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SUMMARY 

In many amniotes, the amniotic fluid is depicted as a dynamic milieu that participates in the 

protection of the embryo (cushioning, hydration, and immunity). However, in birds, the protein 

profile of the amniotic fluid remains unexplored, even though its proteomic signature is predicted 

to differ compared to human’s. In fact, unlike humans, chicken amniotic fluid does not collect 

excretory products and its protein composition strikingly changes at mid-development due to the 

massive inflow of egg white proteins, which are thereafter swallowed by the embryo to support its 

growth. Using GeLC-MS/MS and shotgun strategies, we identified 91 non-redundant proteins 

delineating the chicken amniotic fluid proteome at day 11 of development, before egg white 

transfer. These proteins were essentially associated with the metabolism of nutrients, immune 

response and developmental processes. Forty-eight proteins were common to both chicken and 

human amniotic fluids, including serum albumin, apolipoprotein A1 and alpha-fetoprotein. We 

further investigated the effective role of the chicken amniotic fluid in innate defense and revealed 

that it exhibits significant antibacterial activity at day 11 of development. This antibacterial 

potential is drastically enhanced after egg white transfer, presumably due to lysozyme, avian beta-

defensin 11, vitelline membrane outer layer protein 1, and beta-microseminoprotein-like as the 

most likely antibacterial candidates. Interestingly, several proteins recovered in the chicken 

amniotic fluid prior and after egg white transfer are uniquely found in birds (ovalbumin and related 

proteins X and Y, avian beta-defensin 11) or oviparous species (vitellogenins 1 and 2, riboflavin-

binding protein). This study provides an integrative overview of the chicken amniotic fluid 

proteome and opens stimulating perspectives in deciphering the role of the avian egg-specific 

proteins in embryonic development, including innate immunity. These proteins may constitute 
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valuable biomarkers for poultry production to detect hazardous situations (stress, infection, etc.), 

that may negatively affect the development of the chicken embryo. 
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ABBREVIATIONS 

AF, Amniotic fluid; ATCC, American Type Culture Collection; BMSP, Beta-microseminoprotein-

like; ED, Day of incubation; emPAI: Exponentially modified Protein Abundance Index; EW, Egg 

white; HBP, Heparin-binding protein; L.m., Listeria monocytogenes; MYA: Million Years Ago; 

NCBI, National Center for Biotechnology Information; S.E., Salmonella enterica Enteritidis; TSB, 

Trypticase soy broth.  
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INTRODUCTION 

In oviparous species, the embryonic development depends on the various components, nutrients 

and structures composing the eggshell, the egg yolk, the egg white and the vitelline membrane (1). 

It also relies on the proper development of extra-embryonic structures, namely the yolk sac, the 

amniotic sac and the allantoic/chorioallantoic sac (1) (Fig. 1A). These structures develop at the 

very early stages of development and originate from embryonic tissues, but are not considered to 

be part of the embryo’s body (2). They are discarded or resorbed at hatching. These living 

structures are partly preserved among amniotes species, but exhibit evolutionary particularities 

depending on the embryonic development mode (3). The yolk sac, which appears in the first stages 

of development, degenerates rapidly in mammals (Fig. 1B), while in some birds, it participates in 

digestive processes until the last stages of incubation prior to complete abdominal resorption at 

hatch. The yolk sac may have many other functions, which are temporally regulated all along the 

incubation: it resembles the liver in the synthesis of plasma proteins, the bone marrow in 

erythropoiesis, and the intestine, in digestion of nutrients and their transport to the embryo (4). 

Thus, the yolk sac plays different roles to support or replace the functions of several organs that 

have not yet reached their full functional capacity. The chorioallantoic sac is composed of the 

chorioallantoic membrane, which results from the fusion of the chorion and the allantois at ED5-

ED6, and it includes the allantoic fluid. It is a highly vascularized structure that ensures many 

functions during chicken embryonic development: it collects nitrogenous and excretory products 

from the embryonic metabolism, it participates in respiratory exchanges, in calcium transport from 

the eggshell towards the embryo, in ion and water reabsorption from the allantoic fluid and thus in 

acid-base homeostasis (2, 5). In humans, the allantoic sac forms only a part of the umbilical cord. 

Concerning the amniotic sac, it was described in all amniotes as a structure, filled out with the 



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Da Silva, M., Dombre, C., Brionne, A., Monget, P., Chessé, M., De Pauw, M., Mills, M.,

Combes-Soia, L., Labas, V., Guyot, N., Nys, Y., Rehault-Godbert, S. (2019). The unique features of
proteins depicting the chicken amniotic fluid. Molecular and Cellular Proteomics, 18 (3),

S174-S190. , DOI : 10.1074/mcp.RA117.000459

Proteomic specificities of the chicken amniotic fluid

6 

amniotic fluid (AF) protecting the embryo against mechanical shocks, dehydration or adhesion to 

the other extra-embryonic membranes. It also serves as a source of nutrients (6). It provides a 

favorable environment to accompany the development of the embryo: pH of about 7.1 to 7.3, stable 

temperature, and sensorial stimulation (taste, sense of smell and hearing) (7). 

Human AF is a fluctuating milieu mainly composed of water (about 96.4%), minerals, trace 

elements, carbohydrates, hormones, glucose, lipids, urea, cells, free amino-acids, proteins and 

peptides (6, 8). Its biochemical composition changes with gestational age/developmental stage as 

a result of various physiological mechanisms including feto-maternal exchanges: AF swallowing 

and lung fluid production by the embryo, excretion of fetal urine and transfer of solutes and fluids 

across amniotic and uterine membranes (Fig.1B) and across skin especially before keratinization 

(6, 9). In humans, before skin keratinization (25 weeks of age), the composition of the AF is very 

similar to fetal blood plasma. As a dynamic milieu reflecting the physiological or pathological 

status of the embryo, the biochemical composition of the AF has been extensively characterized 

in humans since it contains molecular markers for the detection of embryonic abnormal 

development, inflammation, infection or pregnancy-related complications (10). Its role as a 

mechanical cushioning of the embryo, together with the fact that 25% of its total protein content 

is associated with the immune response or is related to defense (9), corroborate its primary role in 

the protection of the embryo. However, it seems that proteins of the human AF are not solely 

involved in the nutrition and protection of the embryo, but they display many other functions 

related to metabolism and development (11). In oviparous species, however, the functions of the 

AF are still poorly understood and there are several structural and biochemical particularities that 

suggest similar but also diverging functions. First, there are two major extra-embryonic fluids in 

birds, the amniotic and allantoic fluids, which are physically separated, to ensure different 
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functions. Similar to humans, the bird AF is contained in the amniotic sac and bathes the embryo, 

whereas the allantoic fluid is secreted in the chorioallantoic sac (Fig. 1A), which is an intestinal 

intussusception of the embryo that receives disposable wastes directly from the embryonic 

kidneys. These anatomical specificities deeply influence the biochemical composition of the AF, 

which thus in birds does not collect fetal urine. The second main difference, as compared with 

mammals, is that after ED12, egg white proteins are massively transferred into the amniotic sac 

(12), where they are absorbed orally by the embryo as a source of amino-acids to support its rapid 

growth (13-17) until hatching (ED21). Consequently, this process drastically impacts protein 

concentration of AF, which is barely measurable before the 11th day of incubation (ED11) (about 

0.01 mg/mL) and reaches 200 mg/mL following egg white transfer (18). In fact, before ED11, the 

chicken AF is mainly composed of water and mineral elements, such as chloride, sodium, 

potassium, phosphorus, magnesium, calcium, iron, and sulfur, like human AF (19, 20). More 

recently, a study analyzing the major proteins of the chicken AF, revealed that it contains egg 

white proteins even before the massive egg white transfer at ED12 (18). Some of these proteins 

are egg yolk proteins while others may originate from the embryo (skin, feather) or its extra-

embryonic membranes (amniotic, yolk, and chorioallantoic sacs). All these proteins have been 

associated with functions comparable to those described for human AF, including metabolism, 

immune system or tissue remodeling, but they also serve as a major source of amino-acids and 

energy for the embryo, especially during the second half of incubation. The avian specificity of 

some egg white and yolk proteins (21) recovered in the AF, together with the physical separation 

of amniotic sac from the embryonic urinary system (chorioallantoic sac) and the transfer of egg 

white proteins at mid-incubation, suggest that this fluid may have very specific biological 

functions related to birds or even oviparity.    
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In such a stimulating context, we explored the avian AF proteins and specificities using the chicken 

as a model of birds. Similar to human AF, with albumin, immunoglobulins, transferrin and 

haptoglobin (9, 11), chicken AF contains a few major proteins (ovalbumin, ovotransferrin, etc.) 

that complicate proteome profiling, masking the presence of proteins of lower abundance. 

