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Abstract
Disentangling the origin of species–genetic diversity correlations (SGDCs) is a chal-
lenging task that provides insight into the way that neutral and adaptive processes 
influence diversity at multiple levels. Genetic and species diversity are comprised by 
components that respond differently to the same ecological processes. Thus, it can 
be useful to partition species and genetic diversity into their different components to 
infer the mechanisms behind SGDCs. In this study, we applied such an approach 
using a high-elevation Andean wetland system, where previous evidence identified 
neutral processes as major determinants of the strong and positive covariation be-
tween plant species richness and AFLP genetic diversity of the common sedge Carex 
gayana. To tease apart putative neutral and non-neutral genetic variation of C. gay-
ana, we identified loci putatively under selection from a dataset of 1,709 SNPs pro-
duced using restriction site-associated DNA sequencing (RAD-seq). Significant and 
positive relationships between local estimates of genetic and species diversities (α-
SGDCs) were only found with the putatively neutral loci datasets and with species 
richness, confirming that neutral processes were primarily driving the correlations 
and that the involved processes differentially influenced local species diversity com-
ponents (i.e., richness and evenness). In contrast, SGDCs based on genetic and com-
munity dissimilarities (β-SGDCs) were only significant with the putative non-neutral 
datasets. This suggests that selective processes influencing C. gayana genetic diver-
sity were involved in the detected correlations. Together, our results demonstrate 
that analyzing distinct components of genetic and species diversity simultaneously is 
useful to determine the mechanisms behind species–genetic diversity relationships.
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1  | INTRODUC TION

The mechanisms that produce and maintain diversity spark both 
theoretical and practical interest across ecology and evolutionary 
biology. Yet, historical separation between genetic and organismal 
ecology research has limited the development of a cohesive frame-
work for multilevel analysis (Antonovics, 2003). Recently, however, 
researchers have integrated these domains, investigating possible 
correlations between the genetic diversity of a focal species and the 
species diversity of the associated community, deepening the de-
scription of the distribution of biodiversity, and improving our under-
standing of community assembly (Antonovics, 2003; Lamy, Laroche, 
David, Massol, & Jarne, 2017; Laroche, Jarne, Lamy, David, & Massol, 
2015; Vellend & Geber, 2005; Vellend et al., 2014; Whitham et al., 
2006; Whitlock, 2014). In theory, various evolutionary mechanisms 
can drive positive or negative covariation between genetic and spe-
cies diversity, including both neutral (e.g., drift, immigration) and 
adaptive (e.g., selection) processes (Lamy et al., 2017; Vellend & 
Geber, 2005). Thus, investigating the parallels between species and 
genetic diversity may help synthesize concepts from multiple divi-
sions of biodiversity research and connect different perspectives in 
ecology and evolution.

Neutral processes can have analogous effects on both genetic 
and species diversity (Chave, 2004; Etienne & Olff, 2004; Vellend 
& Geber, 2005; but see Laroche et al., 2015) and consequently can 
create positive species–genetic diversity correlations (SGDCs). 
Island biogeography theory predicts that species richness will go 
up as habitat area and connectivity increase (MacArthur & Wilson, 
1967; Rosenzweig, 1995), and population genetic theory pre-
dicts identical genetic responses in allele diversity to these same 
structural elements of habitat (i.e., habitat area and connectivity) 
(Kimura, 1983; Wright, 1931). Recent evidence suggests that neu-
tral processes play a dominant role in positive species–genetic di-
versity relationships (Lamy et al., 2013; Odat, Jetschke, & Hellwig, 
2004; Papadopoulou et al., 2011; Struebig et al., 2011; Vellend, 
2004; Vellend et al., 2014). Positive SGDCs are most common 
where neutral processes including migration, drift, and demo-
graphic stochasticity are expected to have a particularly strong 
influence on both diversity levels. For instance, a recent review 
(Vellend et al., 2014) of 40 empirical studies that estimated 115 
SGDCs found that systems with discrete, isolated habitat patches 
almost always show a positive correlation between species di-
versity and genetic diversity (see also Laroche et al., 2015; and 
Whitlock, 2014), contrary to what is observed in nonfragmented 
habitats.

SGDC studies have traditionally focused on neutral genetic 
diversity, although adaptive diversity has been occasionally con-
sidered (Bertin et al., 2017; Kahilainen, Puurtinen, & Kotiaho, 
2014; Vellend et al., 2014; Watanabe & Monaghan, 2017). While 
neutral processes affect the whole genome uniformly, selec-
tion acts on specific regions, which bear the footprint of selec-
tion (Holderegger, Kamm, & Gugerli, 2006). Thus, as long as the 

