D. Santos-garcia, A. Latorre, A. Moya, G. Gibbs, V. Hartung et al., Small but powerful, the primary endosymbiont of moss bugs, Candidatus Evansia muelleri, holds a reduced genome with large biosynthetic capabilities, Genome Biol Evol, vol.6, pp.1875-93, 2014.

G. M. Bennett and M. Nasmall, smaller, smallest: the origins and evolution of ancient dual symbioses in a phloem-feeding insect

, Genome Biol Evol, vol.5, pp.1675-88, 2013.

F. Husnik and J. P. Mccutcheon, Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis, Proc Natl Acad Sci USA, vol.113, pp.5416-5424, 2016.

Y. Matsuura, M. Moriyama, P. ?ukasik, D. Vanderpool, M. Tanahashi et al., Recurrent symbiont recruitment from fungal parasites in cicadas, Proc Natl Acad Sci USA, vol.115, pp.5970-5979, 2018.

P. Buchner, Endosymbiose der tiere mit pflanzlichen mikroorganismen. Basel: Birkhäuser Basel, 1953.

N. A. Moran, Accelerated evolution and Muller's rachet in endosymbiotic bacteria, Proc Natl Acad Sci, vol.93, pp.2873-2881, 1996.

C. Rispe and N. A. Moran, Accumulation of deleterious mutations in endosymbionts: Muller's ratchet with two levels of selection, Am Nat, vol.156, pp.425-466, 2000.

G. M. Bennett and N. A. Moran, Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole, Proc Natl Acad Sci USA, vol.112, pp.10169-76, 2015.

J. P. Mccutcheon and N. A. Moran, Extreme genome reduction in symbiotic bacteria, Nat Rev Microbiol, vol.10, pp.13-26, 2012.

D. Wu, S. C. Daugherty, S. E. Van-aken, G. H. Pai, K. L. Watkins et al., Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters, PLoS Biol, vol.4, p.188, 2006.

J. P. Mccutcheon and N. A. Moran, Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution

, Genome Biol Evol, vol.2, pp.708-726, 2010.

R. Koga and N. A. Moran, Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont, ISME J, vol.8, pp.1237-1283, 2014.

R. Koga, G. M. Bennett, J. R. Cryan, and N. A. Moran, Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage, Environ Microbiol, vol.15, pp.2073-81, 2013.

A. S. Meseguer, A. Manzano-marín, A. Coeur-d'acier, A. Clamens, M. Godefroid et al., Buchnera has changed flatmate but the repeated replacement of co-obligate symbionts is not associated with the ecological expansions of their aphid hosts, Mol Ecol, vol.26, pp.2363-78, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02623952

E. R. Toenshoff, D. Gruber, and M. Horn, Co-evolution and symbiont replacement shaped the symbiosis between adelgids (Hemiptera: Adelgidae) and their bacterial symbionts, Environ Microbiol, vol.14, pp.1284-95, 2012.

C. D. Von-dohlen and N. A. Moran, Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation, Biol J Linn Soc, vol.71, pp.689-717, 2000.

A. Manzano-marín, J. Simon, and A. Latorre, Reinventing the wheel and making it round again: evolutionary convergence in Buchnera -Serratia symbiotic consortia between the distantly related Lachninae aphids Tuberolachnus salignus and Cinara cedri

, Genome Biol Evol, vol.8, pp.1440-58, 2016.

A. Manzano-marín, G. Szabó, J. Simon, M. Horn, and A. Latorre, Happens in the best of subfamilies: establishment and repeated replacements of co-obligate secondary endosymbionts within Lachninae aphids, Environ Microbiol, vol.19, pp.393-408, 2017.

C. I. Kado, R. Erwinia, and . Genera, The Prokaryotes, Proteobacteria: Gamma Subclass, vol.6, pp.443-50, 2006.

H. Harada and H. Ishikawa, Gut microbe of aphid closely related to its intracellular symbiont, Biosystems, vol.31, pp.185-91, 1993.

H. Harada, H. Oyaizu, Y. Kosako, and H. Ishikawa, Erwinia aphidicola, a new species isolated from pea aphid, Acyrthosiphon pisum, J Gen Appl Microbiol, vol.43, pp.349-54, 1997.

