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Abstract

This study aims reporting on 23 gridded precipitation datasets (P-datasets) reliability across West 
Africa through direct comparisons with rain gauges measurement at the daily and monthly time scales 
over a 4 years period (2000-2003). All P-datasets reliability vary in space and time. The most efficient 
P-dataset in term of Kling–Gupta Efficiency (KGE) changes at the local scale and the P-dataset 
performance is sensitive to seasonal effects. Satellite-based P-datasets performed better during the 
wet than the dry season whereas the opposite is observed for reanalysis P-datasets. The best overall 
performance was obtained for MSWEP v.2.2 and CHIRPS v.2 for daily and monthly time-step, 
respectively. Part of the differences in P-dataset performance at daily and monthly time step comes 
from the time step used to proceed the gauges adjustment (i.e day or month) and from a mismatch 
between gauge and satellite reporting times. In comparison to the others P-datasets, TMPA-Adj v.7 
reliability is stable and reach the second highest KGE value at both daily and monthly time step. 
Reanalysis P-datasets (WFDEI, MERRA-2, JRA-55, ERA-Interim) present among the lowest statistical 
scores at the daily time step, which drastically increased at the monthly time step for WFDEI and 
MERRA-2. The non-adjusted P-datasets were the less efficient, but, their near-real time availability 
should be helpful for risk forecast studies (i.e. GSMaP-RT v.6). The results of this study give important 
elements to select the most adapted P-dataset for specific application across West Africa.

Keywords: Precipitation datasets, Reliability, West Africa
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1. Introduction

1.1.  Precipitation: a key factor subject to uncertainty

Water resources are facing unprecedented changes related to redistribution of seasonal precipitation 

(Saeed et al., 2018) and intensity (Fischer and Knutti, 2015; Giorgi et al., 2018) owing to climate 

variability. With a six-fold increase of water extraction during the 20th century in response to increases 

in the world population (Cosgrove and Risberman, 2000), food requirements and the economy may be 

particularly affected by these changes. Accurate spatiotemporal precipitation monitoring is therefore 

crucial for detect and quantifying ongoing changes in optimising water resource management. 

Traditionally, the precipitation amount is measured at the point scale from gauge measurements. 

However, access difficulty, political instability, and economic issues have often resulted in sparse and 

unevenly distributed rain gauge networks that incorrectly capture the spatial precipitation variability 

(Lebel et al., 1997; Li and D.Heap, 2008). Alternatively, weather radar stations enable precipitation 

monitoring with spatial distribution over larger and even remote areas. However, radar stations are 

expensive, and only a few are available worldwide. In addition, large amounts of radar signal 

interference prevent accurate estimation of precipitation over complex terrains (Tang et al., 2016; 

Zeng et al., 2018). Several authors have recently reported on the potential of using cellular phone 

signal attenuation during precipitation events to retrieve precipitation measurements (Doumounia et 

al., 2014; Messer et al., 2006; Overeem et al., 2011; Zinevich et al., 2008). Although these estimations 

are accurate, they are limited to regions with high antenna density (e.g. urban areas). Moreover, this 

technique faces the problem of accessing data owned by private cellular phone companies. 

Regardless of the technique employed, precipitation data collection at the regional scale usually 

includes potential conflicts of interest in water resource management between neighbouring 

countries. In this context, gridded precipitation datasets (P-dataset) at an almost global scale offer an 

unprecedented alternative. Over remote regions, P-datasets have already shown promising 

perspective for water resource management by enhancing our understanding of drought (e.g. Agutu 
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et al., 2017; Guo et al., 2017; Satgé et al., 2017; Toté et al., 2015) and flood (e.g. Gao et al., 2017; 

Nikolopoulos et al., 2013; Toté et al., 2015) events, precipitation variability (e.g. Arvor et al., 2017; 

Carvalho et al., 2012), streamflow (e.g. Collischonn et al., 2008; De Paiva et al., 2013; Satgé et al., 2019; 

Sun et al., 2018b; Zhang et al., 2018) and snow cover dynamics (e.g. Satgé et al., 2019), and agriculture 

productivity (e.g. Thaler et al., 2018; Wit et al., 2010).

