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 21 
Abstract: 22 

The identification and isolation of genes underlying quantitative trait loci (QTLs) 23 

associated with agronomic traits in crops has been recently accelerated thanks to 24 

next-generation sequencing (NGS)-based technologies combined with plant 25 

genetics. With NGS, different revisited genetic approaches, which benefited from 26 

higher marker density, have been elaborated. These approaches improved 27 

resolution in QTL position and assisted in determining functional causative 28 

variations in genes. Examples of QTLs/genes associated with agronomic traits in 29 

crops and identified using different strategies based on whole- genome 30 

sequencing/resequencing or RNAseq are presented and discussed in this review. 31 

More specifically, we will summarize and illustrate how NGS boosted bulk 32 

segregant analysis, expression profiling and the construction of polymorphism 33 

databases to facilitate the detection of QTLs and causative genes. 34 

 35 

How NGS boosts QTL and gene determination.  36 

 In molecular genetics, quantitative traits are first decomposed in their 37 

Mendelian components by quantitative trait loci (QTL) analysis. Then, each 38 

QTL is fine-mapped or cloned individually. Thousands of QTLs (see Glossary) 39 

associated with agronomic traits were found in crops and represent a reservoir of 40 

alleles for breeders to create improved varieties [1–4]. SUBMERGENCE 1 41 

(SUB1), a major QTL which confers tolerance to submergence in rice (Oryza 42 

sativa), is probably one of the most successful examples of QTL utilization 43 

worldwide [5]. This QTL with large effect was identified in a traditional rice variety, 44 

and the underlying gene that is absent from the genome of the reference rice 45 

variety, was cloned.  The favorable allele of the SUB1 gene was introgressed into 46 

elite cultivars by marker-assisted backcrossing and the improved products were 47 

released in several Asian countries. However, very few QTLs were as 48 

successfully used in marker-assisted selection (MAS) because they were 49 

positioned with insufficient precision, because they explained a low proportion of 50 

the trait variation, or because QTL x environment interactions made them 51 
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useless outside their detection context [6,7]. Before undertaking MAS, one 52 

challenge is to reduce the confidence interval (CI) of the QTL position to make 53 

the introgressed segment carrying the QTL as small as possible and to avoid 54 

possible undesirable side effects due to the other genes carried by the 55 

introgressed segment. To reduce the CI of a QTL position, a possible approach 56 

is to undertake a meta-analysis of different studies targeting the same trait in the 57 

same species [8]. A QTL meta-analysis was effectively applied to different crops 58 

to refine the CI regions and seek candidate genes [9–12]. QTLs positioned on a 59 

single consensus map and narrowed down by meta-analysis enable the target 60 

regions of interest for MAS to be more precisely identified. However, depending 61 

on the size of the meta-QTLs, further steps of either fine mapping and positional 62 

cloning or association mapping with sufficient marker density are often necessary 63 

to identify the shortest target DNA fragment responsible for the phenotypic 64 

variation [12,13].  65 

Next-Generation Sequencing (NGS) designates new sequencing 66 

methods (see Box) that produce high coverage with lower cost and higher speed 67 

than traditional SANGER sequencing [14,15]. Among NGS platforms, 68 

genotyping-by-sequencing (GBS), which is a high-throughput sequencing 69 

approach, has remarkably increased the number of molecular markers usable in 70 

crop genetics [16,17]. The basic features of GBS rely on using restriction 71 

enzymes to reduce genome complexity and barcode adapters that allow 72 

sequencing of pooled samples. The choice among GBS methods is generally 73 

based on the genome size of the studied crop, the extent of linkage 74 

disequilibrium and level of heterozygosity of the studied panel, and cost-75 

efficiency considerations. Unlike the earlier low-throughput approaches based on 76 

restriction fragment length polymorphism (RFLP) or simple sequence repeats 77 

(SSR), GBS enables the identification and genotyping of a massive quantity of 78 

single nucleotide polymorphisms (SNPs). These SNPs can be associated with 79 

agronomical traits of interest and then used in marker-assisted breeding or to 80 

validate trait-linked haplotypes in crops [17][18][19]. This strategy has been 81 

successfully used in many important crops [20]. For instance, GBS methods 82 
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were employed to genotype recombinant inbred line (RIL) populations in rice 83 