H. Charles and H. Ishikawa, Physical and genetic map of the genome of Buchnera, the primary endosymbiont of the pea aphid Acyrthosiphon pisum, J Mol Evol, vol.48, pp.142-50, 1999.

E. Jousselin, A. Clamens, M. Galan, M. Bernard, S. Maman et al., Assessment of a 16S rRNA amplicon Illumina sequencing procedure for studying the microbiome of a symbiontrich aphid genus, Mol Ecol Resour, vol.16, pp.628-668, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01449134

R. Koga, T. Tsuchida, and T. Fukatsu, Quenching autofluorescence of insect tissues for in situ detection of endosymbionts, Appl Entomol Zool, vol.44, pp.281-91, 2009.

R. Schmieder and R. Edwards, Quality control and preprocessing of metagenomic datasets, Bioinformatics, vol.27, pp.863-867, 2011.

A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin et al., SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J Comput Biol, vol.19, pp.455-77, 2012.

S. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-402, 1997.

T. Seemann, Prokka: rapid prokaryotic genome annotation, Bioinformatics, vol.30, pp.2068-2077, 2014.

B. E. Suzek, M. D. Ermolaeva, M. Schreiber, and S. L. Salzberg, A probabilistic method for identifying start codons in bacterial genomes, Bioinformatics, vol.17, pp.1123-1153, 2001.

E. P. Nawrocki and S. R. Eddy, Infernal 1.1: 100-fold faster RNA homology searches, Bioinformatics, vol.29, pp.2933-2938, 2013.

E. P. Nawrocki, S. W. Burge, A. Bateman, J. Daub, R. Y. Eberhardt et al., Rfam 12.0: updates to the RNA families database, Nucleic Acids Res, vol.43, pp.130-137, 2015.

T. M. Lowe and S. R. Eddy, tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence, Nucleic Acids Res, vol.25, pp.955-64, 1997.

D. Laslett, ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences, Nucleic Acids Res, vol.32, pp.11-16, 2004.

K. Okonechnikov, O. Golosova, and M. Fursov, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, vol.28, pp.1166-1173, 2012.

G. M. Boratyn, A. A. Schäffer, R. Agarwala, S. F. Altschul, D. J. Lipman et al., Domain enhanced lookup time accelerated BLAST, Biol Direct, vol.7, p.12, 2012.

I. M. Wallace and . M-coffee, combining multiple sequence alignment methods with T-Coffee, Nucleic Acids Res, vol.34, pp.1692-1701, 2006.

P. D. Karp, M. Latendresse, S. M. Paley, M. Krummenacker, Q. D. Ong et al., Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology, Brief Bioinform, vol.17, pp.877-90, 2016.

I. M. Keseler, A. Mackie, A. Santos-zavaleta, R. Billington, C. Bonavides-martínez et al., The EcoCyc database: reflecting new knowledge about Escherichia coli K-12, Nucleic Acids Res, vol.45, pp.543-550, 2017.

P. D. Karp, R. Billington, R. Caspi, C. A. Fulcher, M. Latendresse et al., The BioCyc collection of microbial genomes and metabolic pathways, Brief Bioinform, vol.20, pp.1085-93, 2017.

L. Li, OrthoMCL: identification of ortholog groups for eukaryotic genomes, Genome Res, vol.13, pp.2178-89, 2003.

F. Chen, A. J. Mackey, J. K. Vermunt, and D. S. Roos, Assessing performance of orthology detection strategies applied to eukaryotic genomes, PLoS One, vol.2, p.383, 2007.

K. Katoh and D. M. Standley, MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability, Mol Biol Evol, vol.30, pp.772-80, 2013.

G. Talavera and J. Castresana, Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments, Syst Biol, vol.56, pp.564-77, 2007.

L. Nguyen, H. A. Schmidt, V. Haeseler, A. Minh, and B. Q. , IQ-TREE: a fast and effective stochastic algorithm for estimating maximumlikelihood phylogenies, Mol Biol Evol, vol.32, pp.268-74, 2015.

D. T. Hoang, O. Chernomor, V. Haeseler, A. Minh, B. Q. Vinh et al., UFBoot2: Improving the ultrafast bootstrap approximation, Mol Biol Evol, vol.35, pp.518-540, 2018.