1.2.  State of the art for P-datasets

Three groups of gridded P-dataset can be defined depending on the input and technique used 

to retrieve the precipitation amounts: (1) those based on the spatial information of available gauges, 

(2) those based on reanalysis data derived from physical and dynamical models, and (3) those based 

on satellite information using passive-microwave (PMW) and infrared (IR) information. It is worth 

mentioning that most of the P-datasets merge aspects of these three inputs and techniques to ensure 

the best accuracy possible. Recently, 30 global-scale P-datasets with variable space–time coverage and 

resolution have been listed (Sun et al., 2018a) which present precipitation estimates discrepancy in 

space and time according to their different bases such as data capture, integration, and algorithms. 

For example, gauge-based P-dataset reliability varies in space and time according to changes in the 

number of available gauges used for the interpolation process (Sun et al., 2015). Similarly, satellite-

based P-dataset reliability varies in space and time because the PMW and IR algorithms present limits 

over complex mountainous (Hussain et al., 2017; Satgé et al., 2017a) and snow-covered regions 

(Ferraro et al., 1998; Levizzani et al., 2002) and during short-term and slight precipitation events 

(Gebregiorgis and Hossain, 2013; Tian et al., 2009). Finally, reanalysis data-based P-datasets present 

variable reliability in space and time owing to the limited ability of the models used to represent small-

scale convective cells (Beck et al., 2019). In this context, many studies assess P-dataset space–time 

uncertainties to evaluate their reliability (Maggioni et al., 2016; Maggioni and Massari, 2018). 

 A recurrent drawback of assessment studies on P-dataset reliability is the consideration of a 

limited number of P-datasets. A comprehensive reliability overview of available P-datasets, as listed in 
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Table 1, can be achieved only by backcrossing the results from different P-dataset assessment studies. 

However, the studies are conducted over distinct regions and are based on different statistical indices, 

spatial and temporal scales, and periods, thus creating difficulties in intercomparing P-dataset 

reliability assessments. For example, when comparing TMPA, CMORPH, and PERSIANN P-datasets with 

reference gauge estimates, CMORPH was shown to have the most reliable P-datasets in Pakistan, 

China, Bali, and Indonesia (Hussain et al., 2017; Rahmawati and Lubczynski, 2017; Su et al., 2017; Zeng 

et al., 2018). However, TMPA was the most reliable in India, Guyana, Chile, and the South American 

Andean plateau (Prakash et al., 2014a; Ringard et al., 2015; Satgé et al., 2016; Zambrano-Bigiarini et 

al., 2017). Hence, P-dataset reliability for a given region should not be determined from results 

reported for other regions. In this context, it is decisive to consider the most representative P-dataset 

sample to insure a consistent report on P-dataset reliability across the considered region. 

1.3.  The need for assessing P-datasets over West Africa

Africa is particularly affected by climate changes threatening rainfed agriculture, which 

represents its main agricultural and economic activity (Sultan et al., 2013). However, owing to the 

socio-economic context, the available gauge network is limited by many spatial and temporal gaps 

which prevent efficient water management. According to the World Meteorological Organisation 

(WMO), the African continent requires uniform distribution of at least 3000 stations (ideally 10,000); 

however, only 744 stations are present. Moreover, only one quarter of the 744 stations conform to 

international standards. 

Because they provide precipitation information on a regular grid at the global scale, P-datasets 

offer a unique opportunity for complementing traditional precipitation measurements and optimising 

population adaption to the ongoing changes. However, as previously mentioned, P-dataset estimates 

are indirect measurements with spatial and temporal uncertainties which need to be reported to 

evaluate their reliability. Some authors have already initiated this effort over West Africa. In 2012, 

seven P-datasets were tested over the basin of la Volta including CMORPH, GPROF-v6, GSMaP-MVK 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Satgé, F., Defrance, D., Sultan, Bonnet, Seyler, Rouché, Pierron, Paturel, J.-E. (2019).

Evaluation of 23 gridded precipitation datasets across West Africa. Journal of Hydrology. , DOI :
10.1016/j.jhydrol.2019.124412

5

v5, RFE-2.0, TMPA-v6, PERSIANN, and ERA-Interim (Thiemig et al., 2012). In 2013, nine P-datasets 

including CMORPH, EPSAT-SG, GPCP, GSMaP-MVK, GSMaP-RT, RFE-2, TMPA-v6, TMPA-RT v6, and 

PERSIANN and seven P-datasets including PERSIANN, CMORPH, TMPA-RT v.6, TMPA-Adj v.6, GSMaP-

MVK, GCPC-1dd, and RFE-2 were tested in Benin and Niger for hydrological (Gosset et al., 2013) and 

agriculture applications (Ramarohetra et al., 2013), respectively. Both studies found that their use 

could introduce large biases in crop or hydrological modelling framework. More recently, six P-datasets 

including ARC-2, CMORPH, GSMaP-MVK, PERSIANN, TAMSAT, and TMPA-v.6 were compared with 

gauge measurements data over the entire African continent (Awange et al., 2016). 

