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Abstract 

This study aims at assessing the capability of comparing and combining different instrumental platforms 

in an untargeted approach with a view of detecting chemical contaminants in food matrices at low levels. 

A strategy based on liquid chromatography-high resolution mass spectrometry (LC-HRMS) and 

chemometrics has been applied on two different complex food contamination scenarios, with tea as study 

product. The first scenario aimed at mimic the presence of a dozen of contaminants at levels just above 

regulatory limits (i.e. 10 and 30 µg/kg); the second scenario, more complex, aimed at simulate the 

presence of several different contaminations at levels close to regulatory limits (10 µg/kg) in different 

samples. This work was carried on two LC-HRMS platforms (with respectively ToF and Orbitrap mass 

analyzer technologies), and a highly automated data treatment workflow was implemented to deal with 

data acquired on both platforms. The untargeted approach performed well on all scenarios (even the most 

complex) and analytical platforms. Performance comparison between LC-HRMS technologies was made 

possible thanks to a vendor-neutral data treatment process.  
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1. Introduction 

Recent food safety crises like the presence of fipronil in European eggs (summer 2017) underline the 

limits of current targeted analytical approaches and the need for new untargeted methods able to point out 

such non-expected contaminants. To that end, mass spectrometry (MS)-based untargeted approaches were 

identified as having the strongest potential (Antignac et al., 2011; Castro-Puyana & Herrero, 2013; 

Lommen et al., 2007), giving promising results on relatively simple contamination scenarios: high levels 

of contaminants (around mg/kg) and rather simple matrices [orange juice (Tengstrand, Rosén, Hellenäs, 

& Åberg, 2013) or infant formulas (Inoue et al., 2015)]. Only a few recent studies have reported the 

detection of contaminants at levels down to 10 µg/kg (Cotton et al., 2014; Delaporte, Cladière, Jouan-

Rimbaud Bouveresse, & Camel, 2019; Knolhoff, Zweigenbaum, & Croley, 2016; Kunzelmann, Winter, 

Åberg, Hellenäs, & Rosén, 2018) in more complex matrices such as honey (Cotton et al., 2014) or tea 

(Delaporte et al., 2019). Further developments are required, especially to assess the ruggedness of the 

proposed approaches (especially concerning the data treatment part) regarding both the instrument used 

and contamination scenarios studied. This research field is facing a huge interest worldwide (Antignac et 

al., 2011; Castro-Puyana, Pérez-Míguez, Montero, & Herrero, 2017).  

The general workflow (see Figure 1) for untargeted food chemical safety assessment can be established 

based on reviews (Antignac et al., 2011; Castro-Puyana et al., 2017; Knolhoff & Croley, 2016). As a 

general rule, the first step consists in a broad-range sample treatment method followed by UHPLC-HRMS 

analysis (Cotton et al., 2014; Delaporte et al., 2019; Inoue et al., 2015; Knolhoff et al., 2016; Kunzelmann 

et al., 2018; Tengstrand et al., 2013). For the next step (data treatment), dedicated tools should be 

implemented. The use of in-line proprietary tools, often supplied with the instrument, has been reported 

(Inoue et al., 2015; Knolhoff et al., 2016), with the advantage of being user-friendly and to “fit-for-

purpose” the data files generated by the instrument. However, such tools lack flexibility and versatility, 

making it impossible to analyze data from various instruments or to implement in-house data analysis 

methods. Other strategies are based on open-source tools (such as the XCMS R package) (Cotton et al., 

2014; Delaporte et al., 2019). On top of that, easy-to-use user interfaces and free-to-use online calculation 

platforms were developed recently, such as web interfaces for the XCMS package, namely 
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Workflow4Metabolomics (Giacomoni et al., 2015) and XCMS-online (Tautenhahn, Patti, Rinehart, & 

Siuzdak, 2012). These tools are often designed to be versatile and modular, meaning that they may handle 

data from multiple instruments and be adapted to new fields and problematics. 

 

Figure 1: Generic workflow used for untargeted food safety assessment 

Until now, the implementation of multiple LC-HRMS platforms has been assessed only on targeted food 

safety approach (Saito-Shida, Hamasaka, Nemoto, & Akiyama, 2018). Even though the comparison of 

multiple analytical platforms for untargeted approaches has been reported in metabolomics studies 

(Glauser, Veyrat, Rochat, Wolfender, & Turlings, 2013), it has never been done in the field of untargeted 

food safety analysis, existing untargeted approaches being developed on a single instrument. As a 

consequence, there is a need to test data treatment capability when considering different instrumental 

platforms since each data generated has its own characteristics (m/z resolution and accuracy, signal/noise 

ratio among others). In addition, untargeted methods were mostly developed on a single data set, with the 

notable exceptions of the method proposed by Tengstrand et al. (Tengstrand et al., 2013) later successfully 

applied on a more complex case (Kunzelmann et al., 2018), and of our developed method applied on two 

contamination scenarios  (Delaporte et al., 2019). To assess ruggedness of those methods, several 

contamination scenarios should be considered that mimic more complex and realistic food safety 

applications (e.g. multi-class contaminations, levels and molecules involved, variable contamination 

between samples). 
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So, this work aims at assessing the implementation and ruggedness of an untargeted approach for 

detection of non-expected food contaminants. It is based on open-source tools and methods, previously 

developed on green tea samples using a single LC-HRMS platform (Delaporte et al., 2019). Here, two 

complex contamination scenarios are considered (with green and black tea leaves), and all analysis were 

conducted on two different platforms, i.e. UHPLC-Q-Orbitrap and UHPLC-ToF which are the most used 

HRMS technologies for untargeted contaminants detection thanks to their mass accuracy and resolution 

(Castro-Puyana et al., 2017; Knolhoff & Croley, 2016).  

2. Material and methods 

2.1 Reagents and sample collection 

Acetonitrile (ACN) (HPLC plus gradient, LC/MS), water, methanol (MeOH) and formic acid (FA) (all 

LC/MS grade) were purchased from Carlo Erba. Ultrapure water (Milli-Q®) was produced by an Integral 

3 water purification system from Millipore®. The ToF mass spectrometer was calibrated using Leucine 

Enkephalin (LC/MS grade, Waters®) and the Orbitrap with the PierceTM calibration solutions (Thermo 

Fisher Scientific, caffeine 2 µg.mL-1, MRFA 1 µg.mL-1, Ultramark 1621 0.001% and n-butylamine 

0.0005% for positive mode; SDS 2.9 µg.mL-1, taurocholate 5.4 µg.mM-1 and Ultramark 1621 0.001% for 

negative mode). 