Therefore, we designed a bottom-up proteomic approach combining two complementary strategies 

as GeLC-MS/MS (protein samples fractionated by SDS-PAGE are analyzed by nanoLC-MS/MS 

after in-gel digestion) and shotgun (protein samples are directly analyzed by nanoLC-MS/MS after 

in-solution digestion) to give an exhaustive view of the AF proteome at ED11, before the 

substantial transfer of egg white (which completely changes the global protein profile). We 

performed a functional annotation of AF proteome using Gene Ontology approaches: 1) on the 10 

most abundant proteins representing 66% to 81% of the total protein contents for GeLC-MS/MS 

and shotgun analyses, respectively, and 2) on the complete list of proteins resulting from both 

analyses. This approach was compulsory because many of the major proteins composing egg 

structures do not have assigned functions in databases yet and consequently, the functional 

annotation of the entire list would enrich functions, which biological significance may be 

overestimated. Considering the importance of human amniotic fluid in innate immunity and to 

better appreciate the contribution of chicken amniotic fluid to embryo defense against 

microorganisms, we used an in-gel antibacterial assay combined to mass spectrometry, to identify 

antibacterial proteins and peptides contained in AF or in enriched fractions of AF, before and after 

egg white transfer. As the protein composition of the chicken AF is temporally regulated during 

incubation, AF functions are thoroughly modified following egg white transfer. Finally, a 

comparison with the published proteomes of the human AF (11) and a phylogenetic study on all 
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proteins identified in this study, allowed us to highlight chicken AF specificities, revealing a set 

of proteins, which are only present in birds and which physiological roles remain fully opened.  

EXPERIMENTAL PROCEDURES 

A diagram describing the experimental design is presented in Fig 2. 

Samplings 

Fluids were sampled as previously described by Da Silva et al. (18). Briefly, fertile eggs were 

incubated under standard conditions (45% relative humidity, 37.8°C, automatic turning every 

hour), after a three-day storage at 16°C and 85% relative humidity to ensure synchronization of 

developmental stages (UE1295, INRA, F-37380 Nouzilly, France). At ED11 and ED16, 40 eggs 

of comparable weight (62.4 ± 4.3 g) containing viable embryos (checked by candling) were tested 

with the Acoustic Egg Tester (KU Leuven, Belgium), and cracked eggs were discarded. By ED11, 

egg white was sampled with a syringe after drilling a hole in the eggshell. After removing the 

eggshell, the egg content was poured into a Petri dish and the AF was recovered with a syringe 

through the amniotic membrane. By ED16, the egg white was collected in the Petri dish with pliers 

due to its high viscosity. All samplings were performed under sterile conditions. Sex of individual 

embryos was determined using PCR (22).  

Fluid characterization 

After samplings, AF were centrifuged at 3,000 g (10 min, 4°C) to remove insoluble components. 

Volumes, pH (Microelectrode pH InLab 423, Fisher Scientific, Illkirch, France), osmolality (Fiske 

Mark 3 Osmometer, Advanced Instruments, Niederbronn-Les-Bains, France), and absorbance 

spectrum (Nanodrop, ND-100 Spectro, Wilmington, USA) were analyzed for each sample. The 
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total protein concentration for each sample was assessed using BioRad DC Protein Assay Kit II 

(BioRad, Marnes-la-Coquette, France). All samples (25 μL) containing loading buffer (5X loading 

buffer: 0.25 M Tris-HCl, 0.05% bromophenol blue, 50% glycerol, 5% SDS, pH 6.8) were 

independently loaded on a 12.5% SDS-PAGE (1 mm) using a Mini-Protean II electrophoresis cell 

(BioRad, Marnes-la-Coquette, France), and further stained with Coomassie Brilliant Blue G250 or 

silver nitrate. This overall characterization (pH, osmolality, protein concentration, absorbance and 

electrophoretic patterns, and embryo’s sex) helped us to select homogenous samples that were 

stored at - 20°C for further analyses by mass spectrometry (Supplementary data S1).  

In-Gel and in-Solution Tryptic Digestion 

Twelve homogenous AF samples including six males and six females were pooled for protein 

identification. Proteins were either separated by a 4-20% SDS-PAGE followed by Coomassie 

Brilliant Blue G250 staining (GeLC-MS/MS analysis), or directly identified in solution (shotgun 

analysis) as described previously (18). The SDS-PAGE gel was cut in 20 sections (Fig. 3B) and 

each slice was rinsed separately in water and then acetonitrile. Proteins were then reduced with 

dithiothreitol, alkylated with iodoacetamide, and incubated overnight at 37°C in 25 mM NH4HCO3

with 12.5 ng/ L trypsin (Sequencing grade, Roche, Paris, France) as described by Shevchenko 

(23). Peptides were pooled and dried using a SPD1010 speedvac system. Peptide mixtures 

associated to each band and in-solution samples were analyzed using nanoLC-MS/MS. 

NanoLC-MS/MS 

The resulting peptide mixtures were analyzed using a LTQ Orbitrap Velos Mass Spectrometer 

(Thermo Fisher Scientific, Germany) coupled to an Ultimate® 3000 RSLC chromatographer 
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controlled by Chromeleon 6.8 software (Dionex, Amsterdam, The Netherlands). Five microliters 

of sample were desalted and pre-concentrated on a trap column (Acclaim PepMap 100 C18, 100 

m inner diameter x 2 cm long, 3 m particles, 100 Å pores) for 10 min at 5 l/min with 4% 

solvent B (0.1% formic acid, 15.9% water, 84% acetonitrile) in solvent A (0.1% formic acid, 

97.9% water, 2% acetonitrile). Separation was conducted using a nanocolumn (Acclaim PepMap 

C18, 75 m inner diameter × 50 cm long, 3 m particles, 100 Å pores) at 300 nL/min by applying 

a gradient of 4 to 55% of solvent B during 90 min for GeLC-MS/MS analyses and during 120 min 

for shotgun analyses.  

Data were acquired using Xcalibur 2.1 software (Thermo Fisher Scientific, San Jose, CA). The 

instrument was operated in positive mode in data-dependent mode. Survey full scan MS spectra 

(from 400 to 1800 m/z) were acquired with a resolution set at 60,000. The 20 most intense ions 

with charge states  2 were sequentially isolated (isolation width: 2 m/z; 1 microscan) and 

fragmented using CID mode (energy of 35% and wideband-activation enabled). Dynamic 

exclusion was active during 30 s with a repeat count of one. Polydimethylcyclosiloxane (m/z, 

445.1200025) ions were used for internal calibration. 

The mass spectrometry proteomics data have been submitted to the ProteomeXchange Consortium 

and are available via the PRIDE partner repository (24) with the dataset identifiers PXD008046 

and 10.6019/PXD008046. 

Protein Identification and Data Validation 

The reliability between replicates was investigated by comparing chromatograms and spectra with 

Xcalibur 2.1 software. MS/MS ion searches were performed using Mascot search engine v 2.3.2 

(Matrix Science, London, UK) via Proteome Discoverer 2.1 software (ThermoFisher Scientific) 
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against National Center for Biotechnology Information (NCBI) database with Chordata taxonomy 

(782,473 entries, downloaded in January 2017). Fragments and parents’ tolerances were set at 0.80 

Da and 5 ppm, respectively. The search parameters included trypsin as a protease with two allowed 

missed cleavages and carbamidomethylcysteine, methionine oxidation and acetylation of N-term 

protein as variable modifications. Mascot results obtained from the target and decoy databases 

searches were subjected to Scaffold 4.8.2 software (Proteome Software, Portland, USA), and 

displayed as clusters. Peptide and protein identification and validation were performed using the 

Peptide and Protein Prophet algorithms, respectively (95.0% probability, at least two different 

unique peptides), from three technical replicates. The abundance of identified proteins was 

estimated by calculating the emPAI using Scaffold Q+ software (version 4.4, Proteome Software, 

Portland, USA). 