All of the aforementioned studies focus mainly on P-datasets regularly updated by their 

developers to enhance the precipitation estimates. Since then, updated versions of the considered 

products have been made available with more accurate precipitation estimates. For example, the 

benefits brought by the new TMPA-v.7 in comparison to its previous version (TMPA-v.6 ) has been 

reported in many regions (e.g. Anjum et al., 2016; Prakash et al., 2014b; Satgé et al., 2016). 

Additionally, most of the tested P-datasets originate from the TRMM-era constellation which has 

limited temporal coverage from 1998 to the present. In this context, new studies have reported on 

recently released P-dataset versions with larger temporal coverage. For example, in 2016 over Burkina, 

seven P-datasets including ARC-2, CHIRPS v.2, PERSIANN-CDR, RFE v.2, TAMSAT v.2, TMPA v.7, and 

TMPA RT v.7 were assessed at the daily, decadal, and monthly timescales (Dembélé and Zwart, 2016). 

In 2017, TAMSAT v.3 was introduced and compared with its previous version (TAMSAT v.2) and with 

six P-datasets including ARC v.2, CHIRP v.2, CHIRPS v.2, CMORPH v.1, RFE and TMPA v.7 over West 

Africa, specifically Nigeria and Niger; Uganda; Zambia; and Mozambique (Maidment et al., 2017). In 

2017, 10 P-datasets including CFSR, CHIRPS, CMORPH v.1 RAW and CRT, PERSIANN-CDR, RFE-2, 

TAMSAT v.2, TMPA v.7, TMPA-RT v.7, and GPCC were assessed over six watersheds located in Burkina, 

Nigeria, and Ghana (Poméon et al., 2017). Nonetheless, the reported studies indicate that the results 

are mostly limited in space (country or basin scale) and in terms of considered P-datasets sample. To 

our knowledge, only one study has reported on P-datasets at the regional West African scale with a 
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limited sample of P-datasets including TMPA v.7, UDEL v.3.1, CRU v.3, and ARC v.2 (Akinsanola et al., 

2016). 

1.4.  Objectives

According to the previously described context, the present study aims to compare the accuracy of 23 

P-datasets in reproducing the characteristics of rain gauge measurements across West Africa, which is 

an unprecedented comparison. The consideration of a P-dataset sample ,as large as possible, aims to 

provide a robust overview of P-dataset performance over West Africa. The analysis is conducted at 

both daily and monthly time steps. This study provides important feedback to P-dataset developers 

for enhancing the algorithms for next-generation P-datasets and to potential users to support their P-

datasets selection.

2. Materials Methods

2.1.  Study Area

The study area, hereafter referred to as West Africa, extends from the Atlantic coast of Senegal to 

eastern Chad and the Gulf of Guinea to north of the Sahel (18° W–25° E, 4° N–25° N) (Fig. 1). The region 

is characterised by a marked south–north gradient of rainfall amount ranging from 5000 mm.year-1 in 

Cameroon to less than 200 mm.year-1 in the northern Sahel. The West Africa region can be divided into 

three main climatic zones: (i) the Guinea Coast (4°–8° N), (ii) the Savannah (8°–11° N), and (iii) the Sahel 

(11°–16° N) (Abiodun et al., 2012; Akinsanola et al., 2016) (Fig. 1). For all zones, the year is 

characterised by a dry season in winter and a rainy season in summer linked to the West African 

Monsoon. This concentrates most of the annual rainfall amount from April to October for the Guinea 

Coast zone and from June to September for both the Savanah and Sahel zones (Fig. 1). The rainfall 

interannual temporality is great with the occurrence of drought phases (dry spell) during the rainy 

season and in interannual rainfall with very dry and very wet years in the 1970s and 1950s, 

respectively. 
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Figure 1. Study area with the considered 0.1° grid-cell locations and the mean monthly precipitation amount given for the 

three climatic regions based on gauge records of 2000–2003.