effects of selection are not completely overridden by neutral 
processes influencing the whole genome (i.e., high gene flow or 
drift levels, for instance), adaptive genetic diversity will show de-
viating patterns from neutral genetic diversity. With the advent 
of next-generation sequencing, it is now possible to distinguish 
patterns generated by neutral evolutionary forces and adaptive 
processes (Balkenhol, Cushman, Storfer, & Waits, 2015; Batista, 
Janes, Boone, Murray, & Sperling, 2016; Meyer-Lucht et al., 2016) 
by investigating both neutral and adaptive genetic diversity sepa-
rately. In SGDC studies, this approach can provide a clarified por-
trayal of similarity in the role of neutral processes on species and 
genetic diversity, and can thus help determine whether neutral 
processes are participating in the production of species–genetic 
diversity correlations. Two recent studies have applied this ap-
proach (Bertin et al., 2017; Watanabe & Monaghan, 2017). Bertin 
et al. (2017) demonstrated that AFLP loci putatively under se-
lection (i.e., outlier loci) decreased overall genetic diversity and 
decreased the strength of the correlation between plant richness 
and genetic diversity across five high Andean wetland species, 
suggesting that the neutral and adaptive components of genetic 
diversity covary differently with species diversity. Similarly, 
Watanabe and Monaghan (2017) found deviating relationships 
between stream macroinvertebrate species and genetic diversity 
for putatively neutral loci versus loci under selection. However, 
because both Bertin et al. (2017) and Watanabe and Monaghan 
(2017) used AFLP markers, only a few loci putatively under se-
lection were identified (an average of eight across all species’ 
datasets). Because genetic diversity estimates are sensitive to 
the number of genetic markers (Dutoit, Burri, Nater, Mugal, & 
Ellegren, 2017), such a low number of outlier loci is insufficient to 
calculate robust genetic diversity estimates of non-neutral diver-
sity. Furthermore, to effectively compare neutral and non-neutral 
loci patterns, an equal number of both types of loci should ideally 
be used (Batista et al., 2016).

Here, we deepen and expand Bertin et al. (2017) and Watanabe 
and Monaghan (2017)’s comparative approaches by partitioning 
both genetic and species diversity and considering both site-level 
(α-diversity) and landscape-level (β-diversity) diversity. Contrary 
to genetic diversity, species diversity cannot be separated into its 
neutral and non-neutral attributes, but it is comprised of various di-
mensions that respond differently to the same ecological processes 
(Biswas, MacDonald, & Chen, 2017; Stirling & Wilsey, 2001). For 
instance, evidence indicates that dispersal and competition differ-
entially affect the local diversity indices (α-diversity), with dispersal 
being of greater relevance for species richness and competition for 
species evenness (Stirling & Wilsey, 2001). Incorporating the differ-
ent facets of α-diversity in SGDC studies can thus broaden the in-
sights achieved regarding the ecological processes that contribute to 
correlations between species and genetic diversity. Similarly, several 
authors recently called for extending correlation analysis between 
local genetic and species diversities (α-SGDC, Kahilainen et al., 
2014) to landscape scales by investigating the correlation between 
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genetic and species dissimilarities (β-SGDC, Kahilainen et al., 2014) 
as a means to improve our understanding of community assembly 
(Lamy et al., 2017) and biodiversity variation at landscape scales 
(Kahilainen et al., 2014).

In this study, we focused on the species–genetic diversity re-
lationship between a high Andean plant community and the her-
baceous grass-like plant Carex gayana in Chile’s Norte Chico. This 
system is ideal for the proposed framework since: (a) Previous 
evidence suggests that neutral processes, dispersal in particular 
(e.g., isolation by distance), cause genetic structure in C. gayana 
(Troncoso, Bertin, Osorio, Arancio, & Gouin, 2017) and a strong 
and positive SGDC between plant richness and genetic diversity 
of C. gayana (r = 0.60, p < 0.05 according to Bertin et al., 2017). 
Bertin et al. (2017) found that the SGDC did not hold when the 
effects of wetland connectivity, which explained about 50% of 
the variation in both diversity components, were factored out 

(r = 0.25, p > 0.05). (b) High Andean wetlands in this region are 
highly fragmented and experience highly variable environmental 
conditions due to large-scale climatic variations and local abiotic 
fluctuations resulting from the sharp orography of the Andes. As 
a result, we expect the footprint of selection on adaptive genetic 
variation of high Andean wetland populations to be strong and to 
cause significant deviating patterns between neutral and adaptive 
genetic diversity.

2  | MATERIAL S AND METHODS

2.1 | Study system

Carex gayana is an herbaceous perennial sedge species of the 
Cyperaceae family inhabiting high-elevation wetlands of the Andes 

F IGURE  1 Location of the 21 high Andean wetlands sampled in Chile’s Norte Chico by Bertin et al. (2017) and Troncoso et al. (2017). 
Sites 13 (no genetic information), 2, and 4 (excluded following SNP data filtering) were not included in this study
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Mountains. It is monoecious and displays both sexual reproduction 
and vegetative propagation through small rhizomes (Troncoso et al., 
2017). Sedges frequently dominate extensive areas and play a par-
ticularly important role in wetlands. The ploidy level of C. gayana is 
unknown; however, polyploidy is rare in the Carex genus (Lipnerová, 
Bureš, Horová, & Šmarda, 2013). Genetic diversity levels found in 
our study and initial evidence from AFLP markers (Troncoso et al., 
2017) are more similar to those found in diploid than in polyploid 
plant species (Hoeltgebaum & dos Reis, 2017; Kim, Shin, & Choi, 
2009; Sampson & Byrne, 2012).

In the high Andes Mountains, sedge-dominated wetlands are 
interspersed throughout an arid grassland matrix, spread along 
a latitudinal gradient characterized by high aridity at lower lati-
tudes. High Andean wetlands are fed by glacial melt and ground 
upwelling with high wetland density at high elevations (Squeo, 
Warner, Aravena, & Espinoza, 2006). Study sites were located be-
tween 2,852 and 4,307 meter elevations, across a 600-kilometer 
stretch of the Andes north of Santiago, Chile (Figure 1), over 
which a large climatic gradient occurs, with mean annual precip-
itation ranging between 35 and 200 mm for the northernmost 
and southernmost limits of the study zone. Based on a previous 
analysis of the genetic structure of the populations under study 
(Troncoso et al., 2017), we considered each site as a separate 
population.