[20,21], maize and barley [22] and doubled-haploid (DH) populations in wheat 84 

[23] in view of QTL mapping. GBS was also applied to provide adequate marker 85 

density for genome-wide association study (GWAS) of rice traditional 86 

populations [24], rice and chickpea (Cicer arietinum) multiparent advanced 87 

generation intercrosses (MAGIC) [25] and maize (Zea mays) nested association 88 

mapping populations (NAM) [26].  89 

Recently, a shift occurred towards whole-genome resequencing (WGR), 90 

an approach in which the entire genome of different genotypes is sequenced and, 91 

then, compared to a known reference sequence. WGR allows the detection not 92 

only of SNPs, but also of insertions-deletions (InDels) and structural variants [27]. 93 

In addition, alternative approaches targeted to specific parts of the genome such 94 

as RNA-sequencing (RNAseq) and exome-sequencing have also been 95 

developed, allowing scientists to go further in the discovery of the SNPs altering 96 

coding sequences [28].  97 

 In this review, we will summarize genetic approaches combined with 98 

NGS-based methods that have been recently developed to speed up the 99 

detection of QTLs and their causative genes and their utilization in molecular 100 

breeding.  101 

 102 

Approaches to improve QTL and candidate gene detection 103 

Bulk segregant analysis (BSA) represents a simple, effective and cost-saving 104 

QTL mapping strategy compared with conventional QTL mapping that requires 105 

genotyping and phenotyping of an entire mapping population [29]. In BSA, two 106 

bulks of segregant individuals derived from biparental populations (F2, 107 

recombinant inbred lines (RILs), or doubled haploids (DH)), multiparental 108 

populations (NAM or MAGIC), natural populations or mutant libraries, are created 109 

by pooling DNA from individuals with extreme phenotypic values for the traits of 110 

interest [30]. Markers from a genomic region linked to the trait are expected to 111 

show a distinct allele frequency between the two bulks, while markers from a 112 

region unlinked to the trait will show a similar allele frequency in the two bulks 113 
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[31,32]. The minimum size of the bulks is determined by the frequency with which 114 

unlinked loci might be detected as polymorphic between the bulk samples [29]. 115 

The smaller the bulk size, the higher the risk of false positives.  For example, for 116 

a SNP segregating in an F2 population, the probability of a bulk of n individuals 117 

having all the same allele and a second bulk of equal size having all the other 118 

allele is  2(1/4)n (1/4)n when the locus is unlinked to the target gene. With 5 119 

individuals in each bulk, this probability is 1.90e-06 while with 10 individuals, this 120 

probability decreases to 1.89e-12. However, because the phenotype of the 121 

individuals composing the bulks should be indisputable and because the 122 

confirmation step requires, on a second time, to test individually these plants, it is 123 

advisable not to use too large bulks. Bulks of 10-15 plants are commonly used. In 124 

BSA, the whole population has to be phenotyped to identify individuals in the tails 125 

of the distribution and the method is therefore better suited for traits easy and 126 

inexpensive to phenotype. To date, SNPs are the markers of choice for linkage 127 

analysis in many crops because of their high density in the genomes and their 128 

codominant nature [19][33]. Recent NGS-based methods such as WGR can be 129 

efficiently used to determine SNPs between parents of a mapping population [34]. 130 

Therefore, WGR coupled with a BSA approach provides a coverage of dense 131 

informative SNP markers to detect QTLs in mapping populations.  132 

 133 

QTL-seq approaches 134 

A first example of such an approach is QTL-seq (Figure 1A), which is a modern 135 

version of the classical BSA combined with WGR [35]. In this approach, a 136 

mapping population derived from a cross between two contrasted parents is used. 137 

The progenies are phenotyped, and the tails of the distribution are divided into 138 

two extreme bulks of 10-20 individuals, which are sequenced at above 6x 139 

coverage. For each genomic position, the proportion of short reads harboring 140 

SNPs with the sequence of one of the parents chosen as reference (so-called 141 

SNP-index) is estimated and the difference between the SNP-index of the low 142 

trait-bulk and that of the high trait-bulk, called ∆(SNP-index), is calculated. A 143 

large ∆(SNP-index) characterizes the genomic fraction that has an association 144 
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with the phenotypic value [36]. In chickpea, QTL-seq was applied to two 100-145 

seed weight (SW)-contrasted bulks, each bulk containing 10 F4 homozygous 146 

individuals, which had been produced by single-seed descent (SSD) from a cross 147 

between high SW and low SW landraces [37]. A major QTL was detected on 148 

chromosome 1. One SNP tightly linked with the SW-QTL was further identified in 149 