2.2.  Selected P-datasets

A sample of 23 gridded P-datasets including 13 long-term P-datasets with more than 35 years of 

continuous observation and 10 P-datasets spanning more than 15 years was selected. Table 1 provides 

an overview of these P-datasets and relevant references for further information on their respective 

productions. 

Acronym Full Name Data Temporal 
Coverage

Temporal 
Resolution 

Spatial
 Coverage

Spatial 
Resolution Latency Link References

ARC-2
Africa Rainfall 
Climatology 
v.2

S, G 1983–present Daily Africa 0.1° 2 days ftp://ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2/ Novella and Thiaw, 2012

CHIRP v.2

Climate 
Hazards 
Group 
InfraRed v.2

S, R 1981–present Daily 50° 0.05° 2 days ftp://ftp.chg.ucsb.edu/pub/org/chg/products/ Funk et al. (2015)

CHIRPS v.2 CHIRP with 
Station v.2 S, R, G 1981–present Daily 50° 0.05° 1 month ftp://ftp.chg.ucsb.edu/pub/org/chg/products/ Funk et al. (2015)

ftp://ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/
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CMORPH-Raw v.1

Climate 
Prediction 
Center 
MORPHing 
raw v.1

S 1998–present 3 h 60° 0.25° 2 days ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/ Joyce et al. (2004)

CMORPH-CRT v.1 CMORPH bias 
corrected v.1 S, G 1998–present 3 h 60° 0.25° 6 months ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/ Xie et al. (2017)

CMORPH-BLD v.1

CMORPH 
satellite-
gauge 
merged v.1

S, G 1998–present Daily 60° 0.25° 10 months ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/ Xie et al. (2017)

Xie et al. (2007) 

CPC v.1

Climate 
Prediction 
Center 
unified v.1

G 1979–present Daily Global 0,5° 1 days ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/

Chen et al. (2008)

ERA-Interim

European 
Centre for 
Medium-
range 
Weather 
Forecast Re 
Analysis 
Interim

R 1979–present 3 h 60° 0.75° 3 months https://www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era-interim-land Dee et al. (2011)

Ushio et al. (2009)

GSMaP-RT v.6

Global 
Satellite 
Mapping of 
Precipitation 
standard v.6

S 2000–present Hourly 60° 0.1° 3 days ftp://hokusai.eorc.jaxa.jp/standard/v6/

Yamamoto and Shige (2014)

Ushio et al. (2009)

GSMaP-Adj v.6 GSMaP 
adjusted v.6 S, G 2000-–resent Hourly 60° 0.1° 3 days ftp://hokusai.eorc.jaxa.jp/standard/v6/

Yamamoto and Shige (2014)

GPCC v.7

Global 
Precipitation 
Climatology 
Center

G 1901–2013 Monthly Global 1° Irregular

https://rda.ucar.edu/datasets/ds496.0/ Becker et al., 2013; Schneider et al., 2014

JRA-55
Japanese 55-
year Re 
Analysis

R 1959–present 3 h Global 0,56° 1 Month https://rda.ucar.edu/datasets/ds628.0/ Kobayashi et al. (2015)

JRA-55 Adj JRA-55 
Adjusted R,G 1959–2013 3 h Global 0,56° Stopped http://search.diasjp.net/en/dataset/S14FD Izumi et al. (2017)

Gelaro et al. (2017)

MERRA-2

Modern-Era 
Retrospective 
Analysis for 
Research and 
Applications 
2

S, R, G 1980–present Hourly Global 0,5° 2 Months https://disc.gsfc.nasa.gov/

Reichle et al. (2017)

Beck et al. (2018)

MSWEP v.2.2

Multi-Source 
Weighted 
Ensemble 
Precipitation 
v.2.2

S, R, G 1979–present 3h Global 0.1° Few 
months

http://www.gloh2o.org/ 
(Personal communication)

Beck et al. (2019)

PERSIANN-CDR

Precipitation 
Estimates 
from 
Remotely 
Sensed 
Information 
using 
Artificial 
Neural 
Network and 
Climate Data 
Record

S, G 1983–2016 Daily 60° 0.25° 6 months https://chrsdata.eng.uci.edu/ Ashouri et al. (2015)

Hsu et al. (1997

PERSIANN-RT PERSIANN 
real time S 2000–present 6 h 60° 0.25° 2 days https://chrsdata.eng.uci.edu/