Analytical standards solutions (100 µg/mL in ACN or MeOH, purity >97%) of malathion, ochratoxin A 

and bisphenol S or individual labelled compounds (acrylamide-d3, bisphenol A-d14, dimethoate-d6 or 

malathion-d6) were purchased from CIL Cluzeau France. All other standard solutions (100 µg/mL in 

ACN or MeOH), including herbicide mix (100 µg/kg in ethyl acetate, purity >98%) were provided by 

Sigma Aldrich (Saint-Quentin Fallavier, France). A pooled stock solution containing all labelled 

molecules (each at 1 µg.mL-1) was prepared in ACN and stored in the fridge.  

Loose tea samples (green and black) were purchased at local retailers. The green tea was an organic 

Bancha tea from Japan, and the black tea an organic Keemun tea from China. 

A standard solution (called stability mix) containing 32 known contaminants from different families at 16 

ng/mL (pesticides, mycotoxins, migrants from packaging and process-induced toxicants) was used to 
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check the stability of the instrument before each analytical sequence (Cladière, Delaporte, Le Roux, & 

Camel, 2018).  

2.2 Study set-up 

The study was carried out by two different persons: a study designer who set up the experimental design 

and spiked the samples, and an operator who did the chemical and data treatment analyses.  In particular, 

the composition and levels of contaminants of the different sample groups were not known by the 

operator, from the beginning of sample extraction to final compounds annotation. In addition, most of 

compounds studied were analyzed for the very first time using our method and therefore nor the operator, 

neither the study designer had any background regarding the overall method efficiency for the analyzed 

compounds (only that they are LC-MS amenable). After all the analyses, the results were sent back by the 

operator to the study designer for detection performance assessment. 

Two different contamination scenarios have been established (Table 1) using two spiking mix. Spiking 

mix n°1 is composed of 11 herbicides in ACN, and spiking mix n°2 of three food contaminants from three 

different classes (malathion for pesticides, ochratoxin A for mycotoxins and bisphenol S for migrants 

from packaging) in ACN.  

TABLE 1 CONTAMINATION SCENARIOS CONSIDERED 

Group number  
Scenario n°1 

Green tea 

Scenario n°2 

Black tea 

1 10 µg/kg with mix n°1 10 µg/kg with mix n°1 

2 Unspiked 10 µg/kg with mix n°2 

3 30 µg/kg with mix n°1 Unspiked 

 

Details on spiked contaminants such as raw formula, physico-chemical properties and respective 

European Maximum Residue Limits (MRLs) when applicable can be found in Table A.1 of 

Supplementary material. Spiking levels were chosen in accordance with EU regulations n° 396/2005 

(pesticides) and 1881/2006 (other contaminants). Each sample was spiked using the following procedure: 

1 g of sample was firstly weighted in a centrifuge polypropylene tube (Corning, New York, USA) and the 

spiking mix added using the smallest volume possible (below 100 µL); 100 µL of ACN was added to the 

unspiked samples. For quality control purpose, 40 µL of the labelled spiking mix were added to all 
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samples (leading to a concentration of 40 µg/kg of labelled compounds in the samples). Each sample was 

then mixed using a vortex and left for equilibration during 2 hours at room temperature, and then put in 

the fridge overnight.  

While the operator just had information about the group’s number (group n°1, 2 or 3) for black and green 

teas (to ensure real blind analysis relative to the contaminants), two different contamination studies were 

designed as indicated in Table 1. The first scenario, considered as “simple”, consists in three groups (of 

three samples each) from the same green tea; two of these groups were spiked with the mix n°1 (one at 

10 µg/kg, which corresponds to the default safety MRL in the EU legislation, and one at 30 µg/kg), the 

third being used as a control group. The second scenario, considered more complex, consists in three 

groups (of three samples each) from the same black tea; one group was spiked at 10 µg/kg with the mix 

n°1, another one at the same level with the mix n°2, and the last one used as a control.  

Here we aimed to test the capability of our untargeted approach to discriminate low levels of the same 

contamination, enabling detection of non-conformities (scenario n°1), and also to detect unexpected 

contaminants in samples that do comply with the regulation and face different contamination patterns 

(scenario n°2). 

2.3 Sample treatment 

Samples were extracted using a method based on previous work (Cladière et al., 2018): 5 mL of an 

ACN/MeOH (90/10 v/v) mixture acidified with 0.1% FA were added to each sample for extraction. Tubes 

were then agitated upside-down on an agitator plate for 1 hour, and centrifuged at 3,000 g for 10 minutes. 

Then 2 mL of the supernatant were collected and evaporated to dryness under a gentle nitrogen stream at 

35°C. The extract was reconstituted in 0.2 mL of ACN acidified with 0.1% FA, and completed by 0.8 mL 

of H2O acidified with 0.1% FA, leading to a total volume of 1 mL. The reconstituted extract was then 

centrifuged at 12,000 g for 10 minutes, 0.5 mL collected and filtered at 0.2 µm using a syringeless filter 

vial (mini-uniprep G2, Whatman) before analysis. For each type of tea (green and black), a quality control 

sample (QC) was made by pooling together in a glass tube 0.2 mL of each final extract considered in the 

analytical sequence, from which a 0.5 mL aliquot was sampled and filtered using a syringeless filter vial.  
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2.4 UHPLC-HRMS methods 

Samples were analyzed on two UHPLC/HRMS platforms. The first is a Waters® Acquity UPLC® H-

Class system, composed of a quaternary solvent manager pump, a refrigerated sample manager Flow-

Through-Needle and a column oven, coupled to a Waters® high resolution Time-of-Flight mass 

spectrometer Xevo® G2-S ToF operated in centroid mode (resolution of 30,000 FWHM at m/z 200, m/z 

range from 60 to 800, 2 scans/s) using an electrospray ion source (ESI). The second is a Thermo Scientific 

UltiMate 3000 UHPLC system composed of quaternary pumps, refrigerated auto-sampler and a column 

oven coupled to a Q-Exactive Orbitrap mass spectrometer operated in centroid mode (resolution of 70,000 

FWHM at m/z 200, m/z range from 60 to 800) with a heated electrospray ion source (HESI). For the 

Orbitrap MS method “AGC target” and “Maximum IT” parameters were set to 106 and 200 ms 

respectively. 