the coding region of the constitutive photomorphogenic9 (COP9) signalosome 150 

complex subunit 8 (CSN8) gene. This gene was specifically expressed in seeds 151 

and was up/downregulated during seed development in high/low SW parent and 152 

homozygous mapping individuals, respectively. Moreover, a functional molecular 153 

diversity analysis showed that the coding SNP was completely absent from wild 154 

accessions while it discriminated the cultivated genotypes, the high and low SW 155 

parents and the two bulk mapping individuals. Therefore, QTL-seq combined with 156 

differential expression profiling and diversity analysis proved to be efficient not 157 

only in scaling-down QTL size, but also in rapidly enabling potential candidate 158 

gene identification. The same approach has been successfully used in other 159 

crops, such as foxtail millet (Setaria italica) [45] and rice [49].  160 

Another approach derived from QTL-seq is multiple QTL-seq (mQTL-seq), 161 

which can be defined as QTL-seq applied to several mapping populations 162 

derived from crosses with at least one common parent (Figure 1 B) [38]. The 163 

utilization of multiple mapping populations representing a broader genetic 164 

diversity was beneficial for the validation of QTLs, along with narrowing down the 165 

detected QTLs to shorter segments for several agronomic traits in chickpea, such 166 

as pod number per plant (PN) [38] or plant height [39]. For example, mQTL-seq 167 

applied independently to two F5 mapping populations of chickpea allowed the 168 

identification of common significant genomic regions. For each population, two 169 

bulks of 10 lines with low/high PN were built. Two major QTLs associated with 170 

PN that were previously detected using the entire population were scaled down: 171 

CaqaPN4.1 from 868 kb to 638 kb and CaqbPN4.2 from 1.8 Mb to 1.3 Mb. 172 

Furthermore, mQTL-seq identified a regulatory SNP governing PN in the 173 

pentatricopeptide repeat (PPR) gene. A gene expression study demonstrated 174 

that the PPR gene was strongly upregulated in the high-PN bulks and the high-175 
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PN parent of the two mapping populations during pollen and pod development 176 

[38].  177 

 178 

MutMap approaches 179 

MutMap approaches combine NGS with BSA in the analysis of a mutated 180 

population. Mutagenesis is a classic way to produce material useful in 181 

determining the function of a candidate gene. Where QTL-seq uses two 182 

contrasted bulks of individuals from any mapping population, MutMap (Figure 183 

1C) is a method based on WGR using bulked segregants which are derived from 184 

cross between a homozygous recessive mutant and its wild-type parental line 185 

[30,40]. The F2 population is phenotyped and only plants showing the recessive 186 

mutant phenotype are bulked. The parental genome sequence is used as the 187 

template to detect causal SNPs underlying the mutant phenotype. As with QTL-188 

seq, a SNP-index is computed for each SNP position. MutMap is actually a 189 

simplified version of QTL-seq with only the mutant-phenotype bulk sequenced 190 

and no possibility to distinguish segregation distortions from a true QTL effect. 191 

It works only if the mutant allele is recessive and if the mutant phenotype can be 192 

easily distinguished from the wild phenotype in F2 plants. It is applicable in cases 193 

of crosses between a mutant and its wild-type progenitor rather than crosses 194 

between genetically distant lines. MutMap should probably also be avoided when 195 

targeting mutations with small or subtle effects. This method was recently used to 196 

isolate mutations causing pale green leaves and semidwarfism in rice [40], and 197 

the many-noded dwarf (mnd) in barley [40,41]. MutMap was also successfully 198 

used to identify the causative gene, OsRR22, from a salt-tolerant rice mutant 199 

called hitomebore salt tolerant 1 (hst1). Subsequently, the introgression of the 200 

hst1 allele into the elite cultivar Hitomebore by successive backcrosses enabled 201 

the release of the improved variety Kaijin, which differed from Hitomebore wild 202 

type by only 201 SNPs but had the same salt tolerance as the hst1 mutant. With 203 

the application of MutMap, the new salt-tolerant elite variety Kaijin was 204 

developed in only two years and contributed to the restoration of rice production 205 

in tsunami-affected areas of Japan [42]. 206 
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An extended version of MutMap, MutMap+ (Figure 1 E), allows the 207 

identification of causal mutations without having to cross a mutant and its wild-208 

type parental line. This approach especially suits mutants with early stage 209 

lethality or sterility and species for which efficient techniques for crossing are not 210 

available. In MutMap+, only plants of the second mutant generation (M2) that are 211 

heterozygous for the mutation are used. To identify those plants, each individual 212 

M2 plants is selfed to obtain M3 seeds and the segregation of each M3 progeny 213 