2.2 | Sampling, DNA extraction, and next-
generation sequencing

Species sampling and DNA extraction procedures have been pre-
viously described in Bertin et al. (2017) and Troncoso et al. (2017). 
We selected between 4 and 10 samples per site from 20 wetlands 
based on DNA quality and quantity (Table 1), for a total of 190 sam-
ples, which were sent to the Genomic Diversity Facility (GDF; http://
www.biotech.cornell.edu/brc/genomic-diversity-facility) at Cornell 
University for genotyping-by-sequencing (GBS; Elshire et al., 2011). 
Samples from site 13 (Figure 1) used by Bertin et al. (2017) and 
Troncoso et al. (2017) were not included in this study because DNA 
concentrations did not meet GDF requirements. Three restriction en-
zymes were tested for GBS library construction (a four-base cutter: 
ApeKI, and two-six-base cutters: EcoT22I and PstI). PstI was not re-
tained because the amplified library presented adapter dimer peaks 
and a smaller fragment size distribution. Although the four-base cut-
ter ApeKI generated the library with the largest fragment pool, we 
selected the six-base cutter EcoT22I because C. gayana genome size 
and genetic diversity level were not known, hence ensuring a higher 
coverage per SNP locus due to the lower proportion of amplified 
fragments. Libraries were multiplexed with 95 samples assigned to 
each of two lanes and sequenced on an Illumina HiSeq 2000 platform 
as single-end, 100 base pair reads. Lane 1 was composed mainly of 

TABLE  1 Expected heterozygosity (He) of Carex gayana populations calculated from the five SNP datasets (DS1–5, see Table 2) and from 
AFLP data, as well as plant species richness at each site. DS1 is the full, original dataset, DS2 and DS3, the two non-outlier datasets, and DS4 
and DS5 the two outlier datasets. Populations with conspicuously low SNP genetic diversity in comparison with their AFLP genetic diversity 
(see Supporting Information Figure S3) appear in bold

Population Name n Species richness

Expected heterozygosity (He)

DS1 DS2 DS3 DS4 DS5 AFLP

S1 Cop4 4 11 0.072 0.071 0.073 0.080 0.043 0.070

S5 Cop5 10 14 0.084 0.082 0.084 0.097 0.088 0.068

S6 Cop6 9 19 0.088 0.090 0.089 0.072 0.019 0.131

S7 Hua3 10 16 0.134 0.143 0.136 0.080 0.041 0.095

S8 Hua2 9 17 0.127 0.136 0.129 0.069 0.052 0.075

S9 Hua1 10 16 0.122 0.129 0.124 0.076 0.018 0.082

S10 Elq3 10 15 0.114 0.120 0.117 0.077 0.015 0.091

S11 Elq4 10 10 0.159 0.163 0.161 0.136 0.082 0.113

S12 Elq2 10 11 0.130 0.124 0.129 0.165 0.175 0.089

S14 Lim3 9 19 0.145 0.152 0.148 0.097 0.018 0.105

S15 Lim4 10 19 0.143 0.152 0.146 0.081 0.028 0.097

S16 Lim1 9 15 0.099 0.108 0.101 0.042 0.014 0.077

S17 Lim2 9 19 0.134 0.144 0.136 0.068 0.046 0.111

S18 Cho3 10 21 0.197 0.205 0.201 0.143 0.042 0.170

S19 Cho2 9 20 0.219 0.227 0.224 0.169 0.018 0.254

S20 Cho1 10 17 0.175 0.180 0.177 0.140 0.055 0.187

S21 Cho4 10 19 0.062 0.060 0.062 0.076 0.102 0.137

Mean 
(±SD)

9.3 (1.4) 16.4 (3.3) 0.130 
(0.042)

0.135 
(0.045)

0.132 
(0.044)

0.098 
(0.038)

0.050 
(0.042)

0.115 
(0.049)

http://www.biotech.cornell.edu/brc/genomic-diversity-facility
http://www.biotech.cornell.edu/brc/genomic-diversity-facility
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samples from the Copiapo, Choapa, and Elqui river basins, and lane 2 
mainly of samples from the Elqui, Huasco, and Limarí basins (see map 
in Bertin et al. (2017) for basin corresponding with each population 
in Table 1). Although the number of detected tags differed between 
lanes 1 and 2 (18,129,903 and 13,413,636, respectively), the average 
proportion of missing data per sample in the postfiltered data (see 
section below) appeared relatively similar (3.8% and 6.0%, respec-
tively), indicating no particular bias in our data.

