species richness affect forest biodiversity and that forest 773 

diversity can be an important factor in ecosystem function and the provision of ecosystem services. 774 

However, while there are clear mechanisms by which tree diversity can improve ecosystem function and 775 

the delivery of ecosystem services, for many ecosystem services, there is still uncertainty about the 776 

extent of a ‘functional relationship’ between biodiversity and the provision of those services. We also 777 

need to better evaluate the effect of different levels of tree diversity; not only species but also genetic 778 

and functional diversity. And while canopy trees are obviously a dominant feature of forests, the 779 

diversity of understorey plants, vertebrates, invertebrates, fungi and microbes is also likely to be 780 

important for ecosystem services. Furthermore, many ecosystem services remain comparatively poorly 781 

studied in forests in relation to biodiversity; this applies particularly to cultural services but also to some 782 

provisioning services (see Table 1 and Figure 1). There is clearly a need for more research in this area to 783 

enable evidence-based advice for forest management and policy to enhance the provision of ecosystem 784 

services (see also Mori et al. 2017). 785 

 786 

For natural forests this discussion may seem somewhat academic, as it is unlikely that tree species 787 

composition and diversity would be altered substantially in the interest of ecosystem services. 788 

Nevertheless, it is important to raise awareness about the role of natural forests and forest diversity in 789 

the provision of ecosystem services to highlight their value beyond the provision of timber and 790 

recreation. However, for planted forests there is ample opportunity for optimising their composition 791 

and diversity because replanting after harvesting is a recurring process. If it can be shown that there are 792 

opportunities for adding value and for increasing the resistance or resilience of planted forests, these 793 

should be good incentives for forest owners and managers to consider alternatives to the monoculture 794 

paradigm of most planted forests. We thus endorse the plea of Paquette and Messier (2010) “for the 795 

implementation of well-conceived, diverse, multi-purpose [forest] plantations as a way to conserve 796 

forest biodiversity and ecosystem functions”. 797 

 798 

The relevance of forest ecosystem services does not stop at the forest edge. There is much scope for 799 

synergies between forests and farming land uses; for example, even small patches of forest can benefit 800 
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crop production by enhancing pollinator and natural enemy populations, although they may also 801 

provide disservices (Decocq et al. 2016). Adding planted forests to catchments dominated by dairy 802 

farming reduces greenhouse gas emissions and improves water quality (Monge et al. 2016). These are 803 

also important considerations in the debate about land sharing vs. land sparing. Clearly, any 804 

afforestation plans should carefully consider previous land use in terms of the likely biodiversity and 805 

conservation outcomes (e.g., afforestation of degraded farmland vs. natural grassland or forest). Finally, 806 

any planted forest plan should evaluate options for mixed-species forests (Pretzsch et al. 2017) as these 807 

are likely to provide a wider range of ecosystem services.  808 
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Table 1. Non-exhaustive list of ecosystem services relevant to forests, based on the CICES classification 1347 

(CICES 2013), and the number of publications related to these ecosystem services that refer to mixed-1348 

species forests according to the Web of Science (see Online Resource 1 for details) 1349 

 1350 

Section Division Class (with examples) Number of  
publications 

Provisioning Nutrition Wild plants (berries, mushrooms) and animals 
(game) for food 

2 

Water for drinking  2 

Material Wood biomass (fibres, wood, timber) 416 

Genetic material (for tree breeding) 1 

Water for non-drinking purposes ( irrigation) 16 

Energy Fuel-wood 4 

Regulating Mediation of 
toxics or 
nuisances 

Filtration, sequestration (by trees or forest soils, of 
pollutants) 

24 

Mediation of smell, noise, visual impacts (visual 
screening, noise reduction by trees) 

2 

Mediation of 
flows 

Protection against erosion (landslide, avalanches) 63 

Water flow maintenance (precipitation 
interception) 

30 

Protection against flood (by riparian forests or 
mangroves) 

1 

Protection against storms (shelter belts)   17 

Maintenance of 
physical, 
chemical and 
biological 
conditions 

Pollination and seed dispersal (by pollinators or seed 
dispersal forest species) 

111 

Habitat provision (habitat for endangered biota) i.e. 
biodiversity for biodiversity 

817 

Pest and disease control (habitat for natural 
enemies)   