Keratins were not taken into consideration in the subsequent analysis as they might be either 

contaminant from human skin and/or chicken skin. The list of keratins identified in the analysis is 

however available (Supplementary data S2).  

Functional Annotation Using Gene Ontology 

Gene ontology terms annotations for biological processes and cellular components category 

provided by the GO consortium (http://www.geneontology.org/) were investigated using protein 

database with UniprotKB (http://www.uniprot.org), and genomic databases with Ensembl 

(http://www.ensembl.org) and NCBI (https://www.ncbi.nlm.nih.gov).  

Comparison between Human and Chicken AF proteomes 
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IPI numbers and gene symbols corresponding to the proteins identified in the human AF were 

retrieved from the publication of Cho et al. (11), which integrated all previous studies on the human 

AF proteome. Earlier versions of the human protein sequences were recovered at the European 

Bioinformatics Institute website (ftp://ftp.ebi.ac.uk/pub/databases/IPI/) and updated according to 

the Ensembl database. Human and chicken gene symbols were compared and for associated genes, 

protein sequences were aligned using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify 

similarity and identity percentages between both species. Human orthologues were systematically 

checked using Ensembl compara (http://www.ensembl.org) to confirm previous alignments.  

Phylogenetic analysis 

Phylogenetic branches of emergence were defined in order to determine the moment of appearance 

of each gene in the tree of life. Eight possible branches for gene birth were considered: 

Opisthokontas (animals and fungi ~ 1215 million years ago (MYA)), Bilateria (bilateral animals 

~ 937 MYA), Chordata (chordates ~ 722 MYA), Vertebrata (vertebrates ~ 535 MYA), Tetrapoda

(tetrapods ~ 371 MYA), Amniota (amniotes ~ 296 MYA), Sauropsida (reptiles and birds ~ 276 

MYA), and Mammalia (mammals ~ 220 MYA). For all identified proteins, the corresponding 

Ensembl protein ID was retrieved from the Ensembl database and the related phylogenetic trees 

were analyzed to highlight the specificity of proteins evolution (http://www.ensembl.org) (25). 

Eighty-nine trees were studied. In order to complement the phylogenetic trees, the conservation of 

synteny was systematically observed using Genomicus (http://www.genomicus.biologie.ens.fr) 

and Mapviewer (https://www.ncbi.nlm.nih.gov/mapview) (21, 26). The gene was defined as 

conserved if both surrounding/adjacent genes were the same. 
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Purification of heparin binding proteins 

Heparin-Sepharose chromatography was performed according to manufacturer’s instructions. 

Briefly, 2 mL of beads (Heparin sepharose 6 Flast Flow, GE Healthcare, Sweden) were loaded 

onto a polypropylene column (QIAGEN, Courtaboeuf, France) and washed with 10 volumes of 

water and 10 volumes of washing buffer (50 mM Tris-HCl, 150 mM NaCl, pH 7.4). After loading 

the crude sample (pool of ten individuals, five males and five females), the beads were washed 

extensively with the washing buffer until the absorbance at 220 nm reached zero, as previously 

reported (27). Elution of bound proteins was achieved with 50 mM Tris-HCl, 2 M NaCl, pH 7.4, 

until the absorbance at 220 nm reached zero. Eluted fractions were desalted and concentrated by 

ultrafiltration (Ultracel-3K, Merck Millipore, Molsheim, France), and analyzed by 12.5% SDS-

PAGE under non-reducing and non-boiling conditions to preserve protein integrity, followed by 

Coomassie Brilliant Blue G250 staining.  

Antibacterial assays 

Antibacterial tests were conducted by direct detection of antibacterial activities after SDS-PAGE, 

a method adapted from Bhunia et al. (28). Pathogenic bacterial strains, Salmonella enterica serovar 

Enteritidis ATCC 13076 (S.E.) and Listeria monocytogenes EGD strain (L.m.) were provided by 

the International Centre for Microbial Resources (CIRM, 

https://www6.inra.fr/cirm_eng/Pathogenic-Bacteria) from the French National Institute for 

Agricultural Research (INRA, France). Pre-cultures of S.E. and L.m. were performed overnight in 

Trypticase Soy Broth (TSB, BD Biosciences) and in Brain Heart Infusion broth (BHI, BD Difco), 

respectively. This pre-culture was then used to inoculate a new culture broth (TSB or BHI) so that 

the mid-exponential phase was obtained after 3 or 4 hours of incubation depending on strains, with 
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shaking at 37 °C. Bacteria were centrifuged at 2000 g for 10 min at 4°C, washed twice with cold 

10 mM sodium phosphate buffer (pH 7.4), and re-suspended in cold sodium phosphate buffer. 

Bacteria (7.5x106 Colony Forming Unit) were introduced in 25 mL of autoclaved nutrient-poor 

agar (10 mM phosphate buffer containing 0.03% TSB medium, 1% low-endosmosis agarose 

(wt/vol) (Sigma-Aldrich, Saint-Quentin-Fallavier, France), and 0.02% Tween 20.  

In parallel, maximum of 20 μg of protein pools (see above) were loaded on two identical gels and 

further separated by 15% SDS-PAGE under non-reducing and non-boiling conditions, while 

maintaining the electrophoresis system at 4°C to avoid protein degradation. The first gel was 

stained with Coomassie Brilliant Blue G250 for further identification of antibacterial proteins by 

mass spectrometry. The second gel was dedicated to the antibacterial assay and was washed 

separately with 2.5% Triton X-100 and MilliQ water (4 x 15 min, 4°C), to eliminate SDS and 

renature proteins. Thereafter, the washed gel was covered with the nutrient-poor agar containing 

bacteria and incubated for 3 h at 37°C to allow protein diffusion in the agar. A second nutrient-

rich agar (10 mM phosphate buffer containing 6% TSB medium, 1% low-endosmosis agarose 

(wt/vol)) was poured on the nutrient-poor agar to allow bacterial growth. After an overnight 

incubation at 37°C, clear zones were defined as inhibition zones. These inhibition zones were 

superimposed on the Coomassie-stained gel to locate bands containing antibacterial proteins. 

These bands were cut from the Coomassie-stained gel and further processed as described above, 

for protein identification by mass spectrometry.  

Beta-microseminoprotein-like (BMSP) and avian beta-defensin 11 (AvBD11), two recently 

characterized antibacterial proteins from egg white were used as positive external controls (2 μg 

of proteins/well, data not shown). They were obtained as previously described (27).  
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Experimental Design and Statistical Rationale 

To address our scientific questions, we decided to use a conventional chicken laying strain (ISA 

Brown, Hendrix Genetics, St Brieuc, France) at 38 weeks of age, that were raised at the UE1295 

Pôle d’Expérimentation Avicole de Tours (INRA, F-37380 Nouzilly, France). Eighty fertilized 

eggs were incubated under standard conditions after a three-day storage at 16°C and 85% relative 

humidity to favor synchronization of developmental stages - knowing that conditions and duration 

of storage prior to incubation negatively impact embryo survival and development. The 

developmental stages were confirmed using the atlas of chicken developmental stages (29).  Egg 

weight and eggshell quality were both checked and protein profiles of each individual sample were 

analyzed by SDS-PAGE (Supplementary data S1, sheets #1 and #2). In parallel, the sex of the 

embryo was determined for all corresponding samples as described in Experimental Procedures to 

generate a pool of combined male and females AF that could encompass most proteins composing 

AF, regardless of the sex. The combination of all these parameters allowed us to define 12 samples 

with an equilibrated sex ratio that were all homogenous in terms of stages of development, 

biochemical parameters (pH, osmolality, absorbance spectrum, etc.), and SDS-PAGE protein 

profiles. All experiments were conducted in compliance with the European legislation on the 

“Protection of Animals Used for Experimental and Other Scientific Purposes” (2010/63/UE) and 

under the supervision of an authorized scientist (S. Réhault-Godbert, Authorization no. 37-144). 