(expected to be 3:1 if the M2 plant was heterozygous) is assessed. The selected 214 

M3 progenies are further analyzed to confirm that the mutation is caused by a 215 

single recessive mutation, then two bulks are constituted, the mutant bulk (MB) 216 

and the wild-type bulk (WTB). The two bulks are sequenced and a SNP-index is 217 

calculated as in the MutMap approach. Although a SNP-index equal to 1 can be 218 

caused by irrelevant homozygous SNPs fixed in M2, it is possible to detect the 219 

true region harboring the causal mutation by comparing SNP-index plots of the 220 

wild-type and mutant bulks. Causative SNPs are specific to the mutant bulk. 221 

Using MutMap+, causal mutations leading to an early stage lethality in rice 222 

seedling were rapidly identified by WGR of a segregating M3 generation [43].  223 

The wild type parental line is often different from the reference sequenced 224 

variety. However, MutMap or MutMap+ are inadequate to detect valuable SNPs 225 

that are located in the unmapped regions between a wild-type genome and a 226 

reference genome. For such situations, MutMap-Gap (Figure 1D) is better suited. 227 

MutMap-Gap is a MutMap approach that includes a de novo genome sequence 228 

assembly to determine SNPs in a specific parental genome region missing in the 229 

reference genome. Using mutant lines that were susceptible to a strain attacking 230 

the blast resistance gene Pii, MutMap-Gap revealed the existence of the Pii gene 231 

in the rice variety Hitomebore. This gene was absent from the Nipponbare 232 

reference sequence [44]. 233 

 234 

Figure 1  235 

 236 

NGS-assisted expression profiling  237 
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NGS-assisted expression profiling identifies candidate genes having transcripts 238 

linked with the phenotype of interest. The availability of NGS-based 239 

transcriptome-wide tools provides precise information about the abundances of 240 

gene transcripts [45]. Gene expression analysis is a method that has been 241 

frequently used to screen among candidate genes underlying a QTL in different 242 

crops, e.g., chickpea, potato, and rice [46–48]. A gene becomes a causative 243 

candidate when evidence coming from QTL mapping coincides with transcription 244 

activities in the conditions where the phenotype of interest was observed. In this 245 

context, the expression level of the causative candidate gene correlates with the 246 

phenotypic value. Recently, RNA-seq, the direct sequencing of complementary 247 

DNA (cDNA) derived from RNA extracts, has been used to cater comprehensive 248 

expression profiling of QTL genes in different tissues and organs of contrasted 249 

genotypes [49]. RNA-seq provides a global view of the protein-coding regions 250 

that only occupy 1-2% of the genome but include many functional variations [50]. 251 

RNA-seq is an exceptional method to overcome the limitations of previous 252 

expression microarrays in which the dissection of different transcripts was 253 

dependent on probes designs [51][52]. For example, RNA-seq was performed on 254 

the sorghum root tissues of two sorghum (Sorghum bicolor) varieties used as 255 

parents of a mapping population and revealed that 108 gene transcripts involved 256 

in nitrogen metabolism, plant hormone metabolism and glycolysis were 257 

differentially expressed. These genes were located in the vicinity of QTLs 258 

detected in the mapping population that regulated multiple agronomic traits under 259 

normal and low nitrogen conditions [53]. In maize, published RNA-seq data 260 

combined with meta-QTL analysis facilitated the identification of candidate genes 261 

involved in kernel row number [54]. In soybean (Glycine max), RNA-seq 262 

contributed to the identification of a novel salt-tolerance gene from a highly salt 263 

tolerant wild accession. A combination of two approaches (de novo sequencing 264 

of the wild accession and QTL mapping in a population derived from a cross 265 

between the wild accession and a cultivated one) was used. The results were 266 

validated using resequencing data from 23 soybean accessions with contrasted 267 

levels of salinity tolerance. GmCHX1 was identified as the causal gene and 268 
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shown to encode an ion transporter that reduces the Na+/K+ ratio under salt 269 

stress [55].  270 

While QTL mapping enables significant regions related with a trait to be 271 

identified, functional genomic analysis, with the support of NGS, provides 272 

complete RNA profiles to determine the expression of QTL genes in specific 273 

biological conditions. The integration of these two strategies results in the 274 

detection of expression quantitative trait loci (eQTL) that enable the 275 

expression of complex traits governed by multiple QTLs/genes to be explained 276 

[56,57] (Figure 2). In the eQTL approach, segregating populations are both 277 

genotyped and phenotyped by expression profiling methods such as microarray 278 

or RNA-seq to collect the information of transcript abundance. Rather than 279 

microarray, RNA-seq is becoming the technique of choice in eQTL analyses 280 

because it can determine allele-specific expression and isoform-RNA expression 281 