H. Wang, B. Q. Minh, E. Susko, and A. J. Roger, Modeling Site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation, Syst Biol, vol.67, pp.216-251, 2018.

S. Q. Le and O. Gascuel, An improved general amino acid replacement matrix, Mol Biol Evol, vol.25, pp.1307-1327, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324106

G. Chevignon, B. M. Boyd, J. W. Brandt, K. M. Oliver, and M. R. Strand, Culture-facilitated comparative genomics of the facultative symbiont Hamiltonella defensa, Genome Biol Evol, vol.10, pp.786-802, 2018.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1799, 2004.

F. Ronquist, M. Teslenko, P. Van-der-mark, D. L. Ayres, A. Darling et al., MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space, Syst Biol, vol.61, pp.539-581, 2012.

D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, jModelTest 2: more models, new heuristics and parallel computing, Nat Methods, vol.9, pp.772-772, 2012.

S. Guindon and O. Gascuel, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst Biol, vol.52, pp.696-704, 2003.

J. A. Klappenbach, J. Goris, P. Vandamme, T. Coenye, K. T. Konstantinidis et al., DNA-DNA hybridization values and their relationship to whole-genome sequence similarities, Int J Syst Evol Microbiol, vol.57, pp.81-91, 2007.

. Rodriguez-r-lm and K. T. Konstantinidis, The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes, PeerJ Prepr, vol.4, pp.1900-1901, 2016.

J. Chun, A. Oren, A. Ventosa, H. Christensen, D. R. Arahal et al., Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes, Int J Syst Evol Microbiol, vol.68, pp.461-467, 2018.

H. Harada, H. Oyaizu, and H. Ishikawa, A consideration about the origin of aphid intracellular symbiont in connection with gut bacterial flora, J Gen Appl Microbiol, vol.42, pp.17-26, 1996.

A. S. Meseguer, A. Coeur-d'acier, G. Genson, and E. Jousselin, Unravelling the historical biogeography and diversification dynamics of a highly diverse conifer-feeding aphid genus, J Biogeogr, vol.88, pp.1482-92, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02636900

R. Chen, C. Favret, L. Jiang, Z. Wang, and G. Qiao, An aphid lineage maintains a bark-feeding niche while switching to and diversifying on conifers, Cladistics, vol.32, pp.555-72, 2016.

E. Jousselin, A. Cruaud, G. Genson, F. Chevenet, and R. G. Foottit, Coeur d'acier A. Is ecological speciation a major trend in aphids? Insights from a molecular phylogeny of the conifer-feeding genus Cinara, Front Zool, vol.10, p.56, 2013.

C. Capuzzo, Candidatus Erwinia dacicola', a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin), Int J Syst Evol Microbiol, vol.55, pp.1641-1648, 2005.

E. J. De-vries, J. A. Breeuwer, G. Jacobs, and C. Mollema, The association of western flower thrips, Frankliniella occidentalis, with a near Erwinia species gut bacteria: transient or permanent?, J Invertebr Pathol, vol.77, pp.120-128, 2001.

M. Fischer-le-saux, L. E. Lapitan, N. Portier, P. Tisserat, N. A. Campillo et al., Erwinia iniecta sp. nov., isolated from russian wheat aphid (Diuraphis noxia), Int J Syst Evol Microbiol, vol.65, pp.3625-3658, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01905585

S. B. Plurad, R. N. Goodman, and W. R. Enns, Persistence of Erwinia amylovora in the apple aphid (Aphis pomi DeGeer), a probable vector, Nature, vol.205, pp.206-206, 1965.

N. A. Moran, J. P. Mccutcheon, and A. Nakabachi, Genomics and evolution of heritable bacterial symbionts, Annu Rev Genet, vol.42, pp.165-90, 2008.

C. Toft and S. Andersson, Evolutionary microbial genomics: insights into bacterial host adaptation, Nat Rev Genet, vol.11, pp.465-75, 2010.

V. Boscaro, M. Kolisko, M. Felletti, C. Vannini, D. H. Lynn et al., Parallel genome reduction in symbionts descended from closely related free-living bacteria, Nat Ecol Evol, vol.1, pp.1160-1167, 2017.