2.3 | Genetic data and bioinformatics

The UNEAK GBS pipeline (Lu et al., 2013), a method specially tailored 
for species that lack a reference genome, was used for SNP discovery. 
The UNEAK pipeline is a component of the TASSEL 3.0 bioinformat-
ics package (Bradbury et al., 2007) that calls SNPs after resolving arti-
facts of problematic data including repeats, paralogs, and sequencing 
errors. These analyses were carried out by the GDF staff at Cornell 
University and are summarized in Supporting Information Table S1. 
Briefly, sequencing errors were filtered out by retaining only tags that 
were present at least 3 times, using a maximum error tolerance rate 
of 0.03 in the network filter (filters on the identification of recipro-
cal tag pairs), accounting for 0.01 average sequencing error rate to 
decide between homozygous and heterozygous calls, and setting 
minimum minor allele frequency (MAF) to 0.01. To avoid paralogs, 
a value of 0.05 was used as threshold mismatch rate above which 
the duplicate SNPs were not merged. This is a conservative threshold 
given the recommendations of using a value of 0.1 for species with 
high residual heterozygosity. We then used VCFtools (Danecek et al., 
2011) to further filter the SNPs output from the UNEAK pipeline 
(See Supporting Information Table S2 for detailed outline of remain-
ing sites after each filtering step). We first applied a minimum depth 
filter of 10 reads to exclude all genotypes with insufficient coverage 
by treating them as missing data. We then used a histogram of mean 
site depth to determine the appropriate parameters for maximum 
mean site depth, excluding sites with high (>50 reads) representation 
based on the shape of the distribution. After filtering for site depth, 
we retained all loci with less than 40% missing data. The amount of 
missing data retained for all SNPs may have serious consequences 
on values of genetic diversity and calculations of SGDCs; therefore, 
we reran all analyses with a more stringent dataset, retaining all loci 
with less than 30% missing data. The more stringent dataset provided 
very similar results (not shown), and therefore, we chose to retain 
the 40% missing data filter to provide a greater representation of the 
genome. To remove potential sequencing errors, we chose a MAF of 
0.04 for all loci across all individuals. Furthermore, we only included 
loci that were biallelic. We calculated the observed heterozygosity 
for all remaining sites and excluded sites with observed heterozygo-
sity >0.5 to exclude potential paralogs (Hohenlohe, Amish, Catchen, 
Allendorf, & Luikart, 2011). Call rate, the number of sites successfully 
genotyped for each individual, was calculated per individual, and any 
individual with lower than 40% call rate was removed from the data-
set prior to further analysis. To check for the presence of clonal indi-
viduals, we calculated the observed number of multilocus genotypes 
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using the mgl function of the “poppr” in R (Kamvar et al., 2018). No 
redundant multilocus genotypes were identified, which indicates that 
no clones were present in our dataset. All loci were then tested for 
departure from Hardy–Weinberg equilibrium using the hw.test func-
tion of the “pegas” package in R (Paradis et al., 2013). Significance was 
tested using 1,000 random permutations.

2.4 | Environmental data

Ten environmental variables were used to test for genome–environ-
ment–associations: mean annual precipitation (MAP), mean average 
wind speed (MAWS), number of days with snow cover (SnowNDays), 
mean annual temperature (MAT), soil moisture (TCI), slope, aspect, 
productivity (NDVI), and two independent estimates of wetland 
surface. MAP was estimated from average monthly precipitation 
(mm), calculated by interpolation of precipitation gauge network 
measurements over the 32-year period from 1975 to 2006 (see de-
tails in Bertin et al., 2015). MAWS, in meters per second, was es-
timated over a 16-year period using the nonhydrostatic Karlsruhe 
Atmospheric Mesoscale Model (see details in Bertin et al., 2015). 
SnowNDays was calculated over a 12-year period (2000–2011) 
from daily estimates of snow cover obtained from 500 m resolution 
MODIS satellite imagery in Google Earth Engine Explorer. MAT was 
assessed for each wetland using the high-resolution gridded data-
base of WorldClim (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). 
Topographic Convergence Index (TCI) was calculated in ArcGIS 10.0 
using an ASTER Global Digital Elevation Model (GDEM) to calculate 
slope and upslope accumulating area. Slope was measured from the 
ASTER Global Digital Elevation Model (DEM) in Google Earth Engine 
Explorer. Aspect was recorded as a categorical variable with two cat-
egories: S/SE aspects or N/W/SW aspects. Normalized Difference 
Vegetation Index (NDVI) was calculated based on 30 m resolution 
LandSat 8 OLI satellite images from NASA obtained from the United 
States Geological Survey website (http://glovis.usgs.gov/). The 
wetland surface estimates were calculated in Google Earth Engine 
Explorer based on Google Earth surface1 and surface2 from NDVI.

To identify environmental predictors that were potentially col-
linear, we calculated Pearson correlations between each environ-
mental variable pair and discarded variables that displayed repeated 
correlations exceeding 0.7. The final dataset included MAP, MAWS, 
MAT, TCI, slope, aspect, and NDVI.

2.5 | Outlier detection

All the statistical and outlier detection analyses were performed in 
the R environment (https://cran.r-project.org). To identify loci devi-
ating from neutral expectations, we combined two individual-based 
approaches: one centered on the identification of outlier loci with 
respect to population structure and the second on genotype–en-
vironment associations. For the first approach, we used pcadapt 
(Duforet-Frebourg, Bazin, & Blum, 2014; Luu, Bazin, & Blum, 2017), 
an outlier detection method that identifies loci putatively under 
positive local selection. Because such loci tend to increase genetic 

differentiation, pcadapt considers loci that contribute significantly 
more to population structure than most loci as candidate markers. 
To identify such loci, pcadapt uses a two-step procedure. First, a 
principal component analysis captures the genetic structure of the 
dataset. Then, the Mahalanobis distance of the z-scores on the first 
k-components of each locus detects those loci that most relate to 
population structure (Luu et al., 2017). Here, we identified the opti-
mal number of components (i.e., k-components) from the scree plot 
and used a 10% false discovery rate to identify outlier loci with sig-
nificantly larger Mahalanobis distances.

For our second approach, we identified SNP loci associated with 
environmental variables using redundancy analysis (RDA), a genome–
environment association (GEA) approach to distinguishing candidate 
loci under selection based on correlation between genotype and envi-
ronmental factors expected to impose natural selection. RDA is a ca-
nonical ordination technique where, first, response variables (multiple 
loci) are modeled as a function of linear combinations of the predic-
tors (multiple environmental variables), then a PCA of the fitted values 
produces the RDA components that best explain, in sequential order, 
the variation among the fitted genetic values (Forester, Jones, Joost, 
Landguth, & Lasky, 2016; Legendre & Legendre, 2012; Talbot et al., 
2017). To check that the final model did not suffer multi-collinearity 
problems, we calculated the variance inflation factors (VIFs) and ver-
ified that none of them exceeded 5 for any of the predictors. Outlier 
loci were defined as those that were strongly influenced by the en-
vironmental variables, according to their z-scores on the first RDA 
components (i.e., z-scores exceeding twice the interquartile range; 
Forester et al., 2016). The number of components considered in this 
procedure was determined by examining the inertia scree plot and 
by verifying that all the selected components were significant. The 
RDA was performed following the methods described in Borcard, 
Gillet, and Legendre (2011) using the R package vegan (Oksanen 
et al., 2014). Significance of each individual RDA axis was tested with 
ANOVA-like permutation tests with 9,999 randomizations. We calcu-
lated correlations between the outliers for each significant axis and 
the environmental variables to identify which variables may be having 
the greatest impact on non-neutral patterns in our study system.