For each platform, the injection volume was 10 µL. Separation was made on a C18-PFP column (150×2.1 

mm, 2 µm particles diameter, ACE supplied by AIT France), and the same chromatographic gradients 

were used on both instruments. For ESI+, the mobile phase was composed of water (A) and ACN (B), 

both acidified with 0.1% FA, and MeOH (C), flowing at 0.4 mL.min-1. Gradient started at 100% A and 

reached 100% B in 10 min, being kept for 6 min before switching to 100% C to rinse the system in 1 min, 

being hold for 5 min, returning back to 100% A in 1 min and finally equilibrating for 3 min, with a total 

run duration of 26 min. For ESI-, the mobile phase was composed of water buffered at pH 6.45 with 10 

mM of ammonium formate (A) and MeOH (B) flowing at 0.3 mL.min-1. The gradient started at 100% A 

and reached 100% B in 13 min, holding this condition for 7 min before turning back to 100% A in 1 min 

and finally equilibrating for 3 min, with a total run duration of 24 min. For both chromatographic methods 

the temperature of the column oven was kept at 30°C. Parameters for electrospray ion sources can be 

found in Table A.2.1 & A.2.2 of Supplementary material. 

Each sequence started with 10 mobile phase injections and 5 stability mix injections to equilibrate the 

instrument (Dunn et al., 2011). Sample injection orders were randomized, and QC samples as well as 

blanks injected every 15 samples. For each ionization mode and instrument, each sample was analyzed in 

triplicate. 
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2.5 Data treatment workflow 

Before any untargeted analysis, the overall method quality (extraction + UHPLC-MS analysis) was 

visually assessed for each injection replicate thanks to the Total Ion Current (TIC) and the peak intensity 

of each labelled molecule. This step only aimed at the early detection of analytical outliers and did not 

replace the quality control procedure that will be implemented afterwards. 

A highly automated data treatment workflow based on previous work (Delaporte et al., 2019) has been 

implemented here (Figure 2). Vendors raw data files were first converted to an open-source format 

(.mzXML) with the help of ProteoWizard module “MSConvert” (Chambers et al., 2012) using a noise 

threshold of 100 for ToF data, and then uploaded onto the Workflow4Metabolomics (W4M) computation 

platform (Giacomoni et al., 2015). Data matrices were built using XCMS R package (Smith, Want, 

O’Maille, Abagyan, & Siuzdak, 2006). Parameters for XCMS algorithm were inspired by those suggested 

by Patti (Patti, Tautenhahn, & Siuzdak, 2013) for high resolution UHPLC-Q-ToF and UHPLC-Orbitrap 

instruments.  

 

Figure 2: Untargeted data treatment workflow 

The full list of parameters for both Orbitrap and ToF data files can be found in Table A.3 of 

Supplementary material. In-line with XCMS, data sets were quickly visualized using the “Quality 

Metrics” module of W4M. A LOESS (“Locally Estimated Scatterplot Smoothing”) analytical drift 
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correction on ion intensities (Van Der Kloet et al., 2009) was applied when needed as spotted in Figure 

A.1 of Supplementary material. 

In-house tools and methods were then implemented to achieve the detection of contaminants. As shown 

in Figure 2, remaining zero values were first imputed (especially for Orbitrap data) since some methods 

used afterwards are sensitive to zeros in the data matrix. A first missing value completion method, 

fillPeaks, was applied within XCMS as shown in Figure 2. It relies on the forced integration of missing 

ions. However, especially in low-noise data, we observed that this method tends to generate a lot of zero 

values when no peaks could be found. Therefore, we implemented a method to impute those remaining 

missing values, which appeared as zeros in our data matrices. The presence of injection replicates was 

used to impute them by the best value possible (Delaporte, Cladière, & Camel, submitted). Briefly, for 

each ion (identified in the data matrix by their combination “retention time-m/z”), if a zero is found in 

only one injection replicate, it is imputed by the mean of the replicates. If more than one replicate has a 

zero value, they are imputed by the estimated limit of detection of the instrument [i.e. mean of the 3% 

lowest values, zeros excluded (Libiseller et al., 2015)].  

It was then necessary to reduce the number of ions present in the data matrix (several thousands). To that 

end, two complementary filtration strategies were implemented in parallel. The first (which will be called 

“t-test”) relies on the implementation of univariate t-tests between sample groups and blank injections to 

remove ions already present in blanks, and then between groups to remove ions showing no significant 

differences between groups. These tests are followed by the calculation of the fold change (FC, calculated 

for each ion as the ratio of the medians of the highest group over the lowest). Fixed thresholds are used 

to filter the data matrix, respectively <0.05 for p-values (of “t-test”) and >2 for FC. The alternative 

filtration strategy relies instead on the calculation, for each ion, of a relevant minimum FC (FCmin) from 

which one can assume that a significant signal difference is observed between groups (Ortmayr, Charwat, 

Kasper, Hann, & Koellensperger, 2017). FCmin calculation relies on the estimation of the uncertainty on 

FC based on the relative standard deviations observed for the considered samples. Only ions exhibiting a 

FC higher than the FCmin are kept.  
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Data matrices then go through several preprocessing methods. They were log- and pareto-scaled 

(Antignac et al., 2011; Delaporte et al., 2019) and normalized with a median-based Probabilistic Quotient 

Normalization (PQN) based on QC samples (Delaporte et al., 2019; Dieterle, Ross, Schlotterbeck, & 

Senn, 2006). PQN aims at limiting the influence of potential dilution effects occurring in the study, 

whereas the previously used LOESS method aims at correcting a signal intensity drift, caused for example 

by the fouling of the ion source during the study. 

At this point, the data matrix is most often composed of a hundred to few thousands ions (with the notable 

exception of ToF data in positive ionization mode, for which only five ions were remaining). As a 

consequence, to visualize the data and assess the presence of trends and patterns, it is necessary to 

implement data analysis methods to reduce its dimensionality. In metabolomics studies, this step is 

typically done using multivariate methods (Gorrochategui et al., 2016). Independent Component Analysis 

(ICA) was the method selected here to visualize the data based on the remaining ions (Delaporte et al., 

2019). This method was implemented using the JADE algorithm (Rutledge & Jouan-Rimbaud 

Bouveresse, 2015) and the optimal number of ICs to compute determined with Random-ICA method 

(Kassouf, Bouveresse, Rutledge, Jouan-Rimbaud Bouveresse, & Rutledge, 2017). ICA is a blind source 

signals decomposition method, that gives two main outputs, respectively signals (representing the pure 

source signals found in the data matrix) and scores (representing the weight of each sample in the different 

signals). The scores make it possible to visualize a potential separation of samples, and then the signals 

enable to link a sample group separation to specific ions. For example, if a sample group separation is 

observed along component n°1 (IC1) (with sample group n°1 having higher scores than sample group 

n°2), signals constituting IC1 will be sorted in descending order and the corresponding discriminating 

ions will be selected. 