R. Patiño-navarrete, A. Moya, A. Latorre, and J. Peretó, Comparative genomics of Blattabacterium cuenoti: the frozen legacy of an ancient endosymbiont genome, Genome Biol Evol, vol.5, pp.351-61, 2013.

L. E. Williams and J. J. Wernegreen, Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini, PeerJ, vol.3, p.881, 2015.

R. A. Chong, H. Park, and N. A. Moran, Genome evolution of the obligate endosymbiont Buchnera aphidicola, Mol Biol Evol, vol.36, pp.1481-1490, 2019.

A. Lamelas, M. J. Gosalbes, A. Manzano-marín, J. Peretó, A. Moya et al., Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont, PLoS Genet, vol.7, p.1002357, 2011.

J. P. Mccutcheon and C. D. Von-dohlen, An interdependent metabolic patchwork in the nested symbiosis of mealybugs, Curr Biol, vol.21, pp.1366-72, 2011.

D. B. Sloan and N. A. Moran, Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids, Mol Biol Evol, vol.29, pp.3781-92, 2012.

P. Ehrhardt, Der vitaminbedarf einer siebröhrensaugenden aphide, Neomyzus circumflexus Buckt, vol.60, pp.416-442, 1968.

K. F. Oakeson, R. Gil, A. L. Clayton, D. M. Dunn, V. Niederhausern et al., Genome degeneration and adaptation in a nascent stage of symbiosis, Genome Biol Evol, vol.6, pp.76-93, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01449146

D. Santos-garcia, F. J. Silva, S. Morin, K. Dettner, and S. M. Kuechler, The all-rounder Sodalis: a new bacteriome-associated endosymbiont of the lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution, Genome Biol Evol, vol.9, pp.2893-910, 2017.

A. Chari, K. F. Oakeson, S. Enomoto, D. G. Jackson, M. A. Fisher et al., Phenotypic characterization of Sodalis praecaptivus sp. nov., a close non-insect-associated member of the Sodalis-allied lineage of insect endosymbionts, Int J Syst Evol Microbiol, vol.65, pp.1400-1405, 2015.

A. Manzano-marín, A. Coeur-d'acier, A. Clamens, C. Orvain, C. Cruaud et al., A freeloader? The highly eroded yet large genome of the Serratia symbiotica symbiont of Cinara strobi, Genome Biol Evol, vol.10, pp.2178-89, 2018.

J. ?íhová, E. Nováková, F. Husník, and V. Hyp?a, Legionella becoming a mutualist: adaptive processes shaping the genome of symbiont in the louse Polyplax serrata, Genome Biol Evol, vol.9, pp.2946-57, 2017.

T. Penz, S. Schmitz-esser, S. E. Kelly, B. N. Cass, A. Müller et al., Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii, PLoS Genet, vol.8, p.1003012, 2012.

C. Lai, L. Baumann, and P. Baumann, Amplification of trpEG: adaptation of Buchnera aphidicola to an endosymbiotic association with aphids, Proc Natl Acad Sci USA, vol.91, pp.3819-3842, 1994.

A. Bracho, D. Martínez-torres, A. Moya, and A. Latorre, Discovery and molecular characterization of a plasmid localized in Buchnera sp. bacterial endosymbiont of the aphid Rhopalosiphum padi, J Mol Evol, vol.41, pp.67-73, 1995.

R. Gil, B. Sabater-muñoz, V. Perez-brocal, F. J. Silva, and A. Latorre, Plasmids in the aphid endosymbiont Buchnera aphidicola with the smallest genomes. A puzzling evolutionary story, Gene, vol.370, pp.17-25, 2006.

E. F. Kirkness, B. J. Haas, W. Sun, H. R. Braig, M. A. Perotti et al., Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle, Proc Natl Acad Sci, vol.107, pp.12168-73, 2010.

B. M. Boyd, J. M. Allen, V. De-crécy-lagard, and D. L. Reed, Genome sequence of Candidatus Riesia pediculischaeffi, endosymbiont of chimpanzee lice, and genomic comparison of recently acquired endosymbionts from human and chimpanzee lice, G3, vol.4, pp.2189-95, 2014.

A. E. Douglas, How multi-partner endosymbioses function, Nat Rev Microbiol, vol.14, pp.731-774, 2016.