[58]. Thousands of RNA expression levels are analyzed for linkage or association 282 

with genetic markers, leading to the detection of variations acting in cis or trans 283 

manners. Cis-acting factors are DNA variations located within or near a 284 

differentially expressed gene and regulating its transcription. Trans-acting factors 285 

are distantly mapped elsewhere in the genome and influence the activity of 286 

transcription factors that regulate the differentially expressed gene [58,59]. Using 287 

this approach in maize, a strong trans-acting eQTL has been successfully fine 288 

mapped to an interval of only 186 bp within a class I glutamine amidotransferase 289 

domain containing gene [60]. Under the effect of this eQTL, the transcription level 290 

of another gene encoding an ABA 8’-hydroxylase was upregulated to 6-fold 291 

greater in one parental genotype compared to the other. Although the regulatory 292 

mechanisms involving the glutamine amidotransferase protein on ABA 8’-293 

hydroxylase gene expression remained unclear, the cloning of this trans-acting 294 

eQTL showed the efficiency of the eQTL approach to identify causative genes. 295 

Furthermore, coexpression network databases compiling a large number of 296 

microarray studies were developed to further help in identifying functionally 297 

related genes. For instance, RiceFREND (http://ricefrend.dna.affrc.go.jp) was 298 
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helpful in detecting shared expression networks between candidate genes for 299 

panicle development in rice [61,62].  300 

Although eQTL is powerful, the application of this method still remains a 301 

challenge because of the heavy costs to do experiments with large samples, 302 

difficulties in finding an appropriate statistical method to analyze the downstream 303 

eQTLs linked with physiological or morphological phenotypes and the 304 

computational resources needed to handle the large datasets [63,64]. In this 305 

context, the prediction of regulatory cascades and their major hubs during the 306 

realization of a trait using systems biology approaches could be a solution [65]. 307 

Figure 2 308 
 309 

Polymorphism databases expedite the identification of candidate genes 310 

Fast technical progress accompanying the cost decrease of NGS-based 311 

methods induced many WGS studies of numerous varieties, particularly in rice 312 

[66–69]. Although the sequencing qualities differed in depth and coverage, the 313 

results of these studies provided large-scale polymorphism resources that enable 314 

the validation of target SNPs and structural variation associated with important 315 

agronomic traits. For example, the sequence variability of the granule bound 316 

starch synthase gene related to amylose content in rice grain was analyzed using 317 

WGS data from 47 elite varieties [68]. New genetic markers were successfully 318 

designed to track alleles affecting this trait. In addition, the high density of 319 

variations obtained from WGS allowed the development of markers to track 320 

alleles/genes involved in other agronomic traits. Moreover, WGS enabled the 321 

recombination points closest to the causative gene to be marked, to avoid 322 

undesirable effects during MAS. 323 

SNP-Seek, the 3K project database (http://snp-seek.irri.org/), enabled 324 

immediate in silico access to sequence variations including SNPs and InDels for 325 

the target segment in rice. This resource allowed the validation of a QTL 326 

haplotype by identifying varieties that carried either contrasted haplotypes or 327 

recombinant haplotypes, phenotyping these varieties, and detecting which allelic 328 

variation was responsible for the QTL effect [70,71]. For instance, SNP-Seek 329 
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facilitated the prediction of novel genes/alleles of resistance to rice blast disease 330 

based on sequence and structure variations between the resistant haplotypes 331 

and the susceptible ones [72]. In another example, SNP-seek was used to detect 332 

mutations in the Effector Binding Elements (EBE) of promoters of rice genes 333 

favorable to the proliferation of bacterial blight, making impossible the recognition 334 

of EBE by the bacteria Transcription Activator-like Effectors (TALE). Such 335 

mutations could improve plant resistance against the bacteria. The mining of 336 

such mutations in the 3K database combined with a rapid phenotyping for 337 

bacterial blight resistance is used to detect new sources of resistance [72]. 338 