Two complementary bottom-up proteomic strategies (GeLC-MS/MS and shotgun analyses) were 

combined to give a representative overview of protein diversity in chicken AF samples. Protein 

sequences were retrieved from Scaffold and blasted to check their GenBank accession numbers 

(NCBI), and to find corresponding Ensembl and Uniprot IDs. Chicken proteins identified in other 

species were also searched by BLAST alignments. Functional annotation and search for 
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antibacterial candidates were performed by combining Ensembl, Uniprot and NCBI data on 

chicken proteins and their orthologues. The identification of antibacterial candidates was 

completed by investigating protein and peptide antibacterial domains using specific sequence 

analyzing tools such as InterPro (https://www.ebi.ac.uk/interpro/). For the production of enriched 

fractions, we defined optimal conditions (volume of samples, volume of heparin-sepharose beads) 

depending on the initial concentration of proteins in AF and egg white samples from ED0, ED8, 

ED11, ED14 or ED16 stages. All samples (raw, flow-through and eluted fractions) were analyzed 

by SDS-PAGE. Protein profiles of egg white at ED11 and ED16 were compared to previously 

published data for experimental validation (27, 30). For antibacterial assays, at least three 

independent assays were performed on Listeria monocytogenes and Salmonella enterica 

Enteritidis strains, using two positive controls (one peptide and one protein) purified from chicken 

egg white.  The phylogenetic analysis and corresponding figures were conducted combining data 

available in Ensembl databases and in literature.  

RESULTS 

Proteomic profiling of AF – The global protein profile of AF assessed by SDS-PAGE is completely 

different when comparing the first half (ED8-11) to the second half of development (ED12-16), 

due to the massive transfer of egg white into the AF from ED12 onwards (Fig. 3A).  In this context, 

to better appreciate the intrinsic protein composition of chicken AF, a bottom-up proteomic study 

combining two different strategies was conducted on AF samples collected at ED11, the last day 

before egg white transfer. AF of 40 eggs corresponding to 17 females and 22 males (plus one 

embryo for which tissue sample was discarded) were collected as detailed in Experimental 
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Procedures. Individual SDS-PAGE profiles (using both Coomassie Brilliant Blue and silver 

stainings, Supplementary data S1, sheet #2), protein concentrations, pH, osmolality values, and 

spectra of absorbance were determined for each AF sample (Supplementary data S1, sheet #1). 

Since no significant differences could be detected between individuals and regardless of the sex 

after integration of all parameters, we constituted a pool representing 12 homogenous samples with 

equilibrated sex ratio for further analyses by high-resolution mass spectrometry. We performed 

both in-gel and in-solution independent tryptic digestions followed by nanoLC-MS/MS analysis 

for protein identification and quantification. For in-gel digestion, a 4-20% SDS-PAGE gel was cut 

(Fig. 3B) and each slice was further processed as mentioned in Experimental Procedures. We 

filtered data for keratins and other proteins that could reflect sample contamination by 

experimenters (Supplementary data S2). Ninety-one non-redundant proteins were identified, 

including 49 for shotgun analysis and 70 for GeLC-MS/MS analysis (Fig. 4). Twenty-eight 

proteins were common to both approaches (Fig. 4). Some of the identified proteins sometimes 

refer to other bird species than Gallus gallus, such as Coturnix japonica (japanese quail) or fish

Tachysurus fulvidraco (yellow catfish) (Supplementary data S3), either because the Gallus gallus

counterpart is still missing in the genome annotation, or because these specific variants have not 

yet been identified in the chicken species. Raw files, proteins, peptides scores, information and 

quantitative values are compiled in Supplementary data S2 and S3.  

Figure 4 illustrates the results using log10 of the Exponentially Modified Protein Abundance Index 

(emPAI), and log10 of the percentage of the protein sequence coverage (Supplementary data S3). 

According to this graph, a set of ten proteins emerged to be very abundant compared with others. 

Regardless of the methods, apolipoprotein A1 (APOA1), ovotransferrin (TF) and alpha-fetoprotein 

(AFP) were three of the most abundant proteins found in AF at ED11 (Fig. 4). If we consider the 



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Da Silva, M., Dombre, C., Brionne, A., Monget, P., Chessé, M., De Pauw, M., Mills, M.,

Combes-Soia, L., Labas, V., Guyot, N., Nys, Y., Rehault-Godbert, S. (2019). The unique features of
proteins depicting the chicken amniotic fluid. Molecular and Cellular Proteomics, 18 (3),

S174-S190. , DOI : 10.1074/mcp.RA117.000459

Proteomic specificities of the chicken amniotic fluid

19 

ten proteins with the highest emPAI for both shotgun and GeLC-MS/MS approaches, seven were 

common to both approaches: APOA1, TF, AFP, TTR (transthyretin), OVAL (ovalbumin), LYZ 

(lysozyme) and ALB (serum albumin). APOC3 (apolipoprotein C-III), SPINK7 (ovomucoid) and 

MDK (midkine) were found in the top ten resulting from in-solution method whereas GC (vitamin-

D protein), FSTL1 (follistatin-related protein A) and ACTB (actin, cytoplasmic 1) were identified 

in the top ten resulting from GeLC-MS/MS method (Supplementary data S3). The ten major 

proteins of AF after integration of quantitative values from both approaches are compiled in Table 

1. These proteins represent about 66% to 81% of the total protein content for GeLC-MS/MS and 

shotgun analyses, respectively. A primary analysis of the Gene Ontology terms of these major 

proteins revealed that six of them are associated with lipid, vitamin or hormone metabolisms 

(APOA1, AFP, ALB, GC, TTR, APOC3), while two additional proteins participate in embryo’s 

defense against pathogens (TF and LYZ) (Table 1). On the other hand, OVAL, which is specific 

to birds (31), is assumed to have a role in embryo’s nutrition as a source of amino acids while 

SPINK7 is a very potent protease inhibitor containing three inhibitory kazal-like domains. Despite 

the lack of information related to its physiological targets, SPINK7 presumably regulates 

endogenous proteolytic activities, preventing uncontrolled protein degradation and preserving 

overall protein integrity.  

Except APOC3, all these proteins were described to be secreted (Table 1).  

Gene Ontology analysis of the chicken AF proteome – An analysis of the occurrence of the Gene 

Ontology terms related to the biological processes and molecular functions, revealed that the most 

representative function of AF proteins is associated with cellular adhesion and migration, followed 

by functions associated with metabolism and transport of lipids, vitamins and carbohydrates (Fig. 
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5).  We defined six categories of general functions knowing that many proteins have multiple 

functions and appear in various groups (Supplementary data S3, sheet #2). Three processes seem 

to be exacerbated when comparing the first approach on the ten major proteins (Table 1) and the 

second performed on the whole list of proteins (Fig. 5): cellular migration and adhesion, 

metabolism (and transport) of lipids and vitamins, and immunity (defense). Twenty-one genes are 

classified in “immune response” (Fig. 5). This category includes effectors/antibacterial molecules 

such as TF and LYZ, but also immunoglobulins (CAO79236.1 and LOC107051274), mucins 

(MUC5ACL, MUC5B), protein TENP (BPIFB2), ovoinhibitor (SPINK5) or ovalbumin-related 

protein X (OVALX). It is noteworthy that ten proteins could not be assigned to any known 

function, including two of the major proteins identified in this work: OVAL and SPINK7 (Table 

1). Interestingly, among these 10 proteins, seven are potent protease inhibitors whose biological 

functions in the egg are still uncertain. 

Comparison with the human AF proteome – Chicken AF proteome at ED11 was compared with 

the 936 proteins identified in the human AF proteome (11) to shed light on chicken AF 

specificities. Out of the 936 proteins identified by Cho et al. (11), after removal of redundancies 

and considering the updated human genome assembly (GRCh38.p10, GCA_000001405.25, Dec 

2013), we ended with 842 proteins, plus 81 proteins retrieved from the other studies (11) 

(Supplementary data S3, sheet #4). This data integration led to 923 proteins that are identified so 

far in the human AF. When considering gene symbols, 48 proteins were found to be common to 

both chicken and human AF (Fig. 6). We confirmed their orthology relationship using Ensembl 

database. Although they do not share the same gene symbol, LOC107051274 and CAO79236.1 
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(immunoglobulins) can be likened to human immunoglobulins G, which are omnipresent in human 

AF (11). 