All discriminating ions were then annotated using automated in-house data-mining tools to detect isotopic 

patterns and adducts based on previous work (Cotton et al., 2014), and they were matched against a broad-

range in-house database containing around 2,000 known toxicants and their most probable adducts in LC-

HRMS (Delaporte et al., 2019). The presence of the spiked contaminants has not been assessed in the 
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database before the study to maintain their blind character. Finally, ions selected thanks to the multivariate 

analysis were manually curated to highlight suspect compounds. 

2.6 Performance assessment 

As already mentioned the operator carried out all the instrumental analysis and the data treatment process 

without any knowledge on the possible contamination of the samples (real blind procedure). At the end 

of the process, this operator issued a summary with two main information: which molecules are suspected 

to cause a group separation (with their respective m/z, retention time and putative annotation), and for 

each, in which group the concentration is the highest. Percentages of molecules detection for each 

experiment were then assessed, by returning back the results to the study designer who spiked the samples. 

Two detection percentages were computed from these results by the designer of the study as shown in. 

The first was calculated as the ratio between the number of blindly annotated contaminants and the 

number of contaminants actually detected in the spiked samples by a manual peak detection made by the 

study designer: it represents the success rate of the blind data treatment approach to detect and characterize 

a suspect signal in the data matrix. The second was calculated between the number of blindly annotated 

molecules against the number of LC-ESI-MS amenable molecules, defined as the number of molecules 

detected by a targeted analysis (conducted by the study designer) of a highly concentrated standard 

solution (500 ng/mL) with our method. This percentage characterizes the sensitivity of the global 

methodology (analytical and data treatment methods) to detect a contamination. 

3. Results and discussion 

Raw data sets have been deposited to the EMBL-EBI MetaboLights database (DOI: 10.1093/nar/gks1004. 

PubMed PMID: 23109552) with the respective identifiers MTBLS771 and MTBLS772 (Haug et al., 

2013). The complete data sets can be accessed at https://www.ebi.ac.uk/metabolights/MTBLS771 and 

https://www.ebi.ac.uk/metabolights/MTBLS772. 

3.1 Data sets metrics and pretreatment 

After peak extraction from raw data files by XCMS, the main metrics (number of ions and percentage of 

zero values) were calculated for each data set (see Table 2). All data sets appeared to be rather similar in 

terms of number of ions or percentage of zeros, regardless of the instrument used. An analytical drift on 

https://www.ebi.ac.uk/metabolights/MTBLS771
https://www.ebi.ac.uk/metabolights/MTBLS772
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peak intensities was clearly visible on ToF data sets (an example is displayed in Figure A.1 of 

Supplementary material) and was corrected using the LOESS method. No drift was observed on measured 

retention times and m/z whatever the data set considered. 

TABLE 2 DATA SETS AVAILABLE AND THEIR RESPECTIVE METRICS 

Matrix 
UHPLC-HRMS 

platform 
Ionization 

mode 

Analytical 
drift 

correction 

Number of 
ions 

before 
filtering 

% 
zeros 

Green tea 
contamination 

mix n°1 

ToF 
ESI+ 

Yes (LOESS) 
15.548 6.45 

ESI- 28,275 4.76 

Q-Orbitrap 
ESI+ 

No 
16,053 8.33 

ESI- 17,646 9.69 

Black tea 
contamination 
mixes n°1 & 2 

ToF 
ESI+ 

Yes (LOESS) 
11,912 6.57 

ESI- 21,461 4.45 

Q-Orbitrap 
ESI+ 

No 
12,736 4.46 

ESI- 12,976 5.62 

 

For ToF data, about twice as many ions were detected in negative ionization mode as compared to positive 

mode. However, it does not seem to have an impact on the percentage of zeros, which remains very similar 

between all data sets. A group-wise study of percentages of zeros reveals that, as expected, blank 

injections contain a higher proportion of zeros (between of 20 and 50% of values) than spiked tea samples 

(between 1 and 5 % of values). Still, the presence of zeros may lead to errors in the following steps of the 

process (especially for univariate statistics and log transformation), as a consequence they must be 

imputed. Zeros, i.e. missing values (see in 2.5) were first classified according to their nature thanks to the 

methodology described in 2.5 based on the presence of injection replicates, and then imputed either by 

the mean of replicates or by an estimated instrumental noise. 

3.2 Contamination case n°1 

Sample groups were successfully separated thanks to the multivariate analysis by ICA for both polarities 

and instruments. Results for ToF data are displayed in Figure 3 (and in Figure A.2 of Supplementary 

material for Orbitrap data).  



13 

 

 

Figure 3: Score plot of ICA output for green tea samples analyzed on ToF platform 

A clear concentration trend can be observed between sample groups on the discriminating component. 

For each filtration method applied, one or several discriminating components were found, the 

corresponding ions annotated and detection rates calculated (see Table 3 for annotated contaminants and 

Table 4 for detection rates). Hence, UHPLC-ToF platform enabled the successful detection of 4 

contaminants (corresponding to 36% of the spiked molecules) in positive mode and of two others 

(corresponding to 18% of the spiked molecules) in negative mode. Similar results were obtained with t-

test / fixed FC and FCmin filtration strategies. Results from both polarity modes and data filtration 

strategies were gathered and a global detection rate of 55% was calculated for ToF platform. A targeted 

search of spiked contaminants in the raw data files shows that only 7 of them can actually be seen (in 

which only 5 exhibit a signal/noise ratio above 3 for the 10 µg/kg level). It means that the main loss of 

information came from the analytical step, the data treatment being able to detect and annotate 6 

contaminants out of 7 (i.e. 86%) actually visible in the raw chromatograms. A contaminant (dodemorph, 

see Table 3) was initially detected with the t-test based filtration approach, but appeared to be a false 

positive. This annotation was unsure from the start since it had not been reported with FCmin filtration. 
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TABLE 3 ANNOTATED CONTAMINANTS IN GREEN TEA SAMPLES 

 

Measured mono-

isotopic mass of 

adduct 

Measured 

retention 

time (min) 