Sorooshian et al. (2000)

Hsu et al. (1997)

PERSIANN-Adj PERSIANN 
Adjusted S, G 2000–2010 3 h 60° 0.25° Stopped http://fire.eng.uci.edu/PERSIANN/

Sorroshian et al. (2000)

SM2Rain-CCI v.2

Soil Moisture 
to Rain 
applied on 
ESA Climate 
Change 
Initiative v.2

S 1998–2015 Daily Global 0.25° Stopped https://zenodo.org/record/846260#.XQEZtYgzZaQ Ciabatta et al. (2018)

TAMSAT-v.3

Tropical 
Applications 
of 
Meteorology 
using 
SATellite and 
ground-
based 
observations 
v.3

S, G 1983–present Daily Africa 0.0375° 3 days https://www.tamsat.org.uk/about Maidment et al. (2017)

Huffman et al. (2018)

TMPA-RT v.7

TRMM Multi-
satellite 
Precipitation 
Analysis Real 
Time v.7

S 1998–present 3 h 60° 0.25° 1 day https://mirador.gsfc.nasa.gov/

Huffman et al. (2010)

ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/
ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim-land
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim-land
ftp://hokusai.eorc.jaxa.jp/standard/v6/
ftp://hokusai.eorc.jaxa.jp/standard/v6/
https://rda.ucar.edu/datasets/ds496.0/
https://rda.ucar.edu/datasets/ds628.0/
http://search.diasjp.net/en/dataset/S14FD
https://disc.gsfc.nasa.gov/
http://www.gloh2o.org/
https://chrsdata.eng.uci.edu/
https://chrsdata.eng.uci.edu/
http://fire.eng.uci.edu/PERSIANN/
https://zenodo.org/record/846260#.XQEZtYgzZaQ
https://www.tamsat.org.uk/about
https://mirador.gsfc.nasa.gov/
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Huffman et al. (2018)

TMPA-Adj v.7 TMPA 
Adjusted v.7 S, G 2000–present 3 h 50° 0.25° 3 months https://earthdata.nasa.gov/

Huffman et al. (2010)

WFDEI

WATCH 
Forcing Data 
methodology 
applied to 
ERA-Interim

R, G 1979–2016 Daily Land 0.5° Stopped ftp://ftp.iiasa.ac.at/ Weedon et al. (2014)

Table 1. Main characteristics and references of the  P-datasets. In the data source column, S, R, and G stands for satellite, 

reanalysis, and gauge information. Spatial coverage refers to the absolute maximum and minimum latitude with precipitation 

information, and latency refers to the time delay for data availability. The P-datasets including gauge-based information are 

represented in blue, and italic font is used for P-datasets available in NRT latency of one to three days.

2.2.1. Comments on the selected P-datasets

Some P-datasets use gauge-based information in their respective algorithms (Table 1). Three types of 

gauge-based information are used: (1) punctual precipitation estimates derived from gauge records, 

(2) gridded precipitation estimates based on interpolation of punctual gauge records, and (3) gauge 

precipitation estimates (punctual or gridded) merged with different satellite datasets of precipitation, 

brightness, or land surface temperature.

Punctual precipitation estimates from the world meteorological organisation (WMO) Global 

Telecommunication System (GTS) (Novella and Thiaw, 2012) and numerous African national 

meteorological and hydrological centres (Maidment et al., 2014) are used for ARC-2 and TAMSAT v.3, 

respectively. In both cases, the gauge network is very sparse. For example, the GTS gauge network has 

a 1:23 000 km2 gauge-to-area ratio across the African continent (Novella and Thiaw, 2012). 

The gridded precipitation estimates are (i) GPCC with a 1° spatial resolution (Becker et al., 

2013; Schneider et al., 2014) and (ii) the daily CPC with 0.5° spatial resolution (Chen et al., 2008; Xie et 

al., 2007). JRA-55 Adj, TMPA-Adj v.7, and WFDEI use GPCC monthly data, whereas CMORPH-CRT v.1, 

CMORPH-BLD v.1, GSMaP-Adj v.6, and MERRA-2 use CPC daily data. 