Assessment of the antibacterial potential of the chicken AF and comparison to egg white – To 

further assess the biological significance of AF as a source of antibacterial proteins, we adapted a 

method from Bhunia et al. (28) that allows the direct detection of antibacterial activities after a 

SDS-PAGE. Briefly, AF proteins and peptides were separated by SDS-PAGE under non-boiling 

and non-reducing conditions.  After removing SDS from the gel, a nutrient-poor agar containing 

bacteria was poured on the SDS-PAGE gel and left on the bench for three hours to allow for 

proteins diffusion. Thereafter, a nutrient-rich agar was added to favor bacterial growth. Regions 

were bacteria could not grow, because of the presence of antibacterial proteins and peptides, were 

detected as translucent areas. Antibacterial activity was tested against Listeria monocytogenes

(L.m.; Gram-positive) and Salmonella enterica Enteritidis (S.E.; Gram-negative), two bacteria 

against which egg proteins have already demonstrated their activity under similar experimental 

conditions (27). Because AF protein composition at ED11 is thoroughly modified from ED12 

onwards, due to the presence of egg white proteins masking the intrinsic protein composition of 

AF, we explored the antibacterial potential of AF at both ED11 and ED16 (Fig. 7A and 7B). Assays 

were performed on both pools of total AF, but also on fractions enriched in antibacterial molecules 

obtained after heparin-affinity chromatography (HBP, heparin-binding proteins), as previously 

described (27). At ED11, results show only weak antibacterial activity against Gram-positive L.m. 

for crude AF, and also for flow-through and eluted (HBP) fractions collected from heparin-

chromatography (Fig. 7A). Overall, the antibacterial activity against both L.m. and S.E. seems to 

increase with the egg white transfer, with new inhibition zones appearing for both bacterial strains 
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at ED16, particularly for the eluted fraction: one to five anti-L.m. zones from ED11 to ED16, 

versus only one anti-S.E. zone at ED16 (Fig. 7A and 7B). 

The HBP fraction of egg white has been previously reported to contain antibacterial proteins and 

activities (27, 30). In order to explore the regulation of egg white antibacterial activities all along 

incubation, we performed antibacterial assays on egg white HBP, sampled and purified at ED0, 8 

and 14 (Fig. 8). These stages of development were chosen knowing that egg white transfer into the 

AF is nearly complete at ED16 (almost no residual egg white at this stage). The antibacterial 

activity of the egg white HBP against both L.m. and S.E. changes during embryonic development. 

Indeed, the strong activity detected at ED0 at 19 kDa (Fig. 8, ED0) against L.m., progressively 

disappears to the benefit of anti-L.m. activities in the higher molecular masses (> 250 kDa) or 

lower molecular masses (about 14 kDa) (Fig. 8, ED8 and 14). In addition, three bands exhibiting 

anti-S.E. activities at ED0 (19 kDa and 14 kDa), were barely detectable at later stages (ED8 and 

ED14, Fig. 8). Antibacterial activity of egg white HBP at ED14 is in agreement with the 

antibacterial activities of the HBP in the AF at ED16: one inhibition zone in the higher masses (> 

250 kDa), and three bands in the lower masses (< 15 kDa) for L.m., as opposed to one inhibition 

zone at 15 kDa for S.E. An anti-L.m. zone between 25 and 37 kDa for the HBP at ED16 solely 

appears in AF, which might be associated with specific activation or expression of antibacterial 

proteins in this fluid at this stage.  

Identification of candidate proteins responsible for antibacterial activity in AF at ED11 and ED16, 

by mass spectrometry - In parallel to gels prepared for antibacterial assays, a SDS-PAGE realized 

under the same conditions was stained with Coomassie Brilliant Blue.  The superimposition of 

both the stained SDS-PAGE gel and the gel exhibiting antibacterial activities allowed us to select 
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SDS-PAGE bands (labeled A to H, Fig. 7A and 7B), which were susceptible to contain 

antibacterial proteins or peptides. These bands were analyzed by mass spectrometry at ED11 (band 

A, Fig. 7A) and at ED16 (bands B to H, Fig. 7B), which led to the identification of 29 proteins 

(Table 2) (Supplementary data S4). Among the most likely candidates possessing antibacterial 

activity, we could only find LYZ for AF at ED11. For sample at ED16, the most probable 

molecules are LYZ, but also AvBD11, vitelline membrane outer layer protein 1 (VMO1), avidin 

(AVD), beta-microseminoprotein-like (LOC101750704 G. gallus/LOC104403769 N. notabilis), 

OVALX, TF, BPIFB2, ovocleidin-17 (OC-17), midkine (MDK) (27, 30, 32-34). The antibacterial 

activity of SPINK5 was previously demonstrated against Bacillus but not against the two strains 

tested in the present study (35).    

Phylogenetic analysis – To further explore specificities of the chicken model, we analyzed the 

evolutionary history of the 91 proteins identified in chicken AF at ED11 (Fig. 9), combined to the 

18 new genes identified from the antibacterial assays at ED16 (Table 2). Among the 109 proteins 

analyzed, the corresponding genes of 100 of them were found in Ensembl database, but the 

evolution of only 90 of them could be successfully investigated. The 19 genes without an Ensembl 

accession number may be located in the non-sequenced or non-annotated region of the chicken 

genome or lack a related phylogenetic tree (AFP; APOA2; APOC3;  ASTL; COL1A1; DCHS1; 

DMBTIL3; DSG4; LOC104403769 / LOC101750704; LOC107051274; LOC107323914; MUC6; 

OC-17; OVSTL; PSAP; SLC3A2; SPINT4; immunoglobulin heavy chain variable region 

CAO79236.1 (no GeneID); transferrin ADK35120.1 (no GeneID)). Studying the moment of 

appearance in the tree of life of each gene coding for these proteins, revealed that most of them 

(88%) appeared before 371 MYA (tetrapods) with a peak between 937 MYA and 722 MYA 
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(bilateria) for almost 50% of them (Fig. 9A). Orthologues of most of these genes (80 genes) are 

present in primates and other mammals. Nine proteins lacking orthologues in mammals were 

identified. Four of these genes, AvDB11, OVAL, OVALY and OVALX are bird-specific and are 

also found in duck or turkey, but not in lizard or turtle (31, 36) (Fig. 9B). These genes appeared 

104 MYA after divergence between birds and reptiles. APOV1, present in bird and reptile 

genomes, emerged 276 MYA. AVD and RBP appeared in vertebrates and chordates, respectively 

(21, 37, 38). These genes are present in reptile and bird genomes but also in fishes or frogs, 

suggesting that they have been likely lost in the mammalian branch. Concerning RBP, the death 

of the gene in mammalian genome could not be confirmed because we could not find any 

pseudogenes. Genes encoding VTG1 and VTG2, which appeared in bilateria, are found in all egg-

laying species including platypus (VTG), which is the only oviparous mammal. Some authors have 

shown that these VTG1- and VTG2-encoding genes progressively lost their functions and became 

pseudogenes during mammalian evolution (38) concomitantly with the appearance of lactation and 

placentation. Several authors have described the process of pseudogenization of VTG genes during 

mammalian evolution (21, 38). OC-116 gene has been described as orthologous to MEPE gene in 

other species, although OC-116 has likely acquired some tissue specificities (eggshell 

biomineralization) resulting from divergent and adaptive evolution (21). Regarding SPINK7 

(ovomucoid) and SPINK5 (ovoinhibitor) genes (respectively ENSGALG00000003512 and 

ENSGALG00000031496), which appeared between 296 MYA and 276 MYA, the story is quite 

tricky as the data available in Ensembl were not sufficient to better define their evolutionary fate 

in various amniotes (Fig. 9). Both chicken proteins share 50.24% sequence identity. In Gallus 

gallus, they are located right next to each other on chromosome 13 within a 33-kb region, closed 

to other SPINK genes, which have all probably arisen by local duplication from a common ancestor 
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gene. All these proteins are characterized by one to 14 Kazal-like domains, which are known as 

evolutionary conserved domains, commonly occurring in tandem arrays, and usually associated 

with inhibitory activities against serine proteases. This SPINK gene family seems to evolve very 

quickly, and unfortunately, synteny analysis of these genes does not help in strengthening the 

corresponding phylogenetic tree, because all these genes are located within the same locus. 