2.6 | The genetic datasets

To test for correlations between species and genetic diversity, we 
created five SNP datasets. The expected composition for these 
datasets is reported in Table 2. DS1, the original dataset after fil-
tering, included all SNPs and thus a large proportion of neutral 
loci and some non-neutral ones. The nonoutlier datasets, DS2 and 
DS3, were formed by excluding either all the outlier loci identified 
(DS2), or only those jointly identified by the two outlier detec-
tion methods (DS3). The two datasets are thus composed for the 
most part of neutral loci, with a greater number of false negatives 
(adaptive loci) being expected in DS3 than in DS2. DS4 and DS5 
contained the loci putatively under selection identified by at least 
one outlier detection method and by both detection methods, 
respectively. DS5 thus only included SNP loci for which we had 

http://glovis.usgs.gov/
https://cran.r-project.org
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convergent evidence of deviations from neutral expectations. In 
DS4 and DS5, the proportion of non-neutral loci was expected to 
be much higher than in any other datasets. Some false positives 
(neutral loci) are likely to be present as well, but much less so in 
DS5 than in DS4.

When species diversity and genetic diversity correlations are neu-
trally driven, the relative proportion of the neutral and non-neutral 
loci in the genetic dataset will condition the strength of the SGDC. 
Based on this rationale, we anticipated neutrally driven SGDCs to be 
positive for the putatively neutral loci, and to be the strongest in DS2, 
as DS2 is the more conservatively filtered neutral dataset (Table 2). 
Because the fraction of neutral loci is lower in DS4 and DS5 than 
in the putatively neutral datasets, these two datasets should display 
weaker correlations, with either a null or weakly positive association 
depending on the number of false negatives (neutral loci) in the data-
set and the footprint of the neutral processes on the non-neutral loci. 
When species diversity and genetic diversity correlations are driven 
by non-neutral (i.e., adaptive) processes, we expect the SGDCs either 
to be null for all the datasets or to be only positive in DS4 and/or DS5, 
depending if the adaptive loci involved in the species–genetic diver-
sity relationship are included in these SNP datasets.

2.7 | Genetic diversity and species diversity

Before performing genetic diversity estimations, we first inves-
tigated the effects of within-population missing data. Genetic 

estimates of α-diversity were calculated for each population after 
varying the minimum number of individuals genotyped at each 
locus from four to eight individuals. Overall, we did not observe an 
influence of the number of individuals on the genetic diversity es-
timates (Supporting Information Figure S1). Therefore, we decided 
to consider all loci with a minimum of four genotyped individuals 
per population, which allowed us to calculate a genetic diversity es-
timate for all sites, including site 1, which only had four genotyped 
individuals. We evaluated within-population genetic diversity for all 
populations and datasets as the expected heterozygosity (He) over 
the loci using gstudio (Dyer, 2017) as a measure of α-diversity for 
the genetic datasets. To check the importance of the neutral signal 
in the non-neutral loci datasets (due either to the presence of false 
positives or a strong influence of neutral processes on the whole 
genome), we calculated the pairwise Pearson correlations between 
the He estimates of each dataset.

Genetic β-diversity was measured as the Cavalli-Sforza genetic 
distance, calculated as

where X and Y represent two populations for which L loci have been 
studied. Xu represents the u

th allele at the lth locus (Cavalli-Sforza & 
Edwards, 1967).
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F IGURE  2 α-Genetic diversity of Carex gayana plotted against site level species richness (top row) and evenness (middle row) and β-
genetic diversity plotted against β-species diversity (bottom row) for the 17 sites included in this study using the complete dataset DS1 (a), 
the two non-outlier datasets, DS2 (b) and DS3 (c), and the two outlier datasets, DS4 (d) and DS5 (e). α-Genetic diversity is estimated using 
the expected heterozygosity (He) and α-species diversity by the wetland plant species richness and Pielou’s evenness. β-genetic dissimilarity 
is estimated using Cavalli-Sforza genetic distance and β-species dissimilarity is estimated using Bray–Curtis distance. S6 and S21 are the two 
outlier sites
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The plant species assemblage was surveyed in each wetland 
based on five 30 × 30 cm quadrats. Details about the sampling strat-
egy and method can be found in Bertin et al. (2017). Briefly, the 
length of each wetland was divided into five sectors and a quadrat 
was randomly placed within each sector. Plant species were then 
separated and identified in the laboratory, and their biomass (g/m2) 
evaluated after complete drying of the vegetal material in an oven at 
70°C. Species α-diversity was evaluated for each wetland as species 
richness (S) accumulated over the five quadrats and as species even-
ness using Pielou’s evenness metric,

where H′ is the Shannon diversity of the community calculated 
from plant abundances measured as their dry biomass across the 
five quadrats, and Hmax= ln S, the maximum value of the Shannon 
diversity if every species was equally represented (McCune, Grace, 
& Urban, 2002). To estimate species β-diversity, we calculated Bray–
Curtis dissimilarity of the plant communities based on log10(x+1) of 
the plant abundances, based on the equation,

where Cij is the sum of the lesser abundance values of only the spe-
cies that occur at both sites, while Si and Sj are the total number of 
species counted at each site (Legendre & Legendre, 2012).