During rice domestication, important agronomic alleles were fixed in elite 339 

varieties but not in wild ones, thus these alleles appear to be very rare among 340 

non-elite accessions. The comparison of the sequences of elite varieties with the 341 

sequences of non-elite varieties selected from public genomic data revealed 342 

SNPs which were fixed in elite varieties but had a low frequency (<5%) in non-343 

elite varieties. For example, this method allowed the detection of an important 344 

nonsynonymous mutation in the 9-cis-epoxycarotenoid dioxygenase gene (Nced) 345 

that was associated with adaption to upland conditions, possibly through 346 

significantly higher abscisic acid levels and denser lateral roots [73]. The 347 

promising results in rice which facilitated the identification of candidate 348 

genes/alleles and generated novel markers for marker-assisted crop breeding, 349 

promoted the investigation and the development of SNP databases in other 350 

crops [74–76]. 351 

 352 

Concluding remarks 353 
With its broad applications, NGS is becoming an essential tool for crop 354 

geneticists to identify and characterize genomic variations associated with 355 

agronomical traits. WGR and transcription profiling that contribute to provide 356 

comprehensive information on genetic variability and their regulatory 357 

mechanisms are the most popular applications of NGS. QTL-seq, MutMap and 358 

their extended versions showed efficiency in narrowing down the position of 359 

QTLs and precisely detecting their causative variations. RNA-seq provided 360 
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functional context to candidate genes. As such, a large number of QTLs/eQTLs 361 

were found in attempts to break down the genetic mechanisms regulating 362 

important agronomic traits.  363 

To be successful in the interpretation of NGS data, bioinformatic 364 

computational methods are critical elements to delivering accurate assembly, 365 

alignment and variant detection [77]. Second-generation sequencing platforms 366 

such as SOLiD, Illumina (MiSeq and HiSeq), Roche (454) and Ion torrent 367 

produce short reads that range from 35 bp to 700 bp. Short-read sequencing 368 

approaches have created a revolution for the de novo assembly of new reference 369 

genomes, the analysis of population structure or the identification of SNPs and 370 

InDels. However, plant genomes are complex with an abundance of repetitive 371 

regions, transposons, and genomic structural variations, making short-read 372 

approaches insufficient, particularly in the case of large genomes such as wheat 373 

or maize [78,79]. Long-read sequencing (up to several kb) produced by third-374 

generation sequencing systems such as PacBio or Oxford Nanopore [80] is, then, 375 

a promising way to overcome the limitations of short-read sequencing 376 

approaches. The increase in read length allows researchers to span repeats or 377 

scaffolding gaps, to solve genomic rearrangements, thus, generating a higher 378 

quality assembly [80–82]. It also enables the determination of epigenetic marks 379 

in highly variable genomic regions by DNA methylation and their effect on gene 380 

expression [83,84]. In polyploid plant species, longer reads are beneficial to 381 

detect specific-SNPs enabling the differentiation of a segregating SNP from 382 

homeologous sequences [16]. One important advantage of longer read 383 

sequencing is to facilitate haplotype phasing, which is a necessary step in the 384 

map construction and QTL mapping in heterozygous crops [85,86]. Moreover, 385 

the development of longer read sequencing allows a more precise analysis of 386 

mRNA structure variation such as exon-intron limits, alternative splicing and RNA 387 

isoform [87].  388 

Emerging long-read sequencing approaches with their advantages will 389 

accelerate the construction of high-quality reference genomes and, combined 390 

with genetic approaches, speed up gene discovery in plants. However, the 391 



 14

genetic approaches described in this review are all based on a combination of 392 

genotyping/sequencing and phenotyping. By comparison, phenotyping has not 393 

registered the same progress as genotyping and is often the element limiting the 394 

population size for traits complex to phenotype. Progress has also to be made in 395 

decreasing phenotyping costs and arduousness. Automatized high throughput 396 

phenotyping platforms designed for greenhouse or field conditions can help 397 

develop high precision phenotyping, give access to dynamic traits by repeating 398 

easily measurements along time, decrease costs and contribute to speed up 399 

gene discovery even further [88] (see Outstanding questions). To target QTLs 400 

with small effects, phenotyping precision will need to be improved. In addition the 401 

resolution of genetic determinants of small effect multi-loci dependant traits will 402 

beneficiate of the capacity to conduct trancriptome-wide association studies 403 

(TWAS) that aims to associate gene expression, SNP in cis-regulatory 404 

sequences and traits in large population. This approach is starting to be use in 405 

medicine to identify genes associated with complex traits (eg. obesity, [92]) and 406 

is promizing for application in plant science. Similarly, the systems biology 407 

approach that allows to consider globally the regulatory links between all genes 408 

involved in the realisation of a trait will help to properly manipulate multi-loci 409 

dependant traits (sytems biology approaches for plant breeding have been 410 

recently reviewed in [65]). Like medicine, modern plant breeding will require a 411 

shift toward the development of multidisciplinary teams able to deal with plant 412 

biology, genetics, large scale phenotyping approaches, sequencing, 413 

bioinformatics, data analysis, statistic, and mathematics, that is an exciting 414 

perspective.   415 
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 658 
Box1. NGS-based genotyping approaches used in crop genetics 659 