Nevertheless, both chicken genes seem to have specifically duplicated in Sauropsida before the 

speciation of birds and reptiles. SPINK7 (ovomucoid) and SPINK5 (ovoinhibitor) genes encode 

proteins of 210 amino acids and 472 amino acids, respectively, the latter being characterized by a 

C-terminal extension of 252 amino acids containing four additional Kazal-like domains. A low 

percentage of sequence identity of chicken SPINK5 is also observed with mammalian SPINK5 

proteins (less than 30%), associated with a difference in the length of protein sequences and the 

number of corresponding Kazal-like domains (seven for chicken 

SPINK5/ENSGALG00000031496 and 14 for human SPINK5). Ultimately, the phylogenetic tree 

strongly suggests that both genes have been lost in several mammals, in particular in primates, 

hinting at a pseudogenization in mammals, in parallel to a speciation after duplication in birds. 

DISCUSSION 

In amniotes, AF plays a crucial role in maintaining a stable and protecting milieu. In humans, the 

exhaustive characterization of its biochemical components (including proteins) at various stages 

of gestation in normal and pathological situations constitutes an extremely valuable approach to 

help in the diagnosis of human fetal disorders and infections. In avian species, there is evidence 

that AF also participates in homeostasis around the embryo (18) and in its protection against 

physical constraints (19). Nevertheless, little is known about the physiological role of AF proteins 
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in birds, and there is to date only few proteomic data available on this fluid for these species. Yet, 

we suspect that the development of the embryo in an egg, with no mother-connected tissues, 

requires some inherent specificities and structural particularities that may influence AF protein 

profile and composition in birds.  

In the present work, we identified 91 non-redundant proteins with high confidence, in the chicken 

AF at ED11, before egg white transfer, which is higher than the 47 proteins identified in a 

preliminary study (18). This number is however far less than the number of proteins identified in 

two surveys performed simultaneously on the human AF (219 (9) and 923 (11)). This difference 

can be partly explained by the several exchanges with maternal tissues existing during gestation 

in human, which results in some specific AF protein profile, and the fact that in humans, metabolic 

wastes originating from the embryo are indeed recovered in the AF, which is actually not the case 

in the chicken model (6).  

All combined results indicate that more than half of the proteins identified in the chicken AF at 

ED11 have orthologues that have been identified as components of the human AF, which 

highlights that the overall protein composition of the AF before egg white transfer exhibits high 

similarities with the human AF. This is strengthened by the observation that, five of the top-ten 

high abundant proteins identified in the chicken AF at ED11 (Table 1 - ALB, TF, AFP, GC and 

APOA1) are also listed in the 15 high abundant proteins recovered in human AF (9, 11). It is to 

note that the TF identified in the chicken AF corresponds to ovotransferrin, which shares 51.76% 

and 51.73% sequence identity with human serotransferrin (P02787) and human lactotransferrin 

(P02788), respectively. This moderate sequence identity between ovotransferrin and its human 

homologues, together with some specific structural features, such as glycosylation and number of 

disulfide bridges (39), suggest similar functions with regard to their iron-binding capacity and 
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storage, but also possibly diverging functions. As an example, both lactotransferrin and 

ovotransferrin, but not serotransferrin, are depicted as antibacterial proteins (40, 41). Interestingly, 

two of the top-ten abundant proteins have no assigned functions: OVAL and SPINK7. These two 

proteins are major proteins of egg white (42) and appear belatedly in the timeline of evolution, 

with OVAL and very likely SPINK7, being specific to birds (Fig. 9). 

Because of these similitudes in protein composition, most functions allocated to the most abundant 

proteins composing the human AF resemble that of the chicken AF: 1) metabolism and transport 

of vitamins, lipids and hormones, 2) immune response, and 3) hemostasis and homeostasis. The 

analysis of the list of chicken AF proteins using automatic tools dedicated to Gene Ontology 

annotation, emphasized functions associated with many aspects of developmental biology such as 

morphogenesis and organogenesis, which include cell proliferation, adhesion and migration 

processes (Fig. 5). These functions were also significantly highlighted in the analysis of human 

AF proteins (9, 11). However, the biological significance of these functions in the chicken and 

human AF are likely to be overestimated since most proteins allocated to this function are very-

low-abundant proteins and may reflect some embryonic or extraembryonic tissues desquamation 

(Supplementary data S2 and S3, sheet #2).  

Overall, it is noteworthy that on the ten most abundant proteins in the chicken AF, four of them 

are major egg white proteins (OVAL, SPINK7, LYZ, TF) (42) whereas ALB, APOA1, GC, TTR, 

APOC3 are egg yolk abundant proteins (43). The gene expression of OVAL, SPINK7, LYZ and 

TF, which together account for about 80% of the egg white proteins, is under hormonal control in 

the oviduct and will not be expressed until the onset of sexual maturity of hens (44). OVAL, 

SPINK7 and TF are thus likely to flow from egg white into the amniotic sac, rather than being 

expressed by embryonic tissues. As for LYZ, the ongoing hypothesis is that it also originates from 
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egg white although it is also expressed by a wide range of tissues (45). On the other hand, APOA1, 

ALB, GC, TTR and APOC3 represent highly-abundant proteins of egg yolk (43), which also 

suggests that they are somehow transferred to the chicken AF from the egg yolk, or from the yolk 

sac where they are highly expressed (4). The molecular mechanisms by which egg white and egg 

yolk proteins enter the AF during the first half of incubation are still not completely solved (16, 

18). In contrast, the embryonic origin of AFP is unequivocal since it is a fetus-specific protein 

present in a range of (extra)embryonic tissues, highly expressed in the yolk sac and the embryo’s 

liver (46). Although all these proteins are the most abundant proteins identified in the chicken AF 

at ED11, their protein concentration in the AF at this stage (0.01 mg/mL) is not comparable to 

those recovered in the egg yolk (> 10 mg/mL, 22% of dry matter (47)) and egg white (380 mg/mL 

(30)). The low protein concentration of chicken AF at ED11 suggests that the presence of proteins 

in this fluid may reflect some passive transfer from these egg compartments towards AF, rather 

than an active mechanism. This concentration is also lower as compared with that of human AF: 

it is about 4 mg/mL at 15 weeks of gestation (10), it reaches its maximum (6 mg/mL) at 22-27 

weeks of gestation and starts to decrease to about 2 mg/mL at 37-40 weeks of gestation (48). It 

also highlights that chicken AF cannot meet embryo’s requirements in energy up to ED11, 

suggesting that during the first half of incubation, the egg yolk is the major source of 

energy/lipoproteins for the embryo. Some proteolytic activities (18) have been however detected 

in AF at ED11, but, because of the low abundance of the corresponding proteins, the biological 

significance of these activities in AF remains questionable as compared to the egg yolk, which 

concentrates hydrolytic enzymes (43, 49). The same observation can be made for the faint 

antibacterial activities detected at ED11 in the chicken AF, compared with the egg white, which 

concentrates high amounts of antibacterial proteins such as active lysozyme (30, 42).  
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These considerations along with the detection of antibacterial activities, corroborates the role of 

chicken AF in protecting the embryo against a range of potential physical, physicochemical and 

antibacterial pressures. Anyway, it also emphasizes some particularities such as the presence in 

this fluid of bird-specific proteins involved in embryo nutrition, eggshell biomineralization and 

egg defense (OVAL, OVALY, OVALX, OC-116, AvBD11) and likely SPINK7/ovomucoid and 

SPINK5/ovoinhibitor, recently renamed SPIK7 and SPIK5 in NCBI Gene database (May 2017) 

and which functions are still speculative. We also identified some oviparous-specific proteins 

(VTG1, VTG2, AVD, APOV1) (Fig. 9B), that appears concomitantly with the appearance of the 

egg-laying type of reproduction. Additionally, it revealed the presence of 43 proteins that have 

been uniquely found in the chicken AF as compared with the human AF (Fig. 6). Nevertheless, the 

high number of proteins reported for human AF as compared with chicken AF, merits further 

studies. In particular, a comprehensive study of the proteome profiling of the allantoic fluid would 

probably answer some of these questions, as we might find allantoic fluid-specific proteins whose 

orthologues have been actually identified in human AF. Future studies of this specific fluid would 

confirm or not whether proteins from both chicken amniotic and allantoic fluids actually 

encompass most proteins identified in the human AF.  

To conclude, the story of the chicken AF remains quite simple up to ED11, with a protein 

composition that is comparable to that of human AF or at least with similar general functions. 