114 

Soil formation and composition (weathering, 
decomposition, mineralization) 

307 

Climate regulation ( gas and carbon sequestration, 
temperature stabilization)   

103 

Cultural Physical and 
intellectual 
interactions 
with nature 

Experiential use of plants, animals and settings (bird 
watching, hiking) 

4 

Physical use of plants, animals and settings (leisure 
hunting) 

10 

Scientific, educational use of plants, animals and 
settings (subject matters) 

7 

Spiritual and 
symbolic 
interactions 
with nature 

Emblematic or sacred plants, animals or setting 
(sacred trees) 

19 

Existence and bequest (enjoyment of wilderness, 
conservation for future generation) 
 

0 
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Box 1 1354 
 1355 

 1356 

Box 1 – Glossary 1357 

 1358 

Ecological processes 1359 

Ecological processes are defined as the complex interactions between the biotic and abiotic elements of 1360 

ecosystems that underpin fluxes of information (e.g., stimuli), energy (e.g., sunlight) and matter (e.g., 1361 

nutrients, gases, water) (Mace et al. 2012; Puydarieux and Beyou 2017). This concept is "organisms-1362 

centred"; the processes involved may be physiological (e.g. photosynthesis, respiration), biological (e.g., 1363 

dispersal) and/or evolutionary (e.g., selection or mutation). 1364 

Ecosystem functions 1365 

Ecosystem functions are the ecological (biological, chemical and physical) mechanisms that support the 1366 

integrity or maintenance of ecosystems. This concept is "ecosystem-centred". Ecosystem functions, such 1367 

as primary production or decomposition, result from interactions between ecosystem structures and 1368 

processes (Ansink et al. 2008). They are not necessarily transformed into a benefit for humans. They are 1369 

sometimes considered ecosystem "supporting services" (e.g., Millennium Ecosystem Assessment 2005). 1370 

Ecosystem services 1371 

Ecosystem services represent the contributions that ecosystems make to human well-being. Therefore, 1372 

this concept is "human-centred". These services are defined according to their specific benefits to 1373 

individuals or society. They are considered ecosystem services because they retain a connection to the 1374 

underlying ecosystem functions that generate them. They are sometimes called final ecosystem services 1375 

because they are outcomes from ecosystems that lead directly to goods that are valued for their 1376 

contribution to human well-being (Mace et al. 2012; CICES 2013). They are typically subdivided into 1377 

provisioning, regulation and cultural services. 1378 

Ecosystem goods  1379 

Ecosystem goods are the products or benefits people can derive from final ecosystem services. Their value 1380 

is not solely provided by ecosystems and may involve additional inputs from society, for example through 1381 

human transformation or engineering. These goods may be material or immaterial, have value (monetary 1382 

or otherwise) for people (Turner et al. 2000), and help to improve human well-being. 1383 

Human well-being 1384 
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Human well-being includes the basic requirements for satisfactory living conditions, freedom and choice, 1385 

health, good social relations, and security (Millennium Ecosystem Assessment 2005). Ecosystem goods 1386 

may partly fulfill these requirements. 1387 

 1388 

 1389 

 1390 
 1391 
Example of dependencies between human well-being and ecological processes via ecosystem functions, 1392 

services, and goods or products. 1393 

 1394 

 1395 
 1396 
 1397 
  1398 
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Figures and captions 1399 
 1400 

Figure 1. Number of publications on provisioning, regulating and cultural ecosystem services referring to 1401 
mixed-species forests according to a Web of Science keyword search of selected terms relating to 1402 
ecosystem services (see Online Resource 1 for details). 1403 
 1404 
  1405 
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 1406 
 1407 

Figure 2. Spatial changes in complementarity. Panel (a) shows declining complementarity for 1408 
Pseudotsuga menziesii growing with the N-fixing Alnus rubra as soil N increased (Binkley 2003). Panel (b) 1409 
shows how the relative reduction in drought sensitivity (%) of Abies alba (mixed with Picea abies) was 1410 
lower on more moist sites (Lebourgeois et al. 2013). Panel (c) shows increasing complementarity effects 1411 
for P. abies (mixed with A. alba) as growing conditions improved (quantified as mean minimum May 1412 
temperature) (Forrester et al. 2013). Figure modified from Forrester (2014). 1413 
 1414 
 1415 


