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Abstract
Disentangling	the	origin	of	species–genetic	diversity	correlations	(SGDCs)	is	a	chal-
lenging	task	that	provides	insight	into	the	way	that	neutral	and	adaptive	processes	
influence	diversity	at	multiple	levels.	Genetic	and	species	diversity	are	comprised	by	
components	that	respond	differently	to	the	same	ecological	processes.	Thus,	it	can	
be	useful	to	partition	species	and	genetic	diversity	into	their	different	components	to	
infer	 the	mechanisms	 behind	 SGDCs.	 In	 this	 study,	we	 applied	 such	 an	 approach	
using	a	high-	elevation	Andean	wetland	system,	where	previous	evidence	identified	
neutral	processes	as	major	determinants	of	the	strong	and	positive	covariation	be-
tween	plant	species	richness	and	AFLP	genetic	diversity	of	the	common	sedge	Carex 
gayana.	To	tease	apart	putative	neutral	and	non-	neutral	genetic	variation	of	C. gay-
ana,	we	identified	loci	putatively	under	selection	from	a	dataset	of	1,709	SNPs	pro-
duced	using	restriction	site-	associated	DNA	sequencing	(RAD-	seq).	Significant	and	
positive	relationships	between	local	estimates	of	genetic	and	species	diversities	(α-	
SGDCs)	were	only	found	with	the	putatively	neutral	loci	datasets	and	with	species	
richness,	 confirming	 that	neutral	processes	were	primarily	driving	 the	correlations	
and	that	the	involved	processes	differentially	influenced	local	species	diversity	com-
ponents	(i.e.,	richness	and	evenness).	In	contrast,	SGDCs	based	on	genetic	and	com-
munity	dissimilarities	(β-	SGDCs)	were	only	significant	with	the	putative	non-	neutral	
datasets.	This	suggests	that	selective	processes	influencing	C. gayana	genetic	diver-
sity	were	 involved	 in	 the	detected	correlations.	Together,	our	 results	demonstrate	
that	analyzing	distinct	components	of	genetic	and	species	diversity	simultaneously	is	
useful	to	determine	the	mechanisms	behind	species–genetic	diversity	relationships.
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1  | INTRODUC TION

The	 mechanisms	 that	 produce	 and	 maintain	 diversity	 spark	 both	
theoretical	 and	 practical	 interest	 across	 ecology	 and	 evolutionary	
biology.	Yet,	historical	separation	between	genetic	and	organismal	
ecology	research	has	limited	the	development	of	a	cohesive	frame-
work	for	multilevel	analysis	(Antonovics,	2003).	Recently,	however,	
researchers	 have	 integrated	 these	 domains,	 investigating	 possible	
correlations	between	the	genetic	diversity	of	a	focal	species	and	the	
species	 diversity	 of	 the	 associated	 community,	 deepening	 the	 de-
scription	of	the	distribution	of	biodiversity,	and	improving	our	under-
standing	of	community	assembly	(Antonovics,	2003;	Lamy,	Laroche,	
David,	Massol,	&	Jarne,	2017;	Laroche,	Jarne,	Lamy,	David,	&	Massol,	
2015;	Vellend	&	Geber,	2005;	Vellend	et	al.,	2014;	Whitham	et	al.,	
2006;	Whitlock,	2014).	In	theory,	various	evolutionary	mechanisms	
can	drive	positive	or	negative	covariation	between	genetic	and	spe-
cies	 diversity,	 including	 both	 neutral	 (e.g.,	 drift,	 immigration)	 and	
adaptive	 (e.g.,	 selection)	 processes	 (Lamy	 et	al.,	 2017;	 Vellend	 &	
Geber,	2005).	Thus,	investigating	the	parallels	between	species	and	
genetic	diversity	may	help	synthesize	concepts	 from	multiple	divi-
sions	of	biodiversity	research	and	connect	different	perspectives	in	
ecology	and	evolution.

Neutral	processes	can	have	analogous	effects	on	both	genetic	
and	species	diversity	(Chave,	2004;	Etienne	&	Olff,	2004;	Vellend	
&	Geber,	2005;	but	see	Laroche	et	al.,	2015)	and	consequently	can	
create	 positive	 species–genetic	 diversity	 correlations	 (SGDCs).	
Island	biogeography	theory	predicts	that	species	richness	will	go	
up	as	habitat	area	and	connectivity	increase	(MacArthur	&	Wilson,	
1967;	 Rosenzweig,	 1995),	 and	 population	 genetic	 theory	 pre-
dicts	identical	genetic	responses	in	allele	diversity	to	these	same	
structural	elements	of	habitat	(i.e.,	habitat	area	and	connectivity)	
(Kimura,	1983;	Wright,	1931).	Recent	evidence	suggests	that	neu-
tral	processes	play	a	dominant	role	in	positive	species–genetic	di-
versity	relationships	(Lamy	et	al.,	2013;	Odat,	Jetschke,	&	Hellwig,	
2004;	 Papadopoulou	 et	al.,	 2011;	 Struebig	 et	al.,	 2011;	 Vellend,	
2004;	 Vellend	 et	al.,	 2014).	 Positive	 SGDCs	 are	 most	 common	
where	 neutral	 processes	 including	 migration,	 drift,	 and	 demo-
graphic	 stochasticity	 are	 expected	 to	 have	 a	 particularly	 strong	
influence	 on	 both	 diversity	 levels.	 For	 instance,	 a	 recent	 review	
(Vellend	et	al.,	 2014)	 of	 40	 empirical	 studies	 that	 estimated	115	
SGDCs	found	that	systems	with	discrete,	isolated	habitat	patches	
almost	 always	 show	 a	 positive	 correlation	 between	 species	 di-
versity	 and	 genetic	 diversity	 (see	 also	 Laroche	 et	al.,	 2015;	 and	
Whitlock,	2014),	contrary	to	what	 is	observed	 in	nonfragmented	
habitats.

SGDC	 studies	 have	 traditionally	 focused	 on	 neutral	 genetic	
diversity,	although	adaptive	diversity	has	been	occasionally	con-
sidered	 (Bertin	 et	al.,	 2017;	 Kahilainen,	 Puurtinen,	 &	 Kotiaho,	
2014;	Vellend	et	al.,	2014;	Watanabe	&	Monaghan,	2017).	While	
neutral	 processes	 affect	 the	 whole	 genome	 uniformly,	 selec-
tion	acts	on	 specific	 regions,	which	bear	 the	 footprint	of	 selec-
tion	(Holderegger,	Kamm,	&	Gugerli,	2006).	Thus,	as	 long	as	the	