However, the protein composition of AF is deeply revised after egg white transfer, which occurs 

between ED11 and ED12 (18). AF protein profile then completely merges with egg white protein 

profile (Fig. 3A) (16, 18, 50), which ten major proteins consist of OVAL, LYZ, TF, OVALY, 

SPINK7, VMO1, SPINK5, AVD, OVALX, and CST3 (42). Despite the presence of AF hydrolytic 

enzymes (18), no major proteolytic degradation of egg white proteins was detected after its inflow 
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into the amniotic cavity, up to ED19. These data suggest that abundant egg white antiproteases, 

namely SPINK7, SPINK5, cystatin (CST3) and ovostatin (OVST), remain active during the whole 

duration of incubation. It is rather interesting to note that the inflow of egg white actually reinforces 

some proteins that were already present as major proteins in ED11-AF (OVAL, LYZ, TF and 

SPINK7, Table 1). More than half of these major egg white proteins are related to innate defense 

(LYZ, TF, VMO1, SPINK5, AVD, OVALX) while three of them are protease inhibitors (SPINK5, 

SPINK7, CST3). Therefore, we suspected that chicken AF enriched in egg white proteins from 

ED12 onwards, acquires an increased antibacterial potential. An in-gel antibacterial assay was 

developed to better appreciate the relevance and effective activity of these so-called antibacterial 

proteins in the AF-egg white mixture. We showed that ED16-AF displays higher antibacterial 

potential against the two bacterial strains tested, namely Listeria monocytogenes (Gram-positive 

strain) and Salmonella enterica Enteritidis (Gram-negative strain) compared with ED11-AF. A 

total of 29 proteins were identified in the corresponding zones lacking bacterial growth (Table 2), 

including LYZ, AvBD11, VMO1, AVD, LOC101750704 (BMSP), OVALX, TF, OC-17, BPIFB2 

and MDK that were all previously reported to exhibit antibacterial activities (27, 32-34, 41, 51-

56). These results demonstrate that the antibacterial potential of egg white proteins is not impaired 

by the incubation temperature, nor by proteolytic degradation (thanks to egg white antiproteases), 

and that its antimicrobial potential remains effective after transfer into the AF. However, subtle 

differences are detected in AF at ED16 after completion of egg white transfer, but also in remnant 

egg white at ED8-14. Indeed, additional antibacterial zones were visualized on anti-Listeria 

monocytogenes assays performed with ED16-AF and ED8-14-EW (Fig. 7 and 8, respectively). 

Unexpectedly, they correspond to proteins or protein complexes/association of very high 

molecular masses (>250 kDa). These high molecular mass complexes were identified as a mixture 
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of egg white proteins: clusterin (CLU, 62 kDa), SPINK5 (52 kDa), OVALX (44 kDa), AVD 

(tetramer of 17 kDa units), OVAL (43 kDa), TF (78 kDa), ovomucin (234 kDa), LYZ (14 kDa), 

BPIFB2 (47 kDa), etc. The progressive appearance of these complexes suggests some specific 

regulation occurring during incubation. Indeed, the re-distribution of the egg white water towards 

extraembryonic sacs during the first half of the development, concentrates egg white proteins, thus 

promoting proteins interactions between antibacterial proteins/peptides of low molecular masses 

(LYZ, LOC101750704 (BMSP), AvBD11, etc.) with proteins of higher molecular masses 

(ovomucin). These protein complexes do not seem to affect the antibacterial protein/peptide 

activities, which are still effective even before oral absorption by the embryo (Fig. 8), thus forming

another barrier against bacteria around the embryo’s body. As the embryo moves and develops in 

the AF until hatching, it can be hypothesized that this mixture of antimicrobial molecules and 

mucins may also constitute a protective biofilm deposited on embryo feathers and skin to protect 

the embryo and the newborn chick. This is partly supported by several articles that reported the 

presence of lysozyme and defensin-like molecules in human vernix caseoa (57, 58), a protective 

lipid-rich substance that covers the skin of the human fetus during the last trimester of gestation 

and the newborn. Whether this enhanced antimicrobial potential of AF prior to the swallowing has 

some relevant biological significance with respect to the protection of the embryonic digestive 

tract should also retain major attention. Indeed, the fate of AF-egg white proteins mixture that is 

ingested by the embryo is still poorly understood. These proteins remain very stable in egg white 

during incubation but also in AF (16, 18) and all along the digestive tract of the embryo, up to 

ED19 (50). Similarly, some egg white typical profiles can be visualized in the yolk sac content at 

ED20 just before emergence of the chick, with OVAL, LYZ and TF as major proteins (13, 50). 

These data together with the fact that OVAL was recovered as a native form in central nervous 
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system and other embryonic organs (16), suggest that this protein and possibly related proteins 

OVALX and OVALY may have other functions than nutrition (31). From these data, we infer that 

intrinsic egg yolk proteases exhibit limited proteolytic activities on egg white content at this stage. 

This can be partly explained by the gradual increase of the yolk pH, which impacts the activity of 

aspartic proteases (59), such as chicken cathepsin D, a key enzyme in yolk processing (49). It 

seems that everything converges to protect egg white-AF protein content from uncontrolled 

proteolytic and thermal degradation (presence of numerous proteases inhibitors together with the 

progressive increase in the thermostable S-ovalbumin during incubation (60, 61)) to be utilized by 

the embryo and/or the chick at a very precise moment of its development/growth.  

Besides its major interests for comparative biology approaches and for deciphering the functions 

and specificities of avian extraembryonic compartments, these results (protein profile and 

composition) constitute a reference start point for analyses of pathological conditions due to 

infection or impaired development occurring during the chicken embryonic development. As 

examples, in humans, differences in concentration of AFP, defensins, vitamin-binding proteins, 

APOA1, and TTR in AF (also identified in chicken AF) have been associated with many metabolic 

and developmental disorders such as trisomy, developmental delays, preterm-labor, inflammation 

or infections (62-64). These data combined to other high throughput methods such as 

metabolomics or epigenetics, and general egg quality traits, may constitute useful tools for poultry 

production. Indeed, these approaches may help to further investigate the impact of chicken lines, 

housing systems and nutrition of hens (65, 66) or of more subtle egg manipulations including 

conditions of egg storage prior to the incubation (67) or thermal manipulation of eggs (68), on 

many aspects of chicken embryo’s development and health. We believe that the identification of a 

set of molecular markers for abnormal embryonic development in chicken extraembryonic fluids, 
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will contribute to the development of tools to improve poultry management and, to increase the 

robustness of chicks and chickens to help them face contrasted and changing environments. 
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FIGURE LEGENDS 

Figure 1. Schematic representation of the extraembryonic structures during the chicken (A) 

and human embryonic development (B); chicken embryo at mid-incubation (11 days) and 

human embryo mid-gestation (21 weeks), respectively. 

Figure 2. Diagram describing the experimental design. A., preparation of biological samples, 

B., proteomic analyses using Shotgun and GeLC-MS/MS analyses, C., antibacterial potential of 

egg samples and identification of antibacterial candidates. AF, amniotic fluid; Cb, Coomassie 

Brilliant Blue staining; ED, Day of incubation; EW, egg white; HBP, heparin-binding proteins.

Figure 3. SDS-PAGE analysis of the chicken amniotic fluid (AF) during incubation. A. 12.5% 

SDS-PAGE analysis of the AF from days 8-11 (ED8-11) to days 12-16 (ED12-16) of the 

incubation (2 μg and 10 μg, respectively) followed by Coomassie Brilliant Blue staining. B. 4-

20% SDS-PAGE profile of AF at ED11 for GeLC-MS/MS analysis. Horizontal lanes and numbers 

indicate the position of gel slices (1-20) prepared for in-gel digestion by trypsin. Molecular masses 

are expressed in kDa. 

Figure 4. Quantitative distribution of the 91 proteins identified in the chicken amniotic fluid 

at ED11, for shotgun and GeLC-MS/MS mass spectrometry analyses. Proteins are represented 

according to log10 of their Exponentially Modified Protein Abundance Index (emPAI) and log10 

of the percentage of their protein sequence coverage. The most abundant proteins identified after 

compilation of data resulting from both approaches are illustrated in a dotted square. They were 

further analyzed for functional annotation as shown in Table 1.  
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Figure 5. Functions of the proteins identified in the chicken amniotic fluid at 11th day of 

incubation (ED11). Using Gene Ontology terms, as described in Experimental Procedures, 80 

genes could be assigned to five major functions whereas the biological function of 10 proteins are 

still not documented in this database (this latter group includes ovalbumin (OVAL) and ovomucoid 

(SPINK7), two proteins of high abundance (Table 1, Supplementary data S3)).  