Ionization 

mode 

Most 

intense 

adduct 

Proposed 

raw formula 

Proposed 

mono-isotopic 

mass of 

compound 

Mass 

error 

(ppm) 

Proposed 

putative 

annotation 

Detected 

in 

groups 

Relative 

intensities 

Filtration 

method 

Orbitrap 

216.1009 7.83 POS [M+H]+ C8H14ClN5 215.0938 -0.61 Atrazin 3 & 1 gp3 > gp1  FCmin / t-test 

216.1414* 10.22 POS [M+H]+ C11H21NOS 215.1344 -1.38 Cycloate 3 & 1 gp3 > gp1  FCmin / t-test 

253.1655 6.72 POS [M+H]+ C12H20N4O2 252.1586 -1.53 Hexazinone 3 & 1 gp3 > gp1  FCmin / t-test 

215.0960 7.30 POS [M+H]+ C8H14N4OS 214.0888 -0.37 Metribuzin 3 & 1 gp3 > gp1  FCmin / t-test 

188.1105 8.94 POS [M+H]+ C9H17NOS 187.1031 0.50 Molinate 3 & 1 gp3 > gp1  FCmin / t-test 

261.0229 / 

259.0085** 

7.01 / 

12.34 
POS / NEG 

[M+H]+ / 

[M-H]- 
C9H13BrN2O2 260.0160 

-1.73 / 

3.18 
Bromacil 3 & 1 gp3 > gp1  FCmin / t-test 

215.0587 12.69 NEG [M-H]- C9H13ClN2O2 216.0666 2.37 Terbacil 3 & 1 gp3 > gp1  FCmin / t-test 

ToF 

216.1016 6.52 POS [M+H]+ C8H14ClN5 215.0938 2.78 Atrazin 3 & 1 gp3 > gp1  FCmin / t-test 

282.2797*** 10.32 POS [M+H]+ C18H35NO 281.2719 1.91 Dodemorph 1; 2 & 3 gp1 > gp2 > gp3 t-test 

253.1669 5.44 POS [M+H]+ C12H20N4O2 252.1586 4.01 Hexazinone 3 & 1 gp3 > gp1  FCmin / t-test 

215.0967 6.02 POS [M+H]+ C8H14N4OS 214.0888 2.90 Metribuzin 3 & 1 gp3 > gp1  FCmin / t-test 

188.1119 7.57 POS [M+H]+ C9H17NOS 187.1031 8.21 Molinate 3 & 1 gp3 > gp1  FCmin / t-test 

259.0085 10.39 NEG [M-H]- C9H13BrN2O2 260.0160 3.13 Bromacil 3 & 1 gp3 > gp1  FCmin / t-test 

215.0586 10.73 NEG [M-H]- C9H13ClN2O2 216.0666 1.99 Terbacil 3 & 1 gp3 > gp1  FCmin / t-test 

* Detected only with Orbitrap mass analyzer 

** Detected in both positive and negative ionization mode 

*** False positive, not present in the spiking solution 
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TABLE 4 DETECTION RATES FOR CONTAMINATION CASE N°1. 

UHPLC-HRMS platform Mode 

Detection rate  

[found compounds / added compounds] 
Detection rate  

[found compounds / 

compounds visible in 

raw data] 
t-test / fixed FC FCmin Global 

ToF 
ESI+ 36% 36% 

55% 86% 
ESI- 18% 18% 

Q-Orbitrap 
ESI+ 55% 55% 

64% 100% 
ESI- 18% 18% 

 

 

On the UHPLC-Q-Orbitrap platform, 6 contaminants (i.e. 55% of the spiked molecules) were blindly 

detected in positive mode and 2 others in negative mode, leading to a total detection rate of 64%, which 

is slightly better than with the ToF platform. Interestingly, one contaminant could be annotated only in 

the Orbitrap data set as displayed in Table 3. All annotated spiked contaminants can be detected at levels 

as low as 10 µg/kg in samples, which is relevant regarding existing EU MRLs. Interestingly, the data 

treatment success rates rise to 100% for Orbitrap platform, meaning that all compounds present in the raw 

data files were successfully annotated by our methodology.  

The sample diversity considered here is rather low since all samples come from the same brand and 

production batch. This topic has been discussed previously (Delaporte et al., 2019; Knolhoff et al., 2016), 

but the need for a control, unspiked sample for relevant signals selection is an issue that has not been 

solved yet despite of its critical aspect for untargeted food safety assessment. Moreover, this study relies 

on spiked samples, which also may lead to better detection rates than if natively contaminated (i.e. “real”) 

samples were analyzed. In fact, the extraction of contaminants trapped within the sample matrix (and not 

solely present on its surface, as in the case of spiked samples) may induce more matrix effects and lower 

recoveries of compounds of interest that will probably make the implementation of the approach more 

difficult. The solving of these issues would surely imply further adjustments concerning the analytical 

method (namely the sample treatment step) and possibly the data treatment process. In a final step, ring 

studies will be necessary as it is done for traditional targeted approaches and in the field of metabolomics 

studies.  Yet, our results are still highly promising since the detection rates obtained are within the same 

order of magnitude of the ones presented in similar studies (Kunzelmann et al., 2018). On top of that, 
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several contaminants studied here have never been analyzed with our method, so that their potential 

analytical responses and detectability were truly “unknown”.  

3.3 Contamination case n°2 

In this more complex contamination scenario, group separation was also achieved. However, this time the 

group separation pattern observed in all cases suggests the presence of different contaminations among 

sample groups, and not a single contamination present at several levels as in scenario n°1. This highlights 

the interest of using ICA here, since it produces independent components, meaning that the ions 

combination used to build IC1 should be different from the combination used to build IC2. This is 

particularly visible on data from Orbitrap platform (in Figure 4). 

 

Figure 4: Score plot of ICA output for black tea samples analyzed on Orbitrap platform 

Again, the two previously described filtration methods (t-test/fixed FC and FCmin) were implemented, but 

some combinations of instrument/polarity/filtration method do not enable a clear sample separation, and 

some even lead to the selection of too few ions to perform a multivariate analysis (see Figure 4 for 

Orbitrap data and Figure A.3 of Supplementary material for ToF data). For example, for positive 

ionization mode data acquired on the ToF platform, the FCmin filtration method leads to the selection of 5 

ions, thus multivariate analysis was not needed and each ion was putatively annotated individually.  
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The annotation of discriminating ions is completed by the visualization of ion intensity differences among 

sample groups thanks to an in-house Matlab script to assess the relative levels of annotated contaminants. 