effects	 of	 selection	 are	 not	 completely	 overridden	 by	 neutral	
processes	 influencing	the	whole	genome	 (i.e.,	high	gene	flow	or	
drift	levels,	for	instance),	adaptive	genetic	diversity	will	show	de-
viating	patterns	 from	neutral	genetic	diversity.	With	 the	advent	
of	 next-	generation	 sequencing,	 it	 is	 now	possible	 to	distinguish	
patterns	generated	by	neutral	 evolutionary	 forces	 and	adaptive	
processes	 (Balkenhol,	Cushman,	Storfer,	&	Waits,	2015;	Batista,	
Janes,	Boone,	Murray,	&	Sperling,	2016;	Meyer-	Lucht	et	al.,	2016)	
by	investigating	both	neutral	and	adaptive	genetic	diversity	sepa-
rately.	In	SGDC	studies,	this	approach	can	provide	a	clarified	por-
trayal	of	similarity	in	the	role	of	neutral	processes	on	species	and	
genetic	 diversity,	 and	 can	 thus	 help	 determine	whether	 neutral	
processes	are	participating	in	the	production	of	species–genetic	
diversity	 correlations.	 Two	 recent	 studies	 have	 applied	 this	 ap-
proach	(Bertin	et	al.,	2017;	Watanabe	&	Monaghan,	2017).	Bertin	
et	al.	 (2017)	 demonstrated	 that	 AFLP	 loci	 putatively	 under	 se-
lection	 (i.e.,	 outlier	 loci)	 decreased	overall	 genetic	diversity	 and	
decreased	the	strength	of	the	correlation	between	plant	richness	
and	 genetic	 diversity	 across	 five	 high	 Andean	wetland	 species,	
suggesting	that	the	neutral	and	adaptive	components	of	genetic	
diversity	 covary	 differently	 with	 species	 diversity.	 Similarly,	
Watanabe	 and	 Monaghan	 (2017)	 found	 deviating	 relationships	
between	stream	macroinvertebrate	species	and	genetic	diversity	
for	putatively	neutral	 loci	versus	 loci	under	selection.	However,	
because	both	Bertin	et	al.	 (2017)	and	Watanabe	and	Monaghan	
(2017)	 used	AFLP	markers,	 only	 a	 few	 loci	 putatively	 under	 se-
lection	 were	 identified	 (an	 average	 of	 eight	 across	 all	 species’	
datasets).	 Because	 genetic	 diversity	 estimates	 are	 sensitive	 to	
the	 number	 of	 genetic	 markers	 (Dutoit,	 Burri,	 Nater,	 Mugal,	 &	
Ellegren,	2017),	such	a	low	number	of	outlier	loci	is	insufficient	to	
calculate	robust	genetic	diversity	estimates	of	non-	neutral	diver-
sity.	Furthermore,	to	effectively	compare	neutral	and	non-	neutral	
loci	patterns,	an	equal	number	of	both	types	of	loci	should	ideally	
be	used	(Batista	et	al.,	2016).

Here,	we	deepen	and	expand	Bertin	et	al.	(2017)	and	Watanabe	
and	 Monaghan	 (2017)’s	 comparative	 approaches	 by	 partitioning	
both	 genetic	 and	 species	 diversity	 and	 considering	 both	 site-	level	
(α-	diversity)	 and	 landscape-	level	 (β-	diversity)	 diversity.	 Contrary	
to	genetic	diversity,	 species	diversity	 cannot	be	 separated	 into	 its	
neutral	and	non-	neutral	attributes,	but	it	is	comprised	of	various	di-
mensions	that	respond	differently	to	the	same	ecological	processes	
(Biswas,	 MacDonald,	 &	 Chen,	 2017;	 Stirling	 &	Wilsey,	 2001).	 For	
instance,	 evidence	 indicates	 that	dispersal	 and	competition	differ-
entially	affect	the	local	diversity	indices	(α-	diversity),	with	dispersal	
being	of	greater	relevance	for	species	richness	and	competition	for	
species	evenness	(Stirling	&	Wilsey,	2001).	Incorporating	the	differ-
ent	facets	of	α-	diversity	in	SGDC	studies	can	thus	broaden	the	in-
sights	achieved	regarding	the	ecological	processes	that	contribute	to	
correlations	between	species	and	genetic	diversity.	Similarly,	several	
authors	 recently	called	for	extending	correlation	analysis	between	
local	 genetic	 and	 species	 diversities	 (α-	SGDC,	 Kahilainen	 et	al.,	
2014)	to	landscape	scales	by	investigating	the	correlation	between	
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genetic	and	species	dissimilarities	(β-	SGDC,	Kahilainen	et	al.,	2014)	
as	a	means	 to	 improve	our	understanding	of	community	assembly	
(Lamy	 et	al.,	 2017)	 and	 biodiversity	 variation	 at	 landscape	 scales	
(Kahilainen	et	al.,	2014).

In	this	study,	we	focused	on	the	species–genetic	diversity	re-
lationship	between	a	high	Andean	plant	community	and	the	her-
baceous	grass-	like	plant	Carex gayana	in	Chile’s	Norte	Chico.	This	
system	 is	 ideal	 for	 the	 proposed	 framework	 since:	 (a)	 Previous	
evidence	 suggests	 that	 neutral	 processes,	 dispersal	 in	 particular	
(e.g.,	 isolation	 by	 distance),	 cause	 genetic	 structure	 in	C. gayana 
(Troncoso,	Bertin,	Osorio,	Arancio,	&	Gouin,	 2017)	 and	 a	 strong	
and	positive	SGDC	between	plant	 richness	and	genetic	diversity	
of	C. gayana	 (r = 0.60,	 p < 0.05	 according	 to	 Bertin	 et	al.,	 2017).	
Bertin	 et	al.	 (2017)	 found	 that	 the	SGDC	did	not	hold	when	 the	
effects	 of	 wetland	 connectivity,	 which	 explained	 about	 50%	 of	
the	 variation	 in	 both	 diversity	 components,	 were	 factored	 out	

(r = 0.25,	 p > 0.05).	 (b)	 High	 Andean	 wetlands	 in	 this	 region	 are	
highly	 fragmented	and	experience	highly	 variable	environmental	
conditions	due	to	 large-	scale	climatic	variations	and	 local	abiotic	
fluctuations	resulting	from	the	sharp	orography	of	the	Andes.	As	
a	result,	we	expect	the	footprint	of	selection	on	adaptive	genetic	
variation	of	high	Andean	wetland	populations	to	be	strong	and	to	
cause	significant	deviating	patterns	between	neutral	and	adaptive	
genetic	diversity.

2  | MATERIAL S AND METHODS

2.1 | Study system

Carex gayana	 is	 an	 herbaceous	 perennial	 sedge	 species	 of	 the	
Cyperaceae	family	inhabiting	high-	elevation	wetlands	of	the	Andes	

F IGURE  1 Location	of	the	21	high	Andean	wetlands	sampled	in	Chile’s	Norte	Chico	by	Bertin	et	al.	(2017)	and	Troncoso	et	al.	(2017).	
Sites	13	(no	genetic	information),	2,	and	4	(excluded	following	SNP	data	filtering)	were	not	included	in	this	study
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Mountains.	It	is	monoecious	and	displays	both	sexual	reproduction	
and	vegetative	propagation	through	small	rhizomes	(Troncoso	et	al.,	
2017).	Sedges	frequently	dominate	extensive	areas	and	play	a	par-
ticularly	important	role	in	wetlands.	The	ploidy	level	of	C. gayana	is	
unknown;	however,	polyploidy	is	rare	in	the	Carex	genus	(Lipnerová,	
Bureš,	Horová,	&	Šmarda,	2013).	Genetic	diversity	 levels	 found	 in	
our	study	and	 initial	evidence	from	AFLP	markers	 (Troncoso	et	al.,	
2017)	 are	more	 similar	 to	 those	 found	 in	diploid	 than	 in	polyploid	
plant	 species	 (Hoeltgebaum	&	 dos	 Reis,	 2017;	 Kim,	 Shin,	 &	 Choi,	
2009;	Sampson	&	Byrne,	2012).

In	the	high	Andes	Mountains,	sedge-	dominated	wetlands	are	
interspersed	 throughout	 an	 arid	 grassland	matrix,	 spread	 along	
a	 latitudinal	gradient	 characterized	by	high	aridity	at	 lower	 lati-
tudes.	High	Andean	wetlands	are	fed	by	glacial	melt	and	ground	
upwelling	 with	 high	 wetland	 density	 at	 high	 elevations	 (Squeo,	
Warner,	Aravena,	&	Espinoza,	2006).	Study	sites	were	located	be-
tween	2,852	and	4,307	meter	elevations,	across	a	600-	kilometer	
stretch	 of	 the	 Andes	 north	 of	 Santiago,	 Chile	 (Figure	1),	 over	
which	a	large	climatic	gradient	occurs,	with	mean	annual	precip-
itation	 ranging	 between	 35	 and	 200	mm	 for	 the	 northernmost	
and	southernmost	 limits	of	the	study	zone.	Based	on	a	previous	
analysis	of	the	genetic	structure	of	the	populations	under	study	
(Troncoso	 et	al.,	 2017),	 we	 considered	 each	 site	 as	 a	 separate	
population.