Reduced-representation sequencing (RRS)  660 

In general, the preparation of a sequencing library starts by the digestion of 661 

genomic DNA with restriction enzymes, followed by the attachment of barcode 662 

adapters and pooling for multiplex sequencing of the samples. In the restriction 663 

enzyme-associated DNA sequencing method (RADseq) [89], DNA fragments are 664 

further sheared while in a variation of RADseq called double digest restriction-665 

site associated DNA marker generation (ddRADseq) [90], this step is replaced by 666 

a digestion with a second enzyme which helps to improve fragment selection by 667 

size. The fragments are purified and ligated to common adapters. Finally, they 668 

are amplified to produce sequencing libraries. In the genotyping-by-sequencing 669 

(GBS)[22], the preparation of sequencing libraries is simplified by eliminating the 670 

step of DNA size fractionation. In addition, both barcode adapters and common 671 

adapters have overhangs at restriction site and are simultaneously ligated to 672 

DNA fragments through sticky-ends. The sequencing is performed by systems 673 

such as Illumina or Ion Torrent, producing short-reads of 50 to 150 bp. RRS 674 

methods simultaneously detect polymorphisms in the region flanking the 675 

restriction site and call genotypes. Among RRS methods, GBS is presently a 676 

popular technique for crop genetics since it provides an appropriate SNP density 677 

but a compromise has to be found between cost efficiency and sequencing depth, 678 

which needs to be high for accurate allele calling, particularly in heterozygous 679 

crops. Another advantage of GBS is that, in the absence of a reference genome, 680 

the consensus of the read clusters nearby the restriction sites can become a 681 

reference. The high rate of missing data due to low sequencing depth and the 682 

intrinsic error rate of the sequencing technique are the two main concerns for this 683 

approach. 684 

Whole genome resequencing (WGR) 685 

This method supposes that a reference genome is available. Genomic DNA is 686 

sheared, ligated to adaptors and amplified. The amplified PCR products are then 687 

separated by size and purified to provide the sequencing libraries. Short-reads 688 
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generated from sequencing are aligned on the reference genome. Skim-based 689 

genotyping by sequencing (SkimGBS) was develop for high-resolution whole 690 

genome resequencing of mapping populations [91]. After SNPs between the 691 

parents are called, the progeny reads are mapped on the same reference and 692 

compared to parental SNP data to determine the genotypes and recombination 693 

frequencies. In addition, a sliding window approach, which examines collectively 694 

consecutive SNPs instead of assessing SNPs individually, was proposed as a 695 

method to avoid erroneous SNP calling [21]. Compared to RRS approaches, 696 

WGR eliminates several steps in the preparation of sequencing libraries and 697 

provides a high-throughput genotyping with low cost per marker point. The 698 

polymorphisms detected by WGR are more comprehensive, including not only 699 

SNPs but also structural variations, gene conversions, recombination break 700 

points, etc. However, the cost per sample remains high depending on the chosen 701 

coverage and crop genome size. 702 

 703 

Figure 1: Different approaches combining bulk segregant analysis and whole 704 

genome resequencing developed to identify genetic variations controlling 705 

valuable traits. Mapping populations are generated from biparental crosses 706 

(QTL-seq; mQTL-seq) or from crosses between a wild-type and its mutant 707 

(MutMap, MutMap-gap); In MutMap+, no cross is generated; The M2 and M3 708 

generations are obtained from M1 and M2, respectively, by selfing; The portions 709 

of the population that are pooled as DNA bulks and sequenced are hatched. A 710 

SNP index is calculated to identify SNPs linked with the trait of interest. P: 711 

parent; WT: wild-type; LB: low-trait bulk; HB: high-trait bulk; MB: mutant bulk; 712 

WTB: wild-type bulk. 713 

 714 

 715 

 716 

Figure 2:  Integration of QTL and eQTL detection identify the causative genes 717 

involved in the realization and the modulation of a trait.  718 
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In this example, a segregating population was genotyped and phenotyped 719 

leading to the detection of a linkage between the studied trait and a SNP (A or G) 720 

located in the promoter of gene1. This defines a QTL. In parallel, a genome wide 721 

expression study of the individuals of the population detected a correlation 722 

between the expression of gene1 (violet graph) that carries the SNP in its 723 

promoter, and the expression of the trait (green graph). This defines a cis-eQTL. 724 