The final outcome of this process is presented in Table 5. A separate detection rate has been then 

calculated for each spiking mix (see Table 6).  

 

The contamination pattern of group n°1 was first investigated thanks to ICA decomposition. On the 

UHPLC-ToF platform, 3 contaminants can be tentatively annotated in positive ionization mode, and 2 

others in negative mode, corresponding to detection rates of 27% and 18% respectively, leading to 45% 

when considering both modes which is lower than previously observed on green tea. In fact, the detection 

rate in scenario n°1 is favored by the presence of a group with a “high” spiking level (30 µg/kg), not 

present in the scenario n°2. Consequently, one compound (molinate) is missed in case n°2 (but found in 

case n°1) since it exhibits a signal / noise ratio close to the limit of detection of the ToF platform. A similar 

decrease of detection rate was reported by Kunzelmann (Kunzelmann et al., 2018) from 89% detection at 

25 µg.kg-1 too less than 35% at 5 µg.kg-1. Interestingly, more contaminants can be annotated using the 

UHPLC-Q-Orbitrap platform.  

Overall, same performances were achieved as for contamination scenario n°1, with 6 contaminants 

annotated in positive mode (i.e. 55% of spiked molecules) and 2 others in negative mode (i.e. 18% of 

spiked molecules) in sample group n°1. Globally, 7 contaminants (out of 11, corresponding to a detection 

rate of 64%) were successfully annotated in this sample group, and 100% of compounds present in the 

raw data files were successfully annotated by our methodology. 
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TABLE 5 ANNOTATED CONTAMINANTS IN BLACK TEA SAMPLES 

Measured mono-

isotopic mass of 

adduct 

Measured 

retention 

time (min) 

Ionization 

mode 

Most 

intense 

adduct 

Proposed raw 

formula 

Proposed 

mono-isotopic 

mass of 

compound 

Mass 

error 

(ppm) 

Proposed 

putative 

annotation 

Detected 

in 

groups 

Relative 

intensities 
Filtration method 

Orbitrap 

353.0243* 9.54 POS [M+Na]+ C10H19O6PS2 330.0361 -2.96 Malathion 2 N/A** FCmin  

216.1009 7.83 POS [M+H]+ C8H14ClN5 215.0938 -0.61 Atrazine 1 N/A FCmin / t-test 

216.1414* 10.22 POS [M+H]+ C11H21NOS 215.1344 -1.38 Cycloate 1 N/A FCmin / t-test 

253.1655 6.72 POS [M+H]+ C12H20N4O2 252.1586 -1.53 Hexazinone 1 N/A FCmin / t-test 

215.0960 7.30 POS [M+H]+ C8H14N4OS 214.0888 -0.37 Metribuzin 1 N/A FCmin  

188.1105* 8.94 POS [M+H]+ C9H17NOS 187.1031 0.50 Molinate 1 N/A FCmin / t-test 

261.0229 / 

259.0084*** 

7.01 / 

12.34 
POS / NEG 

[M+H]+ / 

[M-H]- 
C9H13BrN2O2 260.0160 

-1.60 / -

1.30 
Bromacil 1 N/A 

FCmin / t-test 

(POS)  

FCmin (NEG) 

215.0587 12.69 NEG [M-H]- C9H13ClN2O2 216.0666 -2.80 Terbacil 1 N/A FCmin / t-test 

ToF 

402.0733* 11.03 NEG [M-H]- C20H18ClNO6 403.0823 -4.07 Ochratoxin A 2 N/A FCmin 

249.0220* 9.56 NEG [M-H]- C12H10O4S 250.0300 -2.80 Bisphenol S 2 N/A FCmin 

216.1016 6.52 POS [M+H]+ C8H14ClN5 215.0938 2.78 Atrazine 1 N/A FCmin 

253.1669 5.44 POS [M+H]+ C12H20N4O2 252.1586 4.01 Hexazinone 1 N/A FCmin 

215.0967 6.02 POS [M+H]+ C8H14N4OS 214.0888 2.90 Metribuzin 1 N/A FCmin 

259.0084 10.39 NEG [M-H]- C9H13BrN2O2 260.0160 -1.32 Bromacil 1 N/A FCmin / t-test 

215.0585 10.73 NEG [M-H]- C9H13ClN2O2 216.0666 -3.27 Terbacil 1 N/A FCmin / t-test 

* Compounds detected on only one instrument  

** N/A = Not applicable 

*** Detected in both positive and negative ionization mode 
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TABLE 6 DETECTION RATES FOR CONTAMINATION CASE N°2. 

 

A) CONTAMINANTS SPIKED IN GROUP N°1. OVERALL (TOF + ORBITRAP) DETECTION RATE: 64% 

UHPLC-HRMS platform Mode 

Detection rate  

[found compounds / added compounds] 
Detection rate  

[found compounds / 

compounds visible in 

raw data] 
t-test / fixed FC FCmin Global 

ToF 
ESI+ 0% 27% 

45% 71% 
ESI- 18% 18% 

Q-Orbitrap 

ESI+ 36% 55% 

64% 100% ESI- 9% 18% 

ESI- 9% 18% 

 

B) CONTAMINANTS SPIKED IN GROUP N°2. OVERALL (TOF + ORBITRAP) DETECTION RATE: 100% 

UHPLC-HRMS platform Mode 

Detection rate 

[found compounds / added compounds] 
Detection rate  

[found compounds / 

compounds visible in 

raw data] 
t-test / fixed FC FCmin Global 

ToF 
ESI+ 0% 0% 

67% 67% 
ESI- 67% 67% 

Q-Orbitrap 

ESI+ 33% 33% 

33% 100% ESI- 0% 0% 

ESI- 0% 0% 

 

 

Then group n°2 was proposing a completely different contamination pattern as shown in Table 5. On the 

ToF platform, this contamination has been detected only in negative mode, with two contaminants 

putatively annotated (ochratoxin A and bisphenol S). The missing contaminant (malathion, normally 

amenable in positive mode) was not detected due to a high analytical drift on signal intensity that cannot 

be corrected satisfyingly. Interestingly, both LC-MS platforms show a real complementarity since 

malathion can be annotated in positive mode using Orbitrap data. However, this time bisphenol S and 

ochratoxin A cannot be annotated, even using a targeted approach (see in Table 5). This is not due to an 

issue in the data treatment process or to an analytical drift as for ToF data, but to a lack of sensitivity of 

the method (the peak cannot be seen at all in the raw data files) maybe caused by strong matrix effect 

inherent to the tea matrix. These results indicate that the approach benefits from the presence of numerous 

contaminants since the detection of the contamination with 3 compounds was more difficult than with 11 

compounds. With fewer contaminants, the outcome of the approach seems indeed more vulnerable to 

potential failures in the analytical process. It is the first time this fact is highlighted since it did not 
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occurred in previous studies focusing on few contaminants (Delaporte et al., 2019, Knolhoff et al., 2016). 

Ensuring their ruggedness seems to be one of the key stake of those approaches, especially since 

untargeted food safety studies could imply the detection of a single contaminant, for which the analytical 

response may not be optimal. 

These results are very encouraging since despite the presence of two different contaminations at very low 

levels (only 10 µg.kg-1), satisfactory detection rates were achieved on both analytical platforms. Even 

with this complex situation, annotation rates are similar with those found for already existing, simpler 

cases (Kunzelmann et al., 2018).  

3.4 ToF / Orbitrap comparison 

The two instruments possess different characteristics, both in terms of ionization source (geometry, ESI 

vs. HESI) and mass analyzer performances (resolution, accuracy, detection technology). Therefore, their 

performance in terms of sensitivity and scope are expected to be different. Interestingly, our developed 

methodology can be applied on data collected from both instruments with promising results as indicated 

above. Unexpected contamination could be detected and characterized by the use of different LC-HRMS 

platforms, even at levels as low as 10 µg/kg and with samples exhibiting different contaminations within 

the same analytical sequence. This is a major advance for the development and implementation of 

untargeted approach for chemical food safety applications, since existing approaches only focus on a 

single contamination scenario and one analytical platform. 

The majority of contaminants were detected on both platforms, giving rather similar annotation success 

rates. Both platforms performed well on the simplest case (n°1), with close detection rates (55% for ToF 

analyzer vs. 64% for Orbitrap). The main difference observed came from the false detection of a 

contaminant (dodemorph, see Table 3) when using the t-test based filtration on the ToF data. This false 

positive cannot be explained since this peak was absent from Orbitrap data, as well as from the spiking 

mix. On the rest of the data (both ToF and Orbitrap), both filtration strategies gave similar results. 

However, several contaminants were missed by both instruments for case n°1. Based on Table 3 and 

Table A.1 of Supplementary material, the missed contaminants are the following: butylate, EPTC, 

isopropalin and pebulate (plus cycloate for ToF platform). For cycloate, it is most likely due to the mass 
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spectrometry detection, and more particularly the geometrical and technological differences between the 

two ionization sources, two critical parameters in complex matrices such as tea. A closer look at the 

respective physico-chemical properties of the remaining compounds, and especially vapor pressures, 

enables to give hypothesis on their non-detection. First of all, two of them (butylate and EPTC) have 

vapor pressures over 100 mPa (see Table A.1 of Supplementary material), which may lead to a loss during 

the evaporation/concentration step. However, other contaminants have similar vapor pressures (for 

example molinate) and are still detected. The explanation for the non-detection of butylate and EPTC 

therefore should be a combination between significant losses during sample treatment and strong matrix 

effects in mass spectrometry. For the two last ones (pebulate and isopropalin), only few papers were 

reported (Mayer-Helm et al., 2006; Liu et al., 2004) with levels analyzed rather high compared with our 

study (between 0.1 and 1 mg/kg), suggesting that those compounds may be difficult to analyzed using 

LC-ESI-MS. This hypothesis must be taken with care given the technological developments in LC-MS 

between the mid-2000s and late 2010s. Still, the signal/noise ratios obtained with our method for those 

two compounds are rather low, even in a clean solvent matrix, so that it is likely that even minor loss due 

to either the sample treatment or the ionization process would lead to their non-detection in a complex 

matrix such as tea.  

Differences between the two instruments appeared more clearly during the analysis of the contamination 

case n°2, which is more complex. In fact, as displayed in Table 5 (in bold), several contaminants were 

annotated in data from only one instrument, which clearly highlights the interest of implementing multiple 

LC-HRMS technologies for untargeted studies. As indicated in Table 6, for contamination mix n°1 (11 

herbicides) same detection rates were achieved than in case n°1, and non-detects should then have the 

same causes. For contamination mix n°2 (mix of OTA, BPS and malathion), the detection rate difference 

along with the complementarity observed between the two instruments suggest that non-detects probably 

come from the mass spectrometer technology (including the ionization sources and ion paths) and not 

from the upstream analytical process (sample treatment and chromatography methods). In fact, the ToF 

instrument used appeared to be more sensitive to source fouling (and so to ion intensity drift), leading to 

the non-detection of malathion in positive mode.  
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Differences were also observed between the two filtration methods, since FCmin strategies gave overall 

better results than t-test strategy on our data. This observation may be explained by the computing, in the 

FCmin strategy, of the discarding criteria as a function of the repeatability of the measurement for each 

ion, whereas t-test strategy uses fixed thresholds for all ions. 

However, the achievement of such performances required the development of a data process adjusted to 

specificities of both LC-HRMS platforms. In particular, the process already developed (Delaporte et al., 

2019) for ToF platform was modified to handle zeros generated by the low noise of the data produced by 

the Orbitrap platform. Moreover, analytical drift correction was required for data from ToF platform only. 

These issues were easily handled using easy-to-use, open-source and freely available tools which 

highlight the advantages of using those tools to take full advantage of the use of multiple instruments.  

In addition, some specificity of each instrument can be spotted. Hence malathion and cycloate were only 

detected on the Orbitrap platform, while ochratoxin A and bisphenol S were recovered using the ToF 

instrument. Thus, the future of food safety control using untargeted approaches will benefit from the 

implementation of multiple analytical platforms in the process, which will be eased by the use of open-

source, flexible tools. 

4. Conclusion 

In this work, an untargeted strategy to detect trace contaminants at relevant levels in complex food 

samples has been blindly implemented on two complex contamination scenarios in a model food product 

(green and black tea leaves) using two LC-HRMS platforms (respectively LC-ToF and LC-Q-Orbitrap). 

To the best of our knowledge, this is the first time that two different platforms are compared for untargeted 

food chemical safety assessment. The comparison of the performances of the two instruments has been 

eased by the use of freely available and open-source tools which enabled the implementation of the same 

data treatment workflow for all data sets. Most contaminants have been detected with both instruments, 

despite the complexity of the scenarios investigated (unexpected contaminants, different contamination 

between samples of the same data set and low contamination levels, i.e. down to 10 µg/kg). Most 

contaminants spiked have never been analyzed with our analytical method before and so were truly 

unknown to the methodology, which is rather new in this kind of study. As far as we know, this is the first 
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time that several contamination patterns have been investigated simultaneously at such levels (down to 

10 µg/kg). This constitutes a major step towards an implementation of untargeted approaches in routine 

analysis. Different information could be obtained between two LC-HRMS systems, and this is especially 

critical in complex matrices, in which strong signal suppression phenomenon are often observed.  Our 

data treatment approach performed well on all data sets, which is highly promising with a view of its 

implementation on other studies and LC-HRMS platforms for blind contaminants detection. However, 

the cases investigated in this study differ from real food safety applications. First, the sample diversity 

considered here is much lower than a real case, which would involve samples from several production 

batches, geographical origins and processes. A first attempt has been made to increase the sample diversity 

in our previous work with promising results (Delaporte et al., 2019), but still with limited variability and 

applicability as an unspiked control sample was always needed to detect a contamination. No doubt that 

future works would imply the study of a greater, “real-life” sample variability, by taking into consideration 

the different factors mentioned above. Moreover, contaminants may be more difficult to recover from a 

natively contaminated sample than from a spiked one; a water soaking step might help to recover native 

contaminants in the case of dried tea samples (Martínez-Domínguez et al, 2015). The solving of these two 

issues (sample variability and the gap between spiking studies and real samples) would certainly constitute 

major scientific breakthrough in the field of chemical food safety assessment.  

The development of untargeted approaches benefits from its application on multiple data sets and 

contamination scenarios. For that purpose, data sets used in this publication will be made publicly 

available on the MetaboLights data exchange platform.  
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TABLE A.1 MAIN CHARACTERISTICS OF STUDIED COMPOUNDS 

Contaminant Formula Molecular weight log Kow pKa 
Vapor pressure 

(mPa, 20°C) 

Authorized 

substance for tea 

MRL (mg/kg) 

in tea leaves 

 Spiking mix n°1 

Atrazine 

Pesticide 
C8H14ClN5 215.0938 2.7 1.7 3.90×10-2 No 0.1 

Bromacil 

Pesticide 
C9H13BrN2O2 260.0160 1.88 9.27 4.10×10-2 No 0.01 

Butylate 

Pesticide 
C11H23NOS 217.1500 4.1 N/A1 1.70×102 No 0.05 

Cycloate  

Pesticide 
C11H21NOS 215.1344 4.11 N/A 8.30×102 No 0.01 

EPTC  

Pesticide 
C9H19NOS 189.1187 3.2 N/A 4.50×103 No 0.05 

Hexazinone  

Pesticide 
C12H20N4O2 252.1586 1.17 2.2 3.00×10-2 No 0.01 

Isopropalin  

Pesticide 
C15H23N3O4 309.1689 5.29 N/A 1.17 No 0.0.1 

Metribuzin  

Pesticide 
C8H14N4OS 214.0888 1.26 0.99 1.21×10-1 Yes 0.1 

Molinate  

Pesticide 
C9H17NOS 187.1031 2.86 N/A 5.00×102 No 0.05 

Pebulate  

Pesticide 
C10H21NOS 203.1344 4 N/A 9.00×10-3 No 0.01 

Terbacil  

Pesticide 
C9H13ClN2O2 216.0666 1.89 9.5 6.25×10-2 No 0.01 

 Spiking mix n°2 

Malathion  

Pesticide 
C10H19O6PS2 330.0361 2.75 N/A 3.10 Yes 0.5 
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Bisphenol S 

Migrant from packaging 
C12H10O4S 250.0300 2.91 N/A 6.00×10-5 N/A N/A 

Ochratoxin A 

Mycotoxin 
C20H18ClNO6 403.0823 4.74 3.2 / 7.9 4.15×10-9 N/A N/A 

1 N/A = Not Applicable
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TABLE A.2.1 SOURCE PARAMETERS FOR TOF PLATFORM 

Parameter ESI+ ESI- 

Capillary voltage (kV) 1.5 1.0 

Sample cone (V) 20 35 

Source offset (V) 20 80 

Source temperature (°C) 130 130 

Desolvatation temperature (°C) 500 500 

Cone gas flow (L/h) 50 20 

Desolvatation gas flow (L/h) 1,200 600 

 

 

TABLE A.2.2 SOURCE PARAMETERS FOR ORBITRAP PLATFORM 

Parameter ESI+ ESI- 

Capillary voltage (V) 3,000 2,500 

Capillary temperature (°C) 350 300 

Desolvatation gas flow (A.U) 60 35 

Auxiliary gas flow (A.U) 20 10 

A.U = Arbitrary Unit 
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TABLE A.3 PARAMETERS FOR PEAK EXTRACTION BY XCMS 

Module Parameter ToF Orbitrap 

xcmsSet 

scanrange 
NEG: 180-2400 

POS: 120-2060 
All 

nSlaves 1 1 

method centWave centWave 

ppm 15 3 

peakwidth 5-60 5-20 

mzdiff -0.001 -0.001 

snthresh 10 10 

integrate 1 1 

noise 0 0 

prefilter 0 3,5000 

group 

method density density 

minfrac 0.5 0.5 

bw 2 2 

mzwid 0.015 0.015 

sleep 0.001 0.001 

retcor 

method peakgroups peakgroups 

smooth loess loess 

extra 1 1 

missing 1 1 

span 0.2 0.2 

family gaussian gaussian 

plottype mdevden mdevden 

fillPeaks method chrom chrom 

CAMERA.annotate 

nSlaves 4 4 

sigma 6 6 

perfwhm 0.6 0.6 

ppm 15 3 

mzabs 0.015 0.015 

maxcharge 1 1 

maxiso 4 4 

minfrac 0.5 0.5 

quick TRUE TRUE 

convertRTMinute FALSE FALSE 

numDigitsMZ 4 4 

numDigitsRT 0 0 

intval into into 
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FIGURE A.1 PCA OF RAW DATA BEFORE AND AFTER DRIFT CORRECTION (GREEN TEA, TOF DATA 

ACQUIRED IN POSITIVE IONIZATION MODE) 

 

 

  

FIGURE A.2 SCORE PLOTS OF ICA OUTPUT ON GREEN TEA SAMPLES ANALYZED ON ORBITRAP 

PLATFORM 
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FIGURE A.3 SCORE PLOTS OF ICA OUTPUT ON BLACK TEA SAMPLES ANALYZED ON TOF 

PLATFORM 
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