2.2 | Sampling, DNA extraction, and next- 
generation sequencing

Species	 sampling	 and	DNA	 extraction	 procedures	 have	 been	 pre-
viously	described	 in	Bertin	et	al.	 (2017)	and	Troncoso	et	al.	 (2017).	
We	selected	between	4	and	10	samples	per	site	from	20	wetlands	
based	on	DNA	quality	and	quantity	(Table	1),	for	a	total	of	190	sam-
ples,	which	were	sent	to	the	Genomic	Diversity	Facility	(GDF;	http://
www.biotech.cornell.edu/brc/genomic-diversity-facility)	 at	 Cornell	
University	for	genotyping-	by-	sequencing	(GBS;	Elshire	et	al.,	2011).	
Samples	 from	 site	 13	 (Figure	1)	 used	 by	 Bertin	 et	al.	 (2017)	 and	
Troncoso	et	al.	(2017)	were	not	included	in	this	study	because	DNA	
concentrations	did	not	meet	GDF	requirements.	Three	restriction	en-
zymes	were	tested	for	GBS	library	construction	(a	four-	base	cutter:	
ApeKI,	and	two-	six-	base	cutters:	EcoT22I	and	PstI).	PstI	was	not	re-
tained	because	the	amplified	library	presented	adapter	dimer	peaks	
and	a	smaller	fragment	size	distribution.	Although	the	four-	base	cut-
ter	ApeKI	generated	the	 library	with	the	 largest	fragment	pool,	we	
selected	the	six-	base	cutter	EcoT22I	because	C. gayana	genome	size	
and	genetic	diversity	level	were	not	known,	hence	ensuring	a	higher	
coverage	 per	 SNP	 locus	 due	 to	 the	 lower	 proportion	 of	 amplified	
fragments.	Libraries	were	multiplexed	with	95	samples	assigned	to	
each	of	two	lanes	and	sequenced	on	an	Illumina	HiSeq	2000	platform	
as	single-	end,	100	base	pair	reads.	Lane	1	was	composed	mainly	of	

TABLE  1 Expected	heterozygosity	(He)	of	Carex gayana	populations	calculated	from	the	five	SNP	datasets	(DS1–5,	see	Table	2)	and	from	
AFLP	data,	as	well	as	plant	species	richness	at	each	site.	DS1	is	the	full,	original	dataset,	DS2	and	DS3,	the	two	non-	outlier	datasets,	and	DS4	
and	DS5	the	two	outlier	datasets.	Populations	with	conspicuously	low	SNP	genetic	diversity	in	comparison	with	their	AFLP	genetic	diversity	
(see	Supporting	Information	Figure	S3)	appear	in	bold

Population Name n Species richness

Expected heterozygosity (He)

DS1 DS2 DS3 DS4 DS5 AFLP

S1 Cop4 4 11 0.072 0.071 0.073 0.080 0.043 0.070

S5 Cop5 10 14 0.084 0.082 0.084 0.097 0.088 0.068

S6 Cop6 9 19 0.088 0.090 0.089 0.072 0.019 0.131

S7 Hua3 10 16 0.134 0.143 0.136 0.080 0.041 0.095

S8 Hua2 9 17 0.127 0.136 0.129 0.069 0.052 0.075

S9 Hua1 10 16 0.122 0.129 0.124 0.076 0.018 0.082

S10 Elq3 10 15 0.114 0.120 0.117 0.077 0.015 0.091

S11 Elq4 10 10 0.159 0.163 0.161 0.136 0.082 0.113

S12 Elq2 10 11 0.130 0.124 0.129 0.165 0.175 0.089

S14 Lim3 9 19 0.145 0.152 0.148 0.097 0.018 0.105

S15 Lim4 10 19 0.143 0.152 0.146 0.081 0.028 0.097

S16 Lim1 9 15 0.099 0.108 0.101 0.042 0.014 0.077

S17 Lim2 9 19 0.134 0.144 0.136 0.068 0.046 0.111

S18 Cho3 10 21 0.197 0.205 0.201 0.143 0.042 0.170

S19 Cho2 9 20 0.219 0.227 0.224 0.169 0.018 0.254

S20 Cho1 10 17 0.175 0.180 0.177 0.140 0.055 0.187

S21 Cho4 10 19 0.062 0.060 0.062 0.076 0.102 0.137

Mean	
(±SD)

9.3	(1.4) 16.4	(3.3) 0.130 
(0.042)

0.135 
(0.045)

0.132 
(0.044)

0.098 
(0.038)

0.050 
(0.042)

0.115 
(0.049)

http://www.biotech.cornell.edu/brc/genomic-diversity-facility
http://www.biotech.cornell.edu/brc/genomic-diversity-facility
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samples	from	the	Copiapo,	Choapa,	and	Elqui	river	basins,	and	lane	2	
mainly	of	samples	from	the	Elqui,	Huasco,	and	Limarí	basins	(see	map	
in	Bertin	et	al.	(2017)	for	basin	corresponding	with	each	population	
in	Table	1).	Although	the	number	of	detected	tags	differed	between	
lanes	1	and	2	(18,129,903	and	13,413,636,	respectively),	the	average	
proportion	of	missing	data	per	sample	 in	the	postfiltered	data	 (see	
section	below)	appeared	 relatively	 similar	 (3.8%	and	6.0%,	 respec-
tively),	indicating	no	particular	bias	in	our	data.

2.3 | Genetic data and bioinformatics

The	UNEAK	GBS	pipeline	(Lu	et	al.,	2013),	a	method	specially	tailored	
for	species	that	lack	a	reference	genome,	was	used	for	SNP	discovery.	
The	UNEAK	pipeline	is	a	component	of	the	TASSEL	3.0	bioinformat-
ics	package	(Bradbury	et	al.,	2007)	that	calls	SNPs	after	resolving	arti-
facts	of	problematic	data	including	repeats,	paralogs,	and	sequencing	
errors.	These	analyses	were	carried	out	by	the	GDF	staff	at	Cornell	
University	and	are	summarized	 in	Supporting	Information	Table	S1.	
Briefly,	sequencing	errors	were	filtered	out	by	retaining	only	tags	that	
were	present	at	least	3	times,	using	a	maximum	error	tolerance	rate	
of	0.03	in	the	network	filter	(filters	on	the	identification	of	recipro-
cal	 tag	pairs),	accounting	for	0.01	average	sequencing	error	rate	to	
decide	 between	 homozygous	 and	 heterozygous	 calls,	 and	 setting	
minimum	minor	 allele	 frequency	 (MAF)	 to	0.01.	 To	 avoid	paralogs,	
a	 value	of	 0.05	was	used	 as	 threshold	mismatch	 rate	 above	which	
the	duplicate	SNPs	were	not	merged.	This	is	a	conservative	threshold	
given	the	recommendations	of	using	a	value	of	0.1	for	species	with	
high	residual	heterozygosity.	We	then	used	VCFtools	(Danecek	et	al.,	
2011)	 to	 further	 filter	 the	 SNPs	 output	 from	 the	 UNEAK	 pipeline	
(See	Supporting	Information	Table	S2	for	detailed	outline	of	remain-
ing	sites	after	each	filtering	step).	We	first	applied	a	minimum	depth	
filter	of	10	reads	to	exclude	all	genotypes	with	insufficient	coverage	
by	treating	them	as	missing	data.	We	then	used	a	histogram	of	mean	
site	 depth	 to	 determine	 the	 appropriate	 parameters	 for	 maximum	
mean	site	depth,	excluding	sites	with	high	(>50	reads)	representation	
based	on	the	shape	of	the	distribution.	After	filtering	for	site	depth,	
we	retained	all	loci	with	less	than	40%	missing	data.	The	amount	of	
missing	data	 retained	 for	 all	 SNPs	may	have	 serious	 consequences	
on	values	of	genetic	diversity	and	calculations	of	SGDCs;	therefore,	
we	reran	all	analyses	with	a	more	stringent	dataset,	retaining	all	loci	
with	less	than	30%	missing	data.	The	more	stringent	dataset	provided	
very	 similar	 results	 (not	 shown),	 and	 therefore,	we	 chose	 to	 retain	
the	40%	missing	data	filter	to	provide	a	greater	representation	of	the	
genome.	To	remove	potential	sequencing	errors,	we	chose	a	MAF	of	
0.04	for	all	loci	across	all	individuals.	Furthermore,	we	only	included	
loci	 that	were	biallelic.	We	calculated	 the	observed	heterozygosity	
for	all	remaining	sites	and	excluded	sites	with	observed	heterozygo-
sity	>0.5	to	exclude	potential	paralogs	(Hohenlohe,	Amish,	Catchen,	
Allendorf,	&	Luikart,	2011).	Call	rate,	the	number	of	sites	successfully	
genotyped	for	each	individual,	was	calculated	per	individual,	and	any	
individual	with	lower	than	40%	call	rate	was	removed	from	the	data-
set	prior	to	further	analysis.	To	check	for	the	presence	of	clonal	indi-
viduals,	we	calculated	the	observed	number	of	multilocus	genotypes	
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using	the	mgl	function	of	the	“poppr”	in	R	(Kamvar	et	al.,	2018).	No	
redundant	multilocus	genotypes	were	identified,	which	indicates	that	
no	clones	were	present	in	our	dataset.	All	loci	were	then	tested	for	
departure	from	Hardy–Weinberg	equilibrium	using	the	hw.test	func-
tion	of	the	“pegas”	package	in	R	(Paradis	et	al.,	2013).	Significance	was	
tested	using	1,000	random	permutations.

2.4 | Environmental data

Ten	environmental	variables	were	used	to	test	for	genome–environ-
ment–associations:	mean	annual	precipitation	(MAP),	mean	average	
wind	speed	(MAWS),	number	of	days	with	snow	cover	(SnowNDays),	
mean	annual	temperature	(MAT),	soil	moisture	(TCI),	slope,	aspect,	
productivity	 (NDVI),	 and	 two	 independent	 estimates	 of	 wetland	
surface.	 MAP	 was	 estimated	 from	 average	 monthly	 precipitation	
(mm),	 calculated	 by	 interpolation	 of	 precipitation	 gauge	 network	
measurements	over	the	32-	year	period	from	1975	to	2006	(see	de-
tails	 in	Bertin	 et	al.,	 2015).	MAWS,	 in	meters	 per	 second,	was	 es-
timated	over	 a	16-	year	 period	using	 the	nonhydrostatic	Karlsruhe	
Atmospheric	Mesoscale	Model	 (see	 details	 in	 Bertin	 et	al.,	 2015).	
SnowNDays	 was	 calculated	 over	 a	 12-	year	 period	 (2000–2011)	
from	daily	estimates	of	snow	cover	obtained	from	500	m	resolution	
MODIS	satellite	imagery	in	Google	Earth	Engine	Explorer.	MAT	was	
assessed	 for	each	wetland	using	 the	high-	resolution	gridded	data-
base	of	WorldClim	(Hijmans,	Cameron,	Parra,	Jones,	&	Jarvis,	2005).	
Topographic	Convergence	Index	(TCI)	was	calculated	in	ArcGIS	10.0	
using	an	ASTER	Global	Digital	Elevation	Model	(GDEM)	to	calculate	
slope	and	upslope	accumulating	area.	Slope	was	measured	from	the	
ASTER	Global	Digital	Elevation	Model	(DEM)	in	Google	Earth	Engine	
Explorer.	Aspect	was	recorded	as	a	categorical	variable	with	two	cat-
egories:	S/SE	aspects	or	N/W/SW	aspects.	Normalized	Difference	
Vegetation	 Index	 (NDVI)	was	 calculated	based	on	30	m	 resolution	
LandSat	8	OLI	satellite	images	from	NASA	obtained	from	the	United	
States	 Geological	 Survey	 website	 (http://glovis.usgs.gov/).	 The	
wetland	surface	estimates	were	calculated	 in	Google	Earth	Engine	
Explorer	based	on	Google	Earth	surface1	and	surface2	from	NDVI.

To	 identify	environmental	predictors	 that	were	potentially	col-
linear,	 we	 calculated	 Pearson	 correlations	 between	 each	 environ-
mental	variable	pair	and	discarded	variables	that	displayed	repeated	
correlations	exceeding	0.7.	The	final	dataset	included	MAP,	MAWS,	
MAT,	TCI,	slope,	aspect,	and	NDVI.

2.5 | Outlier detection

All	the	statistical	and	outlier	detection	analyses	were	performed	in	
the	R	environment	(https://cran.r-project.org).	To	identify	loci	devi-
ating	from	neutral	expectations,	we	combined	two	individual-	based	
approaches:	one	centered	on	the	 identification	of	outlier	 loci	with	
respect	 to	 population	 structure	 and	 the	 second	 on	 genotype–en-
vironment	 associations.	 For	 the	 first	 approach,	 we	 used	 pcadapt	
(Duforet-	Frebourg,	Bazin,	&	Blum,	2014;	Luu,	Bazin,	&	Blum,	2017),	
an	 outlier	 detection	 method	 that	 identifies	 loci	 putatively	 under	
positive	local	selection.	Because	such	loci	tend	to	increase	genetic	

differentiation,	pcadapt	 considers	 loci	 that	 contribute	 significantly	
more	to	population	structure	than	most	 loci	as	candidate	markers.	
To	 identify	 such	 loci,	 pcadapt	 uses	 a	 two-	step	 procedure.	 First,	 a	
principal	component	analysis	captures	the	genetic	structure	of	the	
dataset.	Then,	the	Mahalanobis	distance	of	the	z-	scores	on	the	first	
k-	components	of	each	 locus	detects	 those	 loci	 that	most	 relate	 to	
population	structure	(Luu	et	al.,	2017).	Here,	we	identified	the	opti-
mal	number	of	components	(i.e.,	k-	components)	from	the	scree	plot	
and	used	a	10%	false	discovery	rate	to	identify	outlier	loci	with	sig-
nificantly	larger	Mahalanobis	distances.

For	our	second	approach,	we	identified	SNP	loci	associated	with	
environmental	variables	using	redundancy	analysis	(RDA),	a	genome–
environment	association	(GEA)	approach	to	distinguishing	candidate	
loci	under	selection	based	on	correlation	between	genotype	and	envi-
ronmental	factors	expected	to	impose	natural	selection.	RDA	is	a	ca-
nonical	ordination	technique	where,	first,	response	variables	(multiple	
loci)	are	modeled	as	a	function	of	linear	combinations	of	the	predic-
tors	(multiple	environmental	variables),	then	a	PCA	of	the	fitted	values	
produces	the	RDA	components	that	best	explain,	in	sequential	order,	
the	variation	among	the	fitted	genetic	values	(Forester,	Jones,	Joost,	
Landguth,	&	Lasky,	2016;	Legendre	&	Legendre,	2012;	Talbot	et	al.,	
2017).	To	check	that	the	final	model	did	not	suffer	multi-	collinearity	
problems,	we	calculated	the	variance	inflation	factors	(VIFs)	and	ver-
ified	that	none	of	them	exceeded	5	for	any	of	the	predictors.	Outlier	
loci	were	defined	as	those	that	were	strongly	influenced	by	the	en-
vironmental	 variables,	 according	 to	 their	 z-	scores	 on	 the	 first	 RDA	
components	 (i.e.,	 z-	scores	 exceeding	 twice	 the	 interquartile	 range;	
Forester	et	al.,	2016).	The	number	of	components	considered	in	this	
procedure	was	determined	by	examining	 the	 inertia	 scree	plot	 and	
by	verifying	 that	all	 the	 selected	components	were	 significant.	The	
RDA	 was	 performed	 following	 the	 methods	 described	 in	 Borcard,	
Gillet,	 and	 Legendre	 (2011)	 using	 the	 R	 package	 vegan	 (Oksanen	
et	al.,	2014).	Significance	of	each	individual	RDA	axis	was	tested	with	
ANOVA-	like	permutation	tests	with	9,999	randomizations.	We	calcu-
lated	correlations	between	the	outliers	for	each	significant	axis	and	
the	environmental	variables	to	identify	which	variables	may	be	having	
the	greatest	impact	on	non-	neutral	patterns	in	our	study	system.

2.6 | The genetic datasets

To	test	for	correlations	between	species	and	genetic	diversity,	we	
created	 five	 SNP	 datasets.	 The	 expected	 composition	 for	 these	
datasets	is	reported	in	Table	2.	DS1,	the	original	dataset	after	fil-
tering,	 included	 all	 SNPs	 and	 thus	 a	 large	 proportion	 of	 neutral	
loci	and	some	non-	neutral	ones.	The	nonoutlier	datasets,	DS2	and	
DS3,	were	formed	by	excluding	either	all	the	outlier	loci	identified	
(DS2),	 or	 only	 those	 jointly	 identified	 by	 the	 two	 outlier	 detec-
tion	methods	(DS3).	The	two	datasets	are	thus	composed	for	the	
most	part	of	neutral	loci,	with	a	greater	number	of	false	negatives	
(adaptive	 loci)	being	expected	 in	DS3	than	 in	DS2.	DS4	and	DS5	
contained	the	loci	putatively	under	selection	identified	by	at	least	
one	 outlier	 detection	 method	 and	 by	 both	 detection	 methods,	
respectively.	DS5	 thus	only	 included	SNP	 loci	 for	which	we	had	

http://glovis.usgs.gov/
https://cran.r-project.org
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convergent	evidence	of	deviations	 from	neutral	 expectations.	 In	
DS4	and	DS5,	the	proportion	of	non-	neutral	loci	was	expected	to	
be	much	higher	 than	 in	any	other	datasets.	Some	false	positives	
(neutral	 loci)	are	 likely	to	be	present	as	well,	but	much	 less	so	 in	
DS5	than	in	DS4.

When	species	diversity	and	genetic	diversity	correlations	are	neu-
trally	driven,	the	relative	proportion	of	the	neutral	and	non-	neutral	
loci	 in	the	genetic	dataset	will	condition	the	strength	of	the	SGDC.	
Based	on	this	rationale,	we	anticipated	neutrally	driven	SGDCs	to	be	
positive	for	the	putatively	neutral	loci,	and	to	be	the	strongest	in	DS2,	
as	DS2	is	the	more	conservatively	filtered	neutral	dataset	(Table	2).	
Because	 the	 fraction	of	 neutral	 loci	 is	 lower	 in	DS4	 and	DS5	 than	
in	the	putatively	neutral	datasets,	these	two	datasets	should	display	
weaker	correlations,	with	either	a	null	or	weakly	positive	association	
depending	on	the	number	of	false	negatives	(neutral	loci)	in	the	data-
set	and	the	footprint	of	the	neutral	processes	on	the	non-	neutral	loci.	
When	species	diversity	and	genetic	diversity	correlations	are	driven	
by	non-	neutral	(i.e.,	adaptive)	processes,	we	expect	the	SGDCs	either	
to	be	null	for	all	the	datasets	or	to	be	only	positive	in	DS4	and/or	DS5,	
depending	if	the	adaptive	loci	involved	in	the	species–genetic	diver-
sity	relationship	are	included	in	these	SNP	datasets.

2.7 | Genetic diversity and species diversity

Before	 performing	 genetic	 diversity	 estimations,	 we	 first	 inves-
tigated	 the	 effects	 of	 within-	population	 missing	 data.	 Genetic	

estimates	of	α-	diversity	were	 calculated	 for	 each	population	 after	
varying	 the	 minimum	 number	 of	 individuals	 genotyped	 at	 each	
locus	from	four	to	eight	individuals.	Overall,	we	did	not	observe	an	
influence	of	the	number	of	 individuals	on	the	genetic	diversity	es-
timates	 (Supporting	 Information	Figure	S1).	Therefore,	we	decided	
to	 consider	 all	 loci	with	 a	minimum	of	 four	 genotyped	 individuals	
per	population,	which	allowed	us	to	calculate	a	genetic	diversity	es-
timate	for	all	sites,	including	site	1,	which	only	had	four	genotyped	
individuals.	We	evaluated	within-	population	genetic	diversity	for	all	
populations	and	datasets	as	the	expected	heterozygosity	(He)	over	
the	 loci	using	gstudio	 (Dyer,	2017)	as	a	measure	of	α-	diversity	 for	
the	genetic	datasets.	To	check	the	importance	of	the	neutral	signal	
in	the	non-	neutral	loci	datasets	(due	either	to	the	presence	of	false	
positives	 or	 a	 strong	 influence	 of	 neutral	 processes	 on	 the	whole	
genome),	we	calculated	the	pairwise	Pearson	correlations	between	
the	He	estimates	of	each	dataset.

Genetic	β-	diversity	was	measured	as	the	Cavalli-	Sforza	genetic	
distance,	calculated	as

where X	and	Y	represent	two	populations	for	which	L	loci	have	been	
studied.	Xu	represents	the	u

th	allele	at	the	lth	locus	(Cavalli-	Sforza	&	
Edwards,	1967).
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F IGURE  2 α-	Genetic	diversity	of	Carex gayana	plotted	against	site	level	species	richness	(top	row)	and	evenness	(middle	row)	and	β-	
genetic	diversity	plotted	against	β-	species	diversity	(bottom	row)	for	the	17	sites	included	in	this	study	using	the	complete	dataset	DS1	(a),	
the	two	non-	outlier	datasets,	DS2	(b)	and	DS3	(c),	and	the	two	outlier	datasets,	DS4	(d)	and	DS5	(e).	α-	Genetic	diversity	is	estimated	using	
the	expected	heterozygosity	(He)	and	α-	species	diversity	by	the	wetland	plant	species	richness	and	Pielou’s	evenness.	β-	genetic	dissimilarity	
is	estimated	using	Cavalli-	Sforza	genetic	distance	and	β-	species	dissimilarity	is	estimated	using	Bray–Curtis	distance.	S6	and	S21	are	the	two	
outlier	sites
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The	 plant	 species	 assemblage	 was	 surveyed	 in	 each	 wetland	
based	on	five	30	×	30	cm	quadrats.	Details	about	the	sampling	strat-
egy	 and	method	 can	 be	 found	 in	 Bertin	 et	al.	 (2017).	 Briefly,	 the	
length	of	each	wetland	was	divided	into	five	sectors	and	a	quadrat	
was	 randomly	 placed	within	 each	 sector.	 Plant	 species	were	 then	
separated	and	identified	in	the	laboratory,	and	their	biomass	(g/m2)	
evaluated	after	complete	drying	of	the	vegetal	material	in	an	oven	at	
70°C.	Species	α-	diversity	was	evaluated	for	each	wetland	as	species	
richness	(S)	accumulated	over	the	five	quadrats	and	as	species	even-
ness	using	Pielou’s	evenness	metric,

where H′	 is	 the	 Shannon	 diversity	 of	 the	 community	 calculated	
from	 plant	 abundances	measured	 as	 their	 dry	 biomass	 across	 the	
five	 quadrats,	 and	Hmax= ln S,	 the	maximum	 value	 of	 the	 Shannon	
diversity	if	every	species	was	equally	represented	(McCune,	Grace,	
&	Urban,	2002).	To	estimate	species	β-	diversity,	we	calculated	Bray–
Curtis	dissimilarity	of	the	plant	communities	based	on	log10(x+1)	of	
the	plant	abundances,	based	on	the	equation,

where Cij	is	the	sum	of	the	lesser	abundance	values	of	only	the	spe-
cies	that	occur	at	both	sites,	while	Si	and	Sj	are	the	total	number	of	
species	counted	at	each	site	(Legendre	&	Legendre,	2012).

2.8 | Species–genetic diversity correlations 
between the SNP datasets

Before	 calculating	 SGDCs,	 we	 generated	 scatterplots	 to	 check	
whether	 the	genetic	 and	 species	diversity	data	were	 linearly	 re-
lated.	 These	 scatterplots	 are	 provided	 in	 the	 Figure	2.	α-	SGDCs	
were	 calculated	 as	 Pearson	 correlations	 between	 the	 plant	 α-	
diversity	estimates	 (i.e.,	 plant	 richness	and	evenness)	 and	He	 for	
each	population	and	each	of	the	five	SNP	datasets.	We	used	t	tests	
to	test	for	the	significance	of	the	SGDCs.	To	test	if,	as	expected,	
the	SGDCs	of	the	outlier	loci	datasets	were	significantly	different	
than	that	of	the	nonoutlier	loci	datasets,	we	calculated	the	prob-
ability	of	obtaining	such	extreme	SGDCs	using	an	equal	number	of	
loci	with	DS1	and	the	putatively	neutral	datasets	(DS2	and	DS3).	
To	this	end,	we	calculated	SGDC	with	999	randomized	subsets	of	
DS1,	DS2	and	DS3	containing	the	same	number	of	loci	as	DS4	and	
DS5.	β-	SGDCs	were	investigated	with	Mantel	tests	using	the	pair-
wise	genetic	distance	matrices	and	Bray–Curtis	dissimilarity	ma-
trix	of	the	plant	species	assemblage	based	on	9,999	permutations.

3  | RESULTS

3.1 | Genotyping

Illumina	sequencing	produced	around	2.5	million	reads	per	individ-
ual.	Following	basic	filtering	steps	conducted	in	the	UNEAK	pipeline,	

we	retained	38,036	SNPs.	With	the	additional,	more	stringent	filter-
ing	protocol,	we	obtained	1,709	high-	quality	 SNPs	 for	 our	 overall	
dataset	(Supporting	Information	Table	S2).	This	filtering	process	re-
duced	our	number	of	 individuals	from	190	to	158	and	the	number	
of	wetlands	from	20	to	17.	In	our	final	dataset,	the	mean	depth	per	
individual	was	29.9	reads	and	the	mean	depth	per	site	across	all	in-
dividuals	was	30.0	reads.	No	loci	were	found	to	depart	from	Hardy–
Weinberg	equilibrium	at	an	α	=	0.05	significance	level	in	more	than	
50%	of	the	sampling	locations.	At	the	population	level,	no	more	than	
2.5%	of	the	loci,	on	average,	were	found	to	significantly	deviate	from	
Hardy–Weinberg	equilibrium.

3.2 | Outlier identification and datasets

In	 the	scree	plot	of	 the	PCA	conducted	 in	pcadapt,	 the	elbow	oc-
curred	at	the	10th	component.	With	a	false	discovery	rate	of	10%,	
173	SNPs	were	identified	as	outliers.

After	 selecting	 the	 predictor	 variables	 according	 to	 their	 cor-
relations,	none	of	those	included	in	the	RDA	analysis	showed	a	VIF	
greater	than	5.	The	RDA	model	explained	20.9%	of	the	genetic	vari-
ance.	Based	on	the	elbow	of	the	eigenvalues	scree	plot,	we	retained	
the	first	four	components	for	outlier	detection.	All	components	were	
highly	significant,	with	axes	1	through	4	explaining	35%,	22%,	16%,	
and	9%	of	the	explained	variance,	respectively,	all	together	account-
ing	 for	82%	of	 the	variance	explained	by	 the	RDA	model.	 In	 total,	
95	 loci	 had	outlier	 z-	scores	on	at	 least	one	of	 the	 four	RDA	com-
ponents.	Outliers	were	most	 strongly	 correlated	with	 topographic	
slope	on	axis	1,	with	moisture-	related	variables	 (TCI	and	MAP)	on	
axis	2,	moisture	and	wind	speed	(TCI	and	MAWS)	on	axis	3,	and	with	
temperature	(MAT)	and	slope	on	axis	4.

RDA	and	pcadapt	together	identified	a	total	of	229	outlier	loci,	of	
which	39	were	identified	in	both	methods	(Table	2).	They	formed	the	
two	outlier	datasets,	DS4	and	DS5,	respectively.	The	two	nonoutlier	
datasets,	DS2	and	DS3,	were	constructed	by	removing	DS4	and	DS5	
datasets	from	DS1,	respectively.	After	removal	of	outlier	 loci,	DS2	
and	DS3	contained	1,480	and	1,670	loci,	respectively.

3.3 | Species and genetic diversity estimates

Species	richness	ranged	between	10	and	21	across	the	sites,	and	
Pielou’s	evenness	between	0.39	and	0.82.	The	average	expected	
heterozygosity	for	the	full	dataset	(DS1)	across	all	sites	was	0.130.	
It	reached	0.135	and	0.132	for	DS2	and	DS3,	and	0.098	and	0.050	
for	DS4	and	DS5	(Table	1).	The	α-	genetic	diversity	estimates	(He)	of	
DS1,	DS2	and	DS3	correlated	almost	perfectly	(r > 0.99,	p < 0.001 
in	all	cases).	While	the	He	estimates	of	DS4	correlated	with	those	
of	DS1,	DS2,	and	DS3	(range:	0.63–0.70,	p < 0.02	in	all	cases),	no	
such	relationships	were	observed	between	DS5	and	the	putatively	
neutral	 datasets	 (range:	 −0.23	 to	 −0.16,	 p = 1.00	 in	 all	 cases).	
The	 genetic	 diversity	 estimates	 calculated	 from	 the	 nonoutlier	
datasets	(DS1,	DS2,	and	DS3)	and	those	obtained	by	Bertin	et	al.	
(2017)	with	AFLP	markers	were	strongly	correlated	(r	range:	0.68–
0.70,	p = 0.02	in	all	cases).	Overall,	the	genetic	diversity	estimates	

J=
H�

Hmax

BCij=1−
2Cij

Si+Sj
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tended	to	be	higher	with	the	SNPs	than	with	the	AFLPs.	Two	sites,	
however	(sites	6	and	21),	departed	strongly	from	the	main	relation-
ship,	showing	unexpectedly	 low	SNP	genetic	diversity	compared	
to	their	respective	AFLP	estimates	(Supporting	Information	Figure	
S3).	By	removing	these	two	sites,	the	correlation	between	the	SNP	
and	AFLP	genetic	 diversity	 increased	 substantially,	 from	0.70	 to	
0.90	with	DS1.	Both	of	these	sites	were	sequenced	jointly	on	lane	
1.	They	presented	a	proportion	of	missing	data	of	5.5%	and	1.8%,	
respectively.	 The	 percentage	 of	 missing	 data	 in	 site	 21	 appears	
lower	than	the	average	found	for	this	lane	in	the	postfiltered	data	
(3.8%).	Although	the	proportion	found	in	site	6	 is	slightly	higher,	
it	 is	still	 lower	 than	other	sites	 that	were	also	sequenced	 in	 lane	
1,	such	as	site	19	(with	8.4%	missing	data),	and	also	similar	to	the	
average	found	for	lane	2	(6%).	Together,	these	results	indicate	no	
atypical	behavior	of	the	SNP	data	for	these	two	sites	that	could	be	
due	to	technical	artifacts.

The	genetic	distances	(DCH)	calculated	with	DS1,	DS2,	and	DS3	
ranged	between	0.03	and	0.15.	In	all	three	cases,	site	19	stood	out	
from	the	rest	of	the	sites	for	exhibiting	many	high	genetic	distance	
values	(mean	DCH	values	ranging	between	0.11	and	0.12).	While	the	
DCH	varied	between	0.02	and	0.19	for	DS4,	they	reached	much	lower	
and	higher	 extreme	values	 for	DS5,	which	 ranged	between	0.002	
and	0.31.	Yet,	in	both	cases,	site	21	was	found	to	display	noticeably	
high	genetic	distances	compared	to	the	rest	of	the	sites	(mean	DCH 
values:	0.14	and	0.24	for	DS4	and	DS5,	respectively).	Plant	compo-
sition	distances	measured	as	Bray–Curtis	distances	ranged	between	
0.27	and	0.87.	No	site	showed	noticeable	higher	differentiation	lev-
els	than	the	others,	but	all	of	them	were	highly	differentiated	from	
some	other	sites	in	terms	of	plant	composition,	with	all	sites	showing	
a	BC	value	of	at	least	0.67.

3.4 | α- Species–genetic diversity correlations with 
outlier and nonoutlier SNP loci

The α-	SGDCs	estimated	from	species	richness	were	positive	for	DS1	
and	the	two	nonoutlier	datasets	(DS2	and	DS3).	However,	the	corre-
lations	were	only	moderate	in	amplitude,	ranging	from	0.33	to	0.37,	
and	marginally	nonsignificant	(p = 0.10,	0.07,	and	0.09	for	DS1,	DS2,	
and	DS3,	respectively,	Table	2).	These	correlations	were	much	lower	
than	 the	 SGDCs	 reported	by	Bertin	 et	al.	 (2017).	When	excluding	
sites	 6	 and	21,	 however,	 the	 SGDC	values	 increased	 substantially	
(more	 than	 60%),	with	 correlations	 ranging	 from	 0.57	 to	 0.60	 for	
datasets	DS1–DS3,	and	became	highly	significant	(Table	2).	No	sig-
nificant	positive	correlations	were	observed	for	the	outlier	datasets	
(Table	2);	rather,	the	correlations	were	negative	and	not	statistically	
significant.	The	results	of	the	randomizations	show	that	it	would	be	
extremely	 rare	 to	 obtain	α-	SGDCs	 as	 low	 as	 those	 observed	with	
DS4	and	DS5	just	by	chance	with	the	putatively	non-	neutral	data-
sets	(p ≤ 0.001	in	all	cases).

None	 of	 the	 α-	SGDCs	 estimated	 with	 species	 evenness	 were	
significant	 (Table	2).	 In	 spite	 of	 that,	 the	 randomizations	 demon-
strated	 that	 the	estimates	derived	 from	DS4	differed	 significantly	
from	those	obtained	with	DS1,	DS2,	and	DS3	(p ≤ 0.01	in	all	cases).	

The	putatively	non-	neutral	datasets	displayed	lower	α-	SGDCs	than	
the	putatively	neutral	datasets,	reaching	−0.24	for	DS4	and	ranging	
between	0.01	and	−0.07	for	DS1,	DS2,	and	DS3.

3.5 | β- Species–genetic diversity correlations with 
outlier and nonoutlier SNP loci

The β-	SGDCs	were	all	 positive.	For	 the	 full	 and	putatively	neutral	
datasets	(DS1-	3),	they	ranged	between	0.11	and	0.16	and	were	not	
significant	 or	marginally	 nonsignificant	 (p	>	0.08,	 Table	2).	 For	 the	
putatively	 non-	neutral	 datasets	 (DS4–5),	 correlations	 varied	 from	
0.21	to	0.27	and	were	significant	(p	<	0.05,	Table	2).	The	results	of	
the	 randomizations	 show	 that	 the	probability	of	getting	 such	high	
β-	SGDCs	by	chance	would	be	rare,	particularly	with	DS2	and	DS3	
(p	<	0.03	in	all	cases,	Supporting	Information	Table	S3).

4  | DISCUSSION

4.1 | Partitioning genetic and species diversity in 
SGDCs studies

Recent	 studies	 have	 stressed	 the	 usefulness	 of	 partitioning	 neu-
tral	and	adaptive	genetic	diversity	(Bertin	et	al.,	2017;	Watanabe	&	
Monaghan,	2017)	 and	of	 simultaneously	 analyzing	various	 species	
diversity	components	(Lamy	et	al.,	2017)	to	investigate	species–ge-
netic	diversity	relationships.	Our	results	show	that	combining	these	
two	 approaches	 can	 help	 to	 unravel	 the	 origin	 of	 covariation	 be-
tween	these	two	levels	of	diversity.	As	expected,	we	found	contrast-
ing	SGDCs	between	the	putatively	neutral	and	non-	neutral	datasets.	
Yet,	the	detected	patterns	diverged	greatly	depending	on	the	spe-
cies	diversity	component.	Indeed,	α-	SGDCs	were	detected	with	spe-
cies	richness	but	not	with	species	evenness.	And,	while	the	α-	SGDCs	
based	on	 species	 richness	were	only	 significant	and	stronger	with	
the	nonoutlier	datasets	compared	to	the	outlier	loci	datasets,	an	op-
posite	trend	was	observed	for	the	β-	SGDCs.

While	 the	 SGDCs	 of	 the	 nonoutlier	 loci	 datasets	 were	 much	
weaker	that	those	previously	reported	with	AFLP	data,	they	provide	
relevant	 information.	For	 the	α-	diversities,	 significant	 and	positive	
SGDCs	were	only	found	with	the	nonoutlier	loci	datasets	and	with	
species	 richness,	 confirming	 that	 neutral	 processes	 were	 primar-
ily	 driving	 the	 correlations	 and	 that	 the	 involved	processes	differ-
entially	 influenced	 species	 richness	 and	 evenness.	 In	 their	 study,	
Bertin	 et	al.	 (2017)	 examined	 the	 effects	 of	wetland	 size,	 stability	
and	connectivity	on	local	diversities.	They	found	that	connectivity	
influenced	plant	species	richness	and	C. gayana	genetic	diversity.	We	
reproduced	this	analysis	with	species	evenness	but	failed	to	detect	
such	effects	(results	not	shown).	This	finding	is	consistent	with	the	
expectation	 that	 migration	more	 strongly	 influences	 species	 rich-
ness	than	species	evenness	(Wilsey	&	Stirling,	2007)	and	supports	a	
role	for	migration	rates	in	the	detected	α-	SGDCs.	So	far,	few	empir-
ical	studies	have	combined	species	evenness	and	richness	to	inves-
tigate	species–genetic	diversity	relationships.	Of	the	161	α-	SGDCs	
gathered	by	Lamy	et	al.	 (2017),	only	18	were	calculated	with	some	
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kind	of	evenness	index,	and	just	eight	studies	used	species	richness	
and	evenness	in	calculating	SGDCs	for	the	same	dataset	and	genetic	
measure,	reporting	in	most	cases	no	significant	SGDCs	for	both	in-
dices.	Our	results	suggest	that	it	can	be	profitable	to	simultaneously	
analyze	the	two	diversity	components	as	they	may	reveal	different	
patterns	and	thus	help	understand	mechanisms	behind	species–ge-
netic	diversity	relationships.