The gridded precipitation estimates merged with satellite precipitation estimates are (i) the 

CHPclim dataset with a 0.05° grid-cell size (Funk et al., 2015) and (ii) the GPCP dataset with a 2.5° grid-

https://earthdata.nasa.gov/
ftp://ftp.iiasa.ac.at/
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cell size (Adler et al., 2003, 2012) and (iii) the WorldClim 2 dataset with a 1km grid-cell size (Fick and 

Hijmans, 2017). CHPclim and WorldClim 2 use satellite observations as predictors to improve the 

interpolation from point gauge records, whereas GPCP uses the gauge record to adjust the 

precipitation fields derived from satellite observations. Further details are reported elsewhere (Adler 

et al., 2003; Funk et al., 2015). Among the considered P-datasets, CHIRPS v.2 use the CHPclim dataset, 

MSWEP v.2.2 use the WorldClim 2 dataset and PERSIANN-CDR uses the GPCP dataset. 

CHIRPS v.2 also includes punctual precipitation estimates from various public data streams, 

private archives, and national meteorological agencies, while MSWEP v.2.2 incorporates monthly GPCC 

and daily CPC gridded precipitation datasets. 

Another difference between the P-datasets is the time latency for their availability. The P-

datasets are generally available in (i) a few days or (ii) a few months after the observation (Table 1). 

Some are in near real time (NRT) latency of one to three days and are more adapted for flood or 

landslides forecasting, water resource management, and agriculture, while the others are more 

adapted for retrospective climatic studies. 

Figure 2 shows the mean annual precipitation patterns retrieved from all P-datasets. Except for 

CPC v.1 and the P-datasets, which use CPC v.1 for post adjustment processing (ARC-2, CMORPH-CRT 

v.1, CMORPH-BLD v.1, GSMaP-Adj v.6 and MERRA-2), all P-datasets represent the typical south–north 

precipitation gradient with two  precipitation hotspots located over the southwest and south region. 

It should be noted that SM2Rain-CCI v.2 estimates are based on soil moisture estimates, which are 

strongly attenuated by the vegetation canopy; this results in significant gaps over areas with moderate 

to dense vegetation, as observed over the southern region (Fig. 2) (Dorigo et al., 2015). Additionally, a 

sensor failure in the ERS-2 gyroscope from January 2001 to June 2003 accentuated these gaps and 

explains the gaps observed over the central and northern regions (Fig. 2) (Dorigo et al., 2015). 
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Figure 2. Mean annual precipitation for 2000–2003 retrieved from all P-datasets at their original grid sizes. For each P-dataset, 

only the grid-cells with more than 80% of available daily data were retained. Blue and black colours are used to highlight P-

datasets using and not using gauge-based information, respectively, and italic font is used for P-datasets available in NRT 

latency of one–three days.

2.2.2. P-dataset pre-processing 

The P-datasets available at a sub-daily time step (Table 1) were aggregated to obtain daily time step 

records matching the local gauge observations (8 h to 8 h local time). It is worth mentioning that P-
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datasets delivered at daily time scales  (Table 1) use time-windows different from those of the gauge, 

which can compromise the comparison at the daily scale. This point is further discussed in section 4.1. 

Moreover, the P-datasets differ in terms of grid-cell size, ranging from 0.0375° for TAMSAT v.3 to 1° 

for GPCC v.7. To enable consistent comparison, all P-datasets were resampled to the 0.1° grid-cell size. 

Bilinear averaging (interpolation) are used for P-datasets with grid-cell size < 0.1°  (> 0.1°) (Beck et al., 

2019).

2.3.  Reference precipitation dataset

A database of 1,440 gauges were made available by several African national meteorological and 

hydrological centres. The stations are distributed onto 952 0.1° grid-cells. For each grid-cell, a 

reference daily precipitation series was obtained averaging the gauges included in the grid-cell. To 

ensure consistent analysis, only grid-cells with more than 80% of daily records were considered. The 

four-year period of 2000–2003 was finally retained to consider the largest number of 0.1° grid-cells 

(187) grid-cells. 

2.4.  Monthly P-dataset estimate assessment

The monthly amounts were computed for only months with more than 80% of common daily records 

for all datasets (reference and P-datasets). The accuracy of monthly P-dataset estimates was assessed 

using a quantitative statistical analysis based on the modified Kling–Gupta Efficiency (KGE), an 

objective function combining correlation ( ), bias ( ), and variability  components (Gupta et al., 𝑟 𝛽 (𝛾)

2009; Kling et al., 2012) (Eq. 1). We used KGE because water resource management requires reliable 

representation of precipitation temporal dynