, Centre for synthetic biology of fine and speciality chemicals (BB/M017702/1), the Biotechnology and Biological Sciences Research Council

, Synthetic Biology Applications for Protective Materials (EP/N025504/1)

T. Altman, M. Travers, A. Kothari, R. Caspi, and P. D. Karp, A systematic comparison of the MetaCyc and KEGG pathway databases, BMC Bioinform, vol.14, 2013.

M. Arita, In silico atomic tracing by substrate-product relationships in Escherichia coli intermediary metabolism, Genome Res, vol.13, pp.2455-2466, 2003.

M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter et al., KNIME: The Konstanz Information Miner, Data Analysis, Machine Learning and Applications, pp.319-326, 2008.

M. G. Bramucci, C. M. Mccutchen, V. Nagarajan, and S. M. Thomas, Microbial production of terephthalic acid and isophthalic acid, 2001.

M. A. Campodonico, B. A. Andrews, J. A. Asenjo, B. O. Palsson, and A. M. Feist, Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path, Metab. Eng, vol.25, pp.140-158, 2014.

P. Carbonell, G. Lecointre, and J. Faulon, Origins of Specificity and Promiscuity in Metabolic Networks, J. Biol. Chem, vol.286, pp.43994-44004, 2011.

P. Carbonell, A. Planson, D. Fichera, and J. Faulon, A retrosynthetic biology approach to metabolic pathway design for therapeutic production, BMC Syst. Biol, vol.5, 2011.

P. Carbonell, D. Fichera, S. B. Pandit, and J. Faulon, Enumerating metabolic pathways for the production of heterologous target chemicals in chassis organisms, BMC Syst. Biol, vol.6, 2012.

P. Carbonell, L. Carlsson, and J. Faulon, Stereo signature molecular descriptor, J. Chem. Inf. Model, vol.53, pp.887-897, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01601691

P. Carbonell, P. Parutto, C. Baudier, C. Junot, and J. Faulon, Retropath: automated pipeline for embedded metabolic circuits, ACS Synth. Biol, vol.3, pp.565-577, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01608540

P. Carbonell, P. Parutto, J. Herisson, S. B. Pandit, and J. Faulon, XTMS: pathway design in an eXTended metabolic space, Nucleic Acids Res, vol.42, pp.389-394, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01608645

A. Chang, I. Schomburg, S. Placzek, L. Jeske, M. Ulbrich et al., BRENDA in 2015: exciting developments in its 25th year of existence, Nucleic Acids Res, vol.43, pp.439-446, 2015.

W. L. Chen, D. Z. Chen, and K. T. Taylor, Automatic reaction mapping and reaction center detection, Wiley Interdiscip. Rev. Comput. Mol. Sci, vol.3, pp.560-593, 2013.

A. Cho, H. Yun, J. H. Park, S. Y. Lee, and S. Park, Prediction of novel synthetic pathways for the production of desired chemicals, BMC Syst. Biol, vol.4, 2010.

W. B. Copeland, B. A. Bartley, D. Chandran, M. Galdzicki, K. H. Kim et al., Computational tools for metabolic engineering, Metab. Eng, vol.14, pp.270-280, 2012.

, Daylight Theory Manual [WWW Document, 2017.

B. Delépine, V. Libis, P. Carbonell, and J. Faulon, SensiPath: computer-aided design of sensing-enabling metabolic pathways, Nucleic Acids Res, vol.44, pp.226-231, 2016.

J. Dugundji and I. Ugi, An algebraic model of constitutional chemistry as a basis for chemical computer programs, Computers in Chemistry, pp.19-64, 1973.

J. Faulon, M. Misra, S. Martin, K. Sale, and R. Sapra, Genome scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptor, Bioinformatics, vol.24, pp.225-233, 2008.

S. D. Finley, L. J. Broadbelt, and V. Hatzimanikatis, Computational framework for predictive biodegradation, Biotechnol. Bioeng, vol.104, pp.1086-1097, 2009.

G. I. Guzmán, J. Utrilla, S. Nurk, E. Brunk, J. M. Monk et al., Model-driven discovery of underground metabolic functions in Escherichia coli, Proc. Natl. Acad. Sci. USA, vol.112, pp.929-934, 2015.

N. Hadadi and V. Hatzimanikatis, Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways, Curr. Opin. Chem. Biol, vol.28, pp.99-104, 2015.

N. Hadadi, J. Hafner, A. Shajkofci, A. Zisaki, and V. Hatzimanikatis, ATLAS of Biochemistry: a repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies, ACS Synth. Biol, vol.5, pp.1155-1166, 2016.

N. Hadadi, J. Hafner, K. C. Soh, and V. Hatzimanikatis, Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites, Biotechnol. J, 2016.

V. Hatzimanikatis, C. Li, J. A. Ionita, C. S. Henry, M. D. Jankowski et al., Exploring the diversity of complex metabolic networks, Bioinformatics, vol.21, pp.1603-1609, 2005.

K. Haug, R. M. Salek, and C. Steinbeck, Global open data management in metabolomics, Curr. Opin. Chem. Biol, vol.36, pp.58-63, 2017.

C. S. Henry, L. J. Broadbelt, and V. Hatzimanikatis, Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate, Biotechnol. Bioeng, vol.106, pp.462-473, 2010.

B. K. Hou, L. P. Wackett, and L. B. Ellis, Microbial pathway prediction: a functional group approach, J. Chem. Inf. Comput. Sci, vol.43, pp.1051-1057, 2003.

B. K. Hou, L. B. Ellis, and L. P. Wackett, Encoding microbial metabolic logic: predicting biodegradation, J. Ind. Microbiol. Biotechnol, vol.31, pp.261-272, 2004.

E. C. Webb, Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. International Union of Biochemistry and Molecular Biology by, 1992.

F. H. Isikgor and C. R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers, Polym. Chem, vol.6, pp.4497-4559, 2015.

J. G. Jeffryes, R. L. Colastani, M. Elbadawi-sidhu, T. Kind, T. D. Niehaus et al., MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics, J. Cheminform, vol.7, 2015.

M. A. Kayala, C. Azencott, J. H. Chen, and P. Baldi, Learning to predict chemical reactions, J. Chem. Inf. Model, vol.51, pp.2209-2222, 2011.

. Keasling, Hearing on Policies to Spur Innovative Medical Breakthroughs from Laboratories to Patients, 2014.

I. M. Keseler, A. Mackie, M. Peralta-gil, A. Santos-zavaleta, S. Gama-castro et al., EcoCyc: fusing model organism databases with systems biology, Nucleic Acids Res, vol.41, pp.605-612, 2013.

O. Khersonsky and D. S. Tawfik, Enzyme promiscuity: a mechanistic and evolutionary perspective, Annu. Rev. Biochem, vol.79, pp.471-505, 2010.

. Landrum, RDKit: Open-source Cheminformatics [WWW Document, 2016.

D. A. Latino and J. Aires-de-sousa, Classification of chemical reactions and chemoinformatic processing of enzymatic transformations, Methods Mol. Biol, vol.672, pp.325-340, 2011.

S. Y. Lee and H. U. Kim, Systems strategies for developing industrial microbial strains, Nat. Biotechnol, vol.33, pp.1061-1072, 2015.

W. Li and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, vol.22, pp.1658-1659, 2006.

M. Liu, B. Bienfait, O. Sacher, J. Gasteiger, R. J. Siezen et al., Combining chemoinformatics with bioinformatics: in silico prediction of bacterial flavor-forming pathways by a chemical systems biology approach "reverse pathway engineering, PLoS One, vol.9, 2014.

C. A. Marchant, K. A. Briggs, and A. Long, In silico tools for sharing data and knowledge on toxicity and metabolism: derek for windows, meteor, and vitic, Toxicol. Mech. Methods, vol.18, pp.177-187, 2008.

R. Mckenna and D. R. Nielsen, Styrene biosynthesis from glucose by engineered E. coli, Metab. Eng, vol.13, pp.544-554, 2011.

R. Mckenna, B. Thompson, S. Pugh, and D. R. Nielsen, Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb. Cell Factor, vol.13, 2014.

R. Mckenna, L. Moya, M. Mcdaniel, and D. R. Nielsen, Comparing in situ removal strategies for improving styrene bioproduction, Bioprocess Biosyst. Eng, vol.38, pp.165-174, 2015.

M. Mcnutt, K. Lehnert, B. Hanson, B. A. Nosek, A. M. Ellison et al., RESEARCH INTEGRITY. Liberating field science samples and data, Science, vol.351, pp.1024-1026, 2016.

M. H. Medema, R. Van-raaphorst, E. Takano, and R. Breitling, Computational tools for the synthetic design of biochemical pathways, Nat. Rev. Microbiol, vol.10, pp.191-202, 2012.

J. Mellor, I. Grigoras, P. Carbonell, and J. Faulon, Semisupervised Gaussian process for automated enzyme search, ACS Synth. Biol, vol.5, pp.518-528, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02636917

S. Moretti, O. Martin, T. Van-du-tran, A. Bridge, A. Morgat et al., MetaNetX/MNXref-reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks, Nucleic Acids Res, vol.44, pp.523-526, 2016.

B. Delépine, Metabolic Engineering, vol.45, pp.158-170, 2018.

Y. Moriya, D. Shigemizu, M. Hattori, T. Tokimatsu, M. Kotera et al., PathPred: an enzyme-catalyzed metabolic pathway prediction server, Nucleic Acids Res, vol.38, pp.138-143, 2010.

H. Nam, N. E. Lewis, J. A. Lerman, D. Lee, R. L. Chang et al., Network context and selection in the evolution to enzyme specificity, Science, vol.337, pp.1101-1104, 2012.

M. Oh, T. Yamada, M. Hattori, S. Goto, and M. Kanehisa, Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways, J. Chem. Inf. Model, vol.47, pp.1702-1712, 2007.

J. D. Orth and B. Palsson, Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions, BMC Syst. Biol, vol.6, 2012.

J. D. Orth, T. M. Conrad, J. Na, J. A. Lerman, H. Nam et al., A comprehensive genome-scale reconstruction of Escherichia coli metabolism, 2011.

, Mol. Syst. Biol, vol.7

C. J. Paddon, P. J. Westfall, D. J. Pitera, K. Benjamin, K. Fisher et al., High-level semi-synthetic production of the potent antimalarial artemisinin, Nature, vol.496, pp.528-532, 2013.

A. Planson, P. Carbonell, E. Paillard, N. Pollet, and J. Faulon, Compound toxicity screening and structure-activity relationship modeling in Escherichia coli, Biotechnol. Bioeng, vol.109, pp.846-850, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02341732

S. A. Rahman, S. M. Cuesta, N. Furnham, G. L. Holliday, and J. M. Thornton, EC-BLAST: a tool to automatically search and compare enzyme reactions, Nat. Methods, vol.11, pp.171-174, 2014.

S. A. Rahman, G. Torrance, L. Baldacci, S. Martínez-cuesta, F. Fenninger et al., Reaction Decoder Tool (RDT): extracting features from chemical reactions, Bioinformatics, vol.32, pp.2065-2066, 2016.

G. Rodrigo, J. Carrera, K. J. Prather, and A. Jaramillo, DESHARKY: automatic design of metabolic pathways for optimal cell growth, Bioinformatics, vol.24, pp.2554-2556, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00767088

P. N. Schofield, T. Bubela, T. Weaver, L. Portilla, S. D. Brown et al., Post-publication sharing of data and tools, Nature, vol.461, pp.171-173, 2009.

S. Schuster, D. A. Fell, and T. Dandekar, A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks, Nat. Biotechnol, vol.18, pp.326-332, 2000.

R. J. Sheehan, Terephthalic Acid, Dimethyl Terephthalate, and Isophthalic Acid, 2000.

T. V. Sivakumar, V. Giri, J. H. Park, T. Y. Kim, and A. Bhaduri, ReactPRED: a tool to predict and analyze biochemical reactions, Bioinformatics, 2016.

K. Thodey, S. Galanie, and C. D. Smolke, A microbial biomanufacturing platform for natural and semisynthetic opioids, Nat. Chem. Biol, vol.10, pp.837-844, 2014.

J. Wang, J. Tian, and J. Xu, A method for producing terephthalic acid by Comamonas testosteroni DSM6577. Chin, J. Catal, vol.27, p.297, 2006.

W. A. Warr, Scientific workflow systems: Pipeline Pilot and KNIME, J. Comput. Aided Mol. Des, vol.26, pp.801-804, 2012.

J. D. Winkler, A. L. Halweg-edwards, and R. T. Gill, The LASER database: Formalizing design rules for metabolic engineering, Metab. Eng. Commun, vol.2, pp.30-38, 2015.

J. D. Winkler, A. L. Halweg-edwards, and R. T. Gill, Quantifying complexity in metabolic engineering using the LASER database, Metab. Eng. Commun, vol.3, pp.227-233, 2016.

K. Yang and W. W. Metcalf, A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase, Proc. Natl. Acad. Sci. USA, vol.101, pp.7919-7924, 2004.

H. Yim, R. Haselbeck, W. Niu, C. Pujol-baxley, A. Burgard et al., Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol, Nat. Chem. Biol, vol.7, pp.445-452, 2011.