The expression of gene 2 (orange graph), for which no significant genetic linkage 725 

with the SNP was detected, is also correlated with the expression of the trait 726 

(green graph). This defines a trans-eQTL. The functional analysis revealed that 727 

the expression level of gene 1 is modulated by the SNP detected in its promoter 728 

and that the product of gene 1 is a transcription factor (TF1) that binds to the 729 

promoter of gene 2 and modulates its expression. In this example, gene 2 730 

controls the trait and gene 1 modulates the intensity of the trait. QTL: quantitative 731 

trait loci, eQTL: expression quantitative trait loci, TF1 : transcription factor 1, red 732 

triangle: position of the SNP associated with the trait. 733 

 734 
 735 

Glossary 736 

 737 

Bulk segregant analysis: Extreme phenotypic individuals from a biparental 738 

mapping population are identified and a low-trait and a high-trait bulk are 739 

constituted by pooling the DNA of approximately 10 plants of each tail. The two 740 

bulks and the two parents are genotyped at a high density to identify molecular 741 

markers that have different allelic frequency between the two bulks and establish 742 

a link between those markers and the trait of interest. 743 

 744 

Doubled haploids (DH): plants produced from the chromosome doubling of F1 745 

haploid plantlets obtained using anther culture. DH lines are perfectly 746 

homozygous (fixed). 747 

 748 
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Expression-Quantitative Trait Locus (eQTL): a genomic locus that regulates 749 

gene transcripts. eQTLs analysis tests the association between genetic markers 750 

and gene expression level in a segregation population, leading to the 751 

identification of regulatory variants located nearby or far away from the target 752 

gene. 753 

 754 

Genome-wide association study (GWAS): Method used to identify genomic 755 

regions/variants statistically associated with the phenotypic values of a diverse 756 

panel.  757 

 758 

Meta-QTL: QTL resulting from the statistical integration of independent QTL 759 

studies leading to QTLs with a smaller confidence interval of the position than the 760 

initial QTLs. 761 

 762 

Multiparent Advanced Generation Intercross: Mapping population obtained 763 

from a complex pyramidal intercrossing scheme involving multiple parents (4-8 764 

lines). Intercrossing is carried out for several generations before selfing the 765 

plants up to full fixation. 766 

 767 

Near-isogenic lines (NILs): Lines developed through several backcrosses on a 768 

recurrent parent to obtain a new line with a genome identical to that of the 769 

recurrent parent except at a particular locus of interest introgressed from a donor. 770 

NILs are among the best materials to validate a QTL. 771 

 772 

Nested association mapping (NAM): population generated by the creation of 773 

multiple recombinant inbred lines having one common parent. NAM population 774 

takes advantages of both linkage and association mapping to increase mapping 775 

resolution with a reasonable marker density.   776 

 777 
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Next-generation sequencing (NGS): a term that encompasses all high-778 

throughput short-read sequencing platforms. NGS can be used to rapidly 779 

sequence DNA.  780 

 781 

Quantitative Trait Locus (QTL): one of the DNA segments linked with the 782 

variation of a quantitative trait.  783 

 784 

Recombinant inbred lines (RILs): homozygous lines derived from a biparental 785 

cross obtained by selfing plants during several generations up to fixation. 786 

 787 

RNA-sequencing: a method to detect the presence and quantity of RNA in a 788 

given sample. The total RNA extracted from each sample is converted to cDNA, 789 

then sequenced by an NGS platform. 790 

 791 

Segregation distortion: a phenomenon in which the segregation ratio of the 792 

observed genotypes of a mapping population at a given marker significantly 793 

differs from the expected Mendelian ratio for this type of population. 794 

 795 

SNP index: In a biparental mapping population that was sequenced, the 796 

proportion of short reads harboring a given SNP with the sequence of one of the 797 

two parents chosen as reference. 798 

 799 

Whole genome resequencing (WGR): once a reference genome is available for 800 

a given species, sequencing of new individuals is performed to identify 801 

polymorphisms and structural variations compared to the reference genome. 802 

 803 
 804 



(A) QTL-seq 
[36] 

(B) mQTL-seq 
[38] 

(C) MutMap 
[40] 

(D) MutMap-Gap 
[44] 

(E) MutMap+ 
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