Figure 6. Venn diagrams representing the specific and overlapping proteins identified in the 

human (during the whole gestation) and chicken (11th day of incubation) amniotic fluid (AF). 

Human AF data were obtained from the work of Cho et al. (11), which combines results from nine 

publications (Supplementary data 3, sheet #3). 

Figure 7. Antibacterial activity of the chicken amniotic fluid (AF) before and after the egg 

white transfer into the amniotic sac at ED11 (A) and ED16 (B). AF samples were analyzed by 

Coomassie Brilliant Blue staining (Cb) and their antibacterial activities were assessed against 

Listeria monocytogenes (L.m.) and Salmonella enterica Enteritidis (S.E.). Flow-through and eluted 

fractions were obtained after affinity chromatography on heparin-sepharose as described in 

Experimental Procedures. Black arrows indicate inhibition zones corresponding to an impaired 

bacterial growth (due to bacteriostatic or bactericidal activities of AF proteins or peptides). Grey 

letters A to H correspond to bands that were cut from the Cb gel, prior analysis by mass 

spectrometry for protein identification (Table 2). 
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Figure 8. Antibacterial activity of the heparin-bound proteins of egg white at ED0 (start of 

incubation), at ED8 (8th day of incubation) and ED14 (14th day of incubation). Proteins were 

analyzed by Coomassie Brilliant Blue staining (Cb) and their antibacterial activities were assessed 

against Listeria monocytogenes (L.m.) and Salmonella enterica Enteritidis (S.E.), as described in 

Experimental Procedures. Black arrows indicate inhibition zones corresponding to an impaired 

bacterial growth (due to bacteriostatic or bactericidal activities of egg white proteins or peptides).  

Figure 9. Evolutionary scenario of the chicken amniotic fluid (AF) proteins. (A) Evolutionary 

frieze of 76 of the 91 proteins identified in the AF on the 11th day of incubation (ED11), and of 14 

of the 29 potential antibacterial candidates identified in the AF at ED16 (in grey). The 10 genes 

underlined in yellow are specific to birds and/or reptiles. (B) Life tree of the bird and/or reptile 

specific 10 genes (underlined in yellow) that display bird and/or reptile specificities. The presence 

of a gene is depicted by a solid symbol, while the loss of a gene is depicted by a hollow symbol 

and marked with “ .” The divergent time of lineages refer to Tian et al. (21) and phylogenetic 

analysis using Ensembl (http://www.ensembl.org/index.html). For SPINK5 and SPINK7 genes, 

which are marked with a question mark, we cannot state on the distribution of these genes within 

amniotes, based on the data currently available in Ensembl databases and despite the synteny 

analysis of these genes.  This issue is discussed in the Results section. 
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Table 1. Top-ten abundant proteins found in the chicken amniotic fluid at ED11 (11th day of incubation) using shotgun and GeLC-

MS/MS analysis. Quantitative values are expressed as the percentage of the Exponentially Modified Protein Abundance Index (emPAI). 

Words in italics refer to hypothetical/unknown functions. Proteins that are also listed in the top 15 high abundance proteins from the 

human amniotic fluid are indicated with an asterisk (9, 11). Proteins that were not detected in one or the other approach are indicated by 

a dash in the emPAI column.  

Gene symbol Gene Description GeLC-MS/MS 
% emPAI

Shotgun  
% emPAI Biological Process Cellular component

APOA1* Apolipoprotein A-I 27.8 39.1 Lipid metabolism Secreted

OVAL Ovalbumin 7.8 2.0 Nutrition Secreted

TF* Ovotransferrin 7.8 17.6 Defense response;  
Iron metabolism Secreted

AFP* Alpha-fetoprotein 7.5 7.7 Blood pressure homeostasis;  
Development (folliculogenesis) Secreted

LYZ Lysozyme C 3.4 1.7 Defense response Secreted

ALB* Serum albumin 3.3 1.6 Blood pressure homeostasis;  
Fatty acid, DNA, ion metabolism Secreted

GC* Vitamin D-binding protein 3.2 0.4 Vitamin metabolism Secreted

TTR Transthyretin isoform 1 2.8 3.5 Vitamin and hormone metabolisms Secreted

SPINK7 Ovomucoid isoform 1 - 2.4 Regulation of proteolytic processes Secreted

APOC3 Apolipoprotein C-III - 7.1 Lipid metabolism Extracellular region
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Table 2. Potential antibacterial candidates identified in the heparin-binding fraction of the chicken amniotic fluid at ED11 and ED16. 

Proteins contained in the SDS-PAGE bands corresponding to bacterial inhibition zones (Listeria monocytogenes and Salmonella

Enteritidis, Fig. 7) were analyzed using mass spectrometry. Bands where spectral counts were the highest are indicated in bold.  

Identified Proteins (29) Accession Number Gene symbol Molecular 
Mass (kDa) 

Corresponding SDS-
PAGE bands (Fig.7) 

Mutant cysteine-rich FGF receptor  [G. gallus] AAB39211.1 GLG1 122 G
Avidin [G. gallus] CAC34569.1 AVD 17 B, C, D, E, F, G, H
OvoglobulinG2 type BB [G. gallus] BAM13273.1 BPIFB2 47 B, C, D, E, F
Ovomacroglobulin, ovostatin [G. gallus] CAA55385.1 OVST 164 C
Sodium/potassium-transporting ATPase subunit alpha-1, precursor [G. gallus] NP_990852.1 ATP1A1 112 A
Peptidyl-prolyl cis-trans isomerase B precursor [G. gallus] NP_990792.1 PPIB 19 E
Mucin-6, partial [G. gallus] XP 015142236.1 MUC6 98 B, C
Metalloproteinase inhibitor 2 precursor [G. gallus] NP_989629.1 TIMP2 22 E
Metalloproteinase inhibitor 3 precursor [G. gallus] NP 990818.1 TIMP3 20 E
Gallinacin-11 precursor [G. gallus] NP_001001779.1 AvBD11 12 C
Ovoinhibitor precursor [G. gallus] NP_001025783.2 SPINK5 52 B, C
Ovalbumin-related protein Y [G. gallus] NP 001026172.1 OVALY 44 B, C, D
Elongation factor 1-alpha 1 [G. gallus] NP_001308445.1 EEF1A1 50 G
Vitelline membrane outer layer protein 1 precursor [G. gallus] NP 001161233.1 VMO1 20 C, E, F, G
Astacin-like metalloendopeptidase precursor [G. gallus] NP_001292019.1 ASTL 46 D
Lysozyme C [G. gallus] P00698.1 LYZ 16 A, B, C, D, E, F, G, H
Ovalbumin [G. gallus] P01012.2 OVAL 43 A, B, C, D, E, F, G, H
Ovotransferrin [G. gallus] P02789.2 TF 78 B, C
Ovocleidin-17 [G. gallus] Q9PRS8.2 OC-17 15 G
Ovomucin [G. gallus] XP_003641415.1 MUC5B 234 B, C
Tumor necrosis factor receptor superfamily member 6B [G. gallus] XP_004947191.1 TNFRSF6B 38 D
Beta-actin [G. gallus] CAA25004.1 ACTB 46 A, G
Beta-microseminoprotein-like [N. notabilis] XP_010010315.1 LOC104403769 15 C, E, F, G
Ovalbumin-related protein X [G. gallus] XP 015137660.1 OVALX 45 B, C, D, E, F, G
Clusterin [G. gallus] XP_015140573.1 CLU 62 C
Midkine [G. gallus] XP_015142525.1 MDK 16 G
Alpha-2-macroglobulin-like protein 1 [G. gallus] XP 015148230.1 A2ML1 160 B, C
ATP synthase subunit alpha, mitochondrial [G. gallus] NP_989617.1 ATP5A1Z 56 A
Deleted in malignant brain tumors 1 protein-like [G. gallus] XP 015156102.1 DMBT1L3 100 B, C

In italics: LOC104103769 from N. Notabilis has a G. Gallus homologue (LOC101750704), which has been erroneously removed from Pubmed database following 
the release of Gallus_gallus-5.0 assembly in 2015. This chicken homologue has been unambiguously identified in egg white (25) and shares 88.7% sequence 
identity with LOC104403769 from N. notabilis.  
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