2.8 | Species–genetic diversity correlations 
between the SNP datasets

Before calculating SGDCs, we generated scatterplots to check 
whether the genetic and species diversity data were linearly re-
lated. These scatterplots are provided in the Figure 2. α-SGDCs 
were calculated as Pearson correlations between the plant α-
diversity estimates (i.e., plant richness and evenness) and He for 
each population and each of the five SNP datasets. We used t tests 
to test for the significance of the SGDCs. To test if, as expected, 
the SGDCs of the outlier loci datasets were significantly different 
than that of the nonoutlier loci datasets, we calculated the prob-
ability of obtaining such extreme SGDCs using an equal number of 
loci with DS1 and the putatively neutral datasets (DS2 and DS3). 
To this end, we calculated SGDC with 999 randomized subsets of 
DS1, DS2 and DS3 containing the same number of loci as DS4 and 
DS5. β-SGDCs were investigated with Mantel tests using the pair-
wise genetic distance matrices and Bray–Curtis dissimilarity ma-
trix of the plant species assemblage based on 9,999 permutations.

3  | RESULTS

3.1 | Genotyping

Illumina sequencing produced around 2.5 million reads per individ-
ual. Following basic filtering steps conducted in the UNEAK pipeline, 

we retained 38,036 SNPs. With the additional, more stringent filter-
ing protocol, we obtained 1,709 high-quality SNPs for our overall 
dataset (Supporting Information Table S2). This filtering process re-
duced our number of individuals from 190 to 158 and the number 
of wetlands from 20 to 17. In our final dataset, the mean depth per 
individual was 29.9 reads and the mean depth per site across all in-
dividuals was 30.0 reads. No loci were found to depart from Hardy–
Weinberg equilibrium at an α = 0.05 significance level in more than 
50% of the sampling locations. At the population level, no more than 
2.5% of the loci, on average, were found to significantly deviate from 
Hardy–Weinberg equilibrium.

3.2 | Outlier identification and datasets

In the scree plot of the PCA conducted in pcadapt, the elbow oc-
curred at the 10th component. With a false discovery rate of 10%, 
173 SNPs were identified as outliers.

After selecting the predictor variables according to their cor-
relations, none of those included in the RDA analysis showed a VIF 
greater than 5. The RDA model explained 20.9% of the genetic vari-
ance. Based on the elbow of the eigenvalues scree plot, we retained 
the first four components for outlier detection. All components were 
highly significant, with axes 1 through 4 explaining 35%, 22%, 16%, 
and 9% of the explained variance, respectively, all together account-
ing for 82% of the variance explained by the RDA model. In total, 
95 loci had outlier z-scores on at least one of the four RDA com-
ponents. Outliers were most strongly correlated with topographic 
slope on axis 1, with moisture-related variables (TCI and MAP) on 
axis 2, moisture and wind speed (TCI and MAWS) on axis 3, and with 
temperature (MAT) and slope on axis 4.

RDA and pcadapt together identified a total of 229 outlier loci, of 
which 39 were identified in both methods (Table 2). They formed the 
two outlier datasets, DS4 and DS5, respectively. The two nonoutlier 
datasets, DS2 and DS3, were constructed by removing DS4 and DS5 
datasets from DS1, respectively. After removal of outlier loci, DS2 
and DS3 contained 1,480 and 1,670 loci, respectively.

3.3 | Species and genetic diversity estimates

Species richness ranged between 10 and 21 across the sites, and 
Pielou’s evenness between 0.39 and 0.82. The average expected 
heterozygosity for the full dataset (DS1) across all sites was 0.130. 
It reached 0.135 and 0.132 for DS2 and DS3, and 0.098 and 0.050 
for DS4 and DS5 (Table 1). The α-genetic diversity estimates (He) of 
DS1, DS2 and DS3 correlated almost perfectly (r > 0.99, p < 0.001 
in all cases). While the He estimates of DS4 correlated with those 
of DS1, DS2, and DS3 (range: 0.63–0.70, p < 0.02 in all cases), no 
such relationships were observed between DS5 and the putatively 
neutral datasets (range: −0.23 to −0.16, p = 1.00 in all cases). 
The genetic diversity estimates calculated from the nonoutlier 
datasets (DS1, DS2, and DS3) and those obtained by Bertin et al. 
(2017) with AFLP markers were strongly correlated (r range: 0.68–
0.70, p = 0.02 in all cases). Overall, the genetic diversity estimates 

J=
H�

Hmax

BCij=1−
2Cij

Si+Sj
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tended to be higher with the SNPs than with the AFLPs. Two sites, 
however (sites 6 and 21), departed strongly from the main relation-
ship, showing unexpectedly low SNP genetic diversity compared 
to their respective AFLP estimates (Supporting Information Figure 
S3). By removing these two sites, the correlation between the SNP 
and AFLP genetic diversity increased substantially, from 0.70 to 
0.90 with DS1. Both of these sites were sequenced jointly on lane 
1. They presented a proportion of missing data of 5.5% and 1.8%, 
respectively. The percentage of missing data in site 21 appears 
lower than the average found for this lane in the postfiltered data 
(3.8%). Although the proportion found in site 6 is slightly higher, 
it is still lower than other sites that were also sequenced in lane 
1, such as site 19 (with 8.4% missing data), and also similar to the 
average found for lane 2 (6%). Together, these results indicate no 
atypical behavior of the SNP data for these two sites that could be 
due to technical artifacts.

The genetic distances (DCH) calculated with DS1, DS2, and DS3 
ranged between 0.03 and 0.15. In all three cases, site 19 stood out 
from the rest of the sites for exhibiting many high genetic distance 
values (mean DCH values ranging between 0.11 and 0.12). While the 
DCH varied between 0.02 and 0.19 for DS4, they reached much lower 
and higher extreme values for DS5, which ranged between 0.002 
and 0.31. Yet, in both cases, site 21 was found to display noticeably 
high genetic distances compared to the rest of the sites (mean DCH 
values: 0.14 and 0.24 for DS4 and DS5, respectively). Plant compo-
sition distances measured as Bray–Curtis distances ranged between 
0.27 and 0.87. No site showed noticeable higher differentiation lev-
els than the others, but all of them were highly differentiated from 
some other sites in terms of plant composition, with all sites showing 
a BC value of at least 0.67.

3.4 | α-Species–genetic diversity correlations with 
outlier and nonoutlier SNP loci

The α-SGDCs estimated from species richness were positive for DS1 
and the two nonoutlier datasets (DS2 and DS3). However, the corre-
lations were only moderate in amplitude, ranging from 0.33 to 0.37, 
and marginally nonsignificant (p = 0.10, 0.07, and 0.09 for DS1, DS2, 
and DS3, respectively, Table 2). These correlations were much lower 
than the SGDCs reported by Bertin et al. (2017). When excluding 
sites 6 and 21, however, the SGDC values increased substantially 
(more than 60%), with correlations ranging from 0.57 to 0.60 for 
datasets DS1–DS3, and became highly significant (Table 2). No sig-
nificant positive correlations were observed for the outlier datasets 
(Table 2); rather, the correlations were negative and not statistically 
significant. The results of the randomizations show that it would be 
extremely rare to obtain α-SGDCs as low as those observed with 
DS4 and DS5 just by chance with the putatively non-neutral data-
sets (p ≤ 0.001 in all cases).

None of the α-SGDCs estimated with species evenness were 
significant (Table 2). In spite of that, the randomizations demon-
strated that the estimates derived from DS4 differed significantly 
from those obtained with DS1, DS2, and DS3 (p ≤ 0.01 in all cases). 

The putatively non-neutral datasets displayed lower α-SGDCs than 
the putatively neutral datasets, reaching −0.24 for DS4 and ranging 
between 0.01 and −0.07 for DS1, DS2, and DS3.

3.5 | β-Species–genetic diversity correlations with 
outlier and nonoutlier SNP loci

The β-SGDCs were all positive. For the full and putatively neutral 
datasets (DS1-3), they ranged between 0.11 and 0.16 and were not 
significant or marginally nonsignificant (p > 0.08, Table 2). For the 
putatively non-neutral datasets (DS4–5), correlations varied from 
0.21 to 0.27 and were significant (p < 0.05, Table 2). The results of 
the randomizations show that the probability of getting such high 
β-SGDCs by chance would be rare, particularly with DS2 and DS3 
(p < 0.03 in all cases, Supporting Information Table S3).

4  | DISCUSSION

4.1 | Partitioning genetic and species diversity in 
SGDCs studies

Recent studies have stressed the usefulness of partitioning neu-
tral and adaptive genetic diversity (Bertin et al., 2017; Watanabe & 
Monaghan, 2017) and of simultaneously analyzing various species 
diversity components (Lamy et al., 2017) to investigate species–ge-
netic diversity relationships. Our results show that combining these 
two approaches can help to unravel the origin of covariation be-
tween these two levels of diversity. As expected, we found contrast-
ing SGDCs between the putatively neutral and non-neutral datasets. 
Yet, the detected patterns diverged greatly depending on the spe-
cies diversity component. Indeed, α-SGDCs were detected with spe-
cies richness but not with species evenness. And, while the α-SGDCs 
based on species richness were only significant and stronger with 
the nonoutlier datasets compared to the outlier loci datasets, an op-
posite trend was observed for the β-SGDCs.

While the SGDCs of the nonoutlier loci datasets were much 
weaker that those previously reported with AFLP data, they provide 
relevant information. For the α-diversities, significant and positive 
SGDCs were only found with the nonoutlier loci datasets and with 
species richness, confirming that neutral processes were primar-
ily driving the correlations and that the involved processes differ-
entially influenced species richness and evenness. In their study, 
Bertin et al. (2017) examined the effects of wetland size, stability 
and connectivity on local diversities. They found that connectivity 
influenced plant species richness and C. gayana genetic diversity. We 
reproduced this analysis with species evenness but failed to detect 
such effects (results not shown). This finding is consistent with the 
expectation that migration more strongly influences species rich-
ness than species evenness (Wilsey & Stirling, 2007) and supports a 
role for migration rates in the detected α-SGDCs. So far, few empir-
ical studies have combined species evenness and richness to inves-
tigate species–genetic diversity relationships. Of the 161 α-SGDCs 
gathered by Lamy et al. (2017), only 18 were calculated with some 
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kind of evenness index, and just eight studies used species richness 
and evenness in calculating SGDCs for the same dataset and genetic 
measure, reporting in most cases no significant SGDCs for both in-
dices. Our results suggest that it can be profitable to simultaneously 
analyze the two diversity components as they may reveal different 
patterns and thus help understand mechanisms behind species–ge-
netic diversity relationships.

The β-SGDCs with the putatively neutral datasets were lower 
than the α-SGDCs obtained with species richness, which is consis-
tent with the trends described by Lamy et al. (2017). However, while 
Lamy et al. (2017) found that β-SGDCs are more often significant 
than α-SGDCs, none of our β-SGDCs with the putatively neutral 
datasets were significant (at α = 0.05). Significant β-SGDCs were 
detected with the putatively non-neutral loci. The contrasting pat-
terns in β-SGDCs between the putatively neutral and non-neutral 
datasets thus indicate that selective processes influencing C. gayana 
genetic diversity are involved in the detected correlation, which 
does not exclude the possibility that neutral processes are also con-
tributing to it. Separating β-genetic diversity into putatively neutral 
and non-neutral components can help elucidate which processes are 
influencing the genetic level of the β-SGDCs but does not provide in-
formation about the ecological processes involved in community dis-
similarity. We see two possible alternatives. First, the concordance 
in genetic and species composition dissimilarities resulted from 
common responses to environmental variation. Most of the envi-
ronmental predictors that contributed to the detection of outliers in 
the genotype-by-environment analysis (i.e., moisture, precipitation, 
wind speed, temperature, and slope) can be linked to drought, which 
may be a key factor structuring the composition of vegetal commu-
nities in high Andean wetlands (Dangles et al., 2017). Alternatively, 
β-SGDCs can arise from different processes affecting composition 
dissimilarities among sites at the genetic and community levels, as 
long as the spatial scales at which they are acting are similar. This 
would be the case, for instance, if distance decay patterns generated 
by environmental gradients on genetic dissimilarity match distance 
decay patterns generated by dispersal limitation at the community 
levels. A better understanding of the origin of β-SGDCs could be 
gained by decomposing the correlation into underpinning factors 
as proposed by Lamy et al. (2017), but such an approach requires a 
large number of sites (Lamy et al., 2017).

4.2 | The usefulness and the limits of SNP markers 
for partitioning neutral and adaptive genetic diversity 
in SGDC studies

Our work extends and refines previous studies that suggested in-
vestigating neutral and adaptive genetic diversity simultaneously to 
reveal neutral signatures in species–genetic diversity relationships 
(Bertin et al., 2017; Watanabe & Monaghan, 2017) and shows that 
this framework can be successfully applied in single-species studies 
when large genomic datasets are available. The efficiency of such 
approach, however, depends on how much the adaptive and neutral 
genetic diversity deviate from each other, and may thus be better 

suited for studies focusing on fragmented ecosystems occurring 
over environmental gradient, as was the case here. The presence of 
false positives in the outlier datasets may also be another limiting 
factor, but this problem is likely to be resolved in the near future 
since it will be possible to have more genomic resources for non-
model species (e.g., fully sequenced and annotated genomes) that 
will allow the validation of outlier loci as candidate genes for adapta-
tion (Manel et al., 2016).

Markers traditionally used in SGDC studies such as simple se-
quence repeats (SSR) and AFLPs are of limited use in teasing apart 
the neutral and non-neutral components of genetic diversity be-
cause these markers sample only a small proportion of the entire 
genome and usually produce a relatively limited number of markers, 
hampering the identification of numerous outlier loci. However, 
the combined information of AFLP and SNP data provided unex-
pected results. Overall, we found slightly higher genetic diversity 
estimates with the 1,709 SNPs than with the 85 AFLP data in all but 
two sites, which departed from this general trend and presented 
conspicuously low SNP genetic diversity estimates compared to 
their AFLP counterparts (sites 6 and 21, Supporting Information 
Figure S3). We tested whether the low SNP estimates in these two 
sites could be due to sampling effects by re-calculating the AFLP 
genetic diversity using only the individuals considered for the SNP 
estimation. No matching trend was detected. Given that these two 
sites belong to the same cpDNA lineage and AFLP cluster as the 
other sites in this study (as described in Troncoso et al., 2017), this 
discrepancy cannot be explained by a higher level of allelic drop-
out in these sites potentially caused by strong differences in their 
genetic composition compared to the other sites. Because techni-
cal issues are also very unlikely, the incongruent results between 
SNPs and AFLPs for those two sites suggest that evolutionary 
processes reducing genetic diversity may have affected these two 
marker types differently. SNPs have low mutation rates (10 × 10−8 
to 10 × 10−9; Nachman & Crowell, 2000), much lower than micro-
satellites (0.001 to 0.005; Pinto et al., 2013), whereas AFLP muta-
tion rates can exceed those of microsatellites (Kuchma, Vornam, & 
Finkeldey, 2011). As a consequence, AFLPs respond more strongly 
to recent demographic events than SNPs, whose polymorphisms 
may actually reflect the effects of recent to intermediate evolu-
tionary events (Waits & Storfer, 2016). The possibility of different 
responses by AFLPs and SNPs is supported by the recent com-
parison of genetic diversities in Arabidopsis between SNP and mi-
crosatellites (Fischer et al., 2017). The relatively low SNP genetic 
diversity observed in sites 6 and 21 could therefore indicate a re-
duction in genetic diversity in these two C. gayana populations due 
to a past demographic event, whose effects could no longer be 
detected in AFLPs.

The SNP genetic diversity of these two sites reduced the spe-
cies–genetic diversity relationship with species richness, and once 
removed, the SGDCs with the full and nonoutlier datasets were 
much higher (and closer to the value reported in Bertin et al., 2017). 
This suggests that SNP markers responded uniquely to some evo-
lutionary processes in sites 6 and 21. Genes versus species may 
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differ in their rates of response to evolutionary pressures, and the 
responses of species and genetic diversity may not always be equally 
strong. Our results suggest that SNPs could strongly respond and 
show longer-lasting response to diversity-reducing processes such 
as drift than AFLP markers.
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