The β-	SGDCs	with	 the	 putatively	 neutral	 datasets	were	 lower	
than	the	α-	SGDCs	obtained	with	species	richness,	which	is	consis-
tent	with	the	trends	described	by	Lamy	et	al.	(2017).	However,	while	
Lamy	 et	al.	 (2017)	 found	 that	β-	SGDCs	 are	more	 often	 significant	
than	 α-	SGDCs,	 none	 of	 our	 β-	SGDCs	 with	 the	 putatively	 neutral	
datasets	 were	 significant	 (at	 α	=	0.05).	 Significant	 β-	SGDCs	 were	
detected	with	the	putatively	non-	neutral	 loci.	The	contrasting	pat-
terns	 in	β-	SGDCs	between	 the	putatively	neutral	 and	non-	neutral	
datasets	thus	indicate	that	selective	processes	influencing	C. gayana 
genetic	 diversity	 are	 involved	 in	 the	 detected	 correlation,	 which	
does	not	exclude	the	possibility	that	neutral	processes	are	also	con-
tributing	to	it.	Separating	β-	genetic	diversity	into	putatively	neutral	
and	non-	neutral	components	can	help	elucidate	which	processes	are	
influencing	the	genetic	level	of	the	β-	SGDCs	but	does	not	provide	in-
formation	about	the	ecological	processes	involved	in	community	dis-
similarity.	We	see	two	possible	alternatives.	First,	the	concordance	
in	 genetic	 and	 species	 composition	 dissimilarities	 resulted	 from	
common	 responses	 to	 environmental	 variation.	Most	 of	 the	 envi-
ronmental	predictors	that	contributed	to	the	detection	of	outliers	in	
the	genotype-	by-	environment	analysis	(i.e.,	moisture,	precipitation,	
wind	speed,	temperature,	and	slope)	can	be	linked	to	drought,	which	
may	be	a	key	factor	structuring	the	composition	of	vegetal	commu-
nities	in	high	Andean	wetlands	(Dangles	et	al.,	2017).	Alternatively,	
β-	SGDCs	can	arise	from	different	processes	affecting	composition	
dissimilarities	among	sites	at	 the	genetic	and	community	 levels,	as	
long	as	 the	spatial	 scales	at	which	they	are	acting	are	similar.	This	
would	be	the	case,	for	instance,	if	distance	decay	patterns	generated	
by	environmental	gradients	on	genetic	dissimilarity	match	distance	
decay	patterns	generated	by	dispersal	 limitation	at	the	community	
levels.	 A	 better	 understanding	 of	 the	 origin	 of	 β-	SGDCs	 could	 be	
gained	 by	 decomposing	 the	 correlation	 into	 underpinning	 factors	
as	proposed	by	Lamy	et	al.	(2017),	but	such	an	approach	requires	a	
large	number	of	sites	(Lamy	et	al.,	2017).

4.2 | The usefulness and the limits of SNP markers 
for partitioning neutral and adaptive genetic diversity 
in SGDC studies

Our	work	extends	and	 refines	previous	 studies	 that	 suggested	 in-
vestigating	neutral	and	adaptive	genetic	diversity	simultaneously	to	
reveal	neutral	 signatures	 in	 species–genetic	diversity	 relationships	
(Bertin	et	al.,	2017;	Watanabe	&	Monaghan,	2017)	and	shows	that	
this	framework	can	be	successfully	applied	in	single-	species	studies	
when	 large	genomic	datasets	are	available.	The	efficiency	of	 such	
approach,	however,	depends	on	how	much	the	adaptive	and	neutral	
genetic	diversity	deviate	 from	each	other,	and	may	 thus	be	better	

suited	 for	 studies	 focusing	 on	 fragmented	 ecosystems	 occurring	
over	environmental	gradient,	as	was	the	case	here.	The	presence	of	
false	positives	 in	 the	outlier	datasets	may	also	be	another	 limiting	
factor,	 but	 this	 problem	 is	 likely	 to	be	 resolved	 in	 the	near	 future	
since	 it	will	 be	possible	 to	have	more	genomic	 resources	 for	non-
model	 species	 (e.g.,	 fully	 sequenced	and	annotated	genomes)	 that	
will	allow	the	validation	of	outlier	loci	as	candidate	genes	for	adapta-
tion	(Manel	et	al.,	2016).

Markers	traditionally	used	in	SGDC	studies	such	as	simple	se-
quence	repeats	(SSR)	and	AFLPs	are	of	limited	use	in	teasing	apart	
the	neutral	and	non-	neutral	components	of	genetic	diversity	be-
cause	these	markers	sample	only	a	small	proportion	of	the	entire	
genome	and	usually	produce	a	relatively	limited	number	of	markers,	
hampering	 the	 identification	 of	 numerous	 outlier	 loci.	 However,	
the	combined	 information	of	AFLP	and	SNP	data	provided	unex-
pected	results.	Overall,	we	found	slightly	higher	genetic	diversity	
estimates	with	the	1,709	SNPs	than	with	the	85	AFLP	data	in	all	but	
two	sites,	which	departed	from	this	general	 trend	and	presented	
conspicuously	 low	 SNP	 genetic	 diversity	 estimates	 compared	 to	
their	AFLP	 counterparts	 (sites	 6	 and	21,	 Supporting	 Information	
Figure	S3).	We	tested	whether	the	low	SNP	estimates	in	these	two	
sites	could	be	due	to	sampling	effects	by	re-	calculating	the	AFLP	
genetic	diversity	using	only	the	individuals	considered	for	the	SNP	
estimation.	No	matching	trend	was	detected.	Given	that	these	two	
sites	belong	to	the	same	cpDNA	lineage	and	AFLP	cluster	as	the	
other	sites	in	this	study	(as	described	in	Troncoso	et	al.,	2017),	this	
discrepancy	cannot	be	explained	by	a	higher	level	of	allelic	drop-
out	in	these	sites	potentially	caused	by	strong	differences	in	their	
genetic	composition	compared	to	the	other	sites.	Because	techni-
cal	 issues	are	also	very	unlikely,	the	incongruent	results	between	
SNPs	 and	 AFLPs	 for	 those	 two	 sites	 suggest	 that	 evolutionary	
processes	reducing	genetic	diversity	may	have	affected	these	two	
marker	types	differently.	SNPs	have	low	mutation	rates	(10	×	10−8 
to	10	×	10−9;	Nachman	&	Crowell,	2000),	much	lower	than	micro-
satellites	(0.001	to	0.005;	Pinto	et	al.,	2013),	whereas	AFLP	muta-
tion	rates	can	exceed	those	of	microsatellites	(Kuchma,	Vornam,	&	
Finkeldey,	2011).	As	a	consequence,	AFLPs	respond	more	strongly	
to	 recent	demographic	events	 than	SNPs,	whose	polymorphisms	
may	 actually	 reflect	 the	 effects	 of	 recent	 to	 intermediate	 evolu-
tionary	events	(Waits	&	Storfer,	2016).	The	possibility	of	different	
responses	 by	 AFLPs	 and	 SNPs	 is	 supported	 by	 the	 recent	 com-
parison	of	genetic	diversities	in	Arabidopsis	between	SNP	and	mi-
crosatellites	 (Fischer	et	al.,	2017).	The	relatively	 low	SNP	genetic	
diversity	observed	in	sites	6	and	21	could	therefore	indicate	a	re-
duction	in	genetic	diversity	in	these	two	C. gayana	populations	due	
to	 a	 past	 demographic	 event,	 whose	 effects	 could	 no	 longer	 be	
detected	in	AFLPs.

The	SNP	genetic	diversity	of	 these	 two	sites	 reduced	the	spe-
cies–genetic	diversity	 relationship	with	species	 richness,	and	once	
removed,	 the	 SGDCs	 with	 the	 full	 and	 nonoutlier	 datasets	 were	
much	higher	(and	closer	to	the	value	reported	in	Bertin	et	al.,	2017).	
This	suggests	 that	SNP	markers	 responded	uniquely	 to	some	evo-
lutionary	 processes	 in	 sites	 6	 and	 21.	 Genes	 versus	 species	 may	
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differ	 in	their	rates	of	response	to	evolutionary	pressures,	and	the	
responses	of	species	and	genetic	diversity	may	not	always	be	equally	
strong.	Our	 results	 suggest	 that	SNPs	could	 strongly	 respond	and	
show	 longer-	lasting	 response	 to	diversity-	reducing	processes	such	
as	drift	than	AFLP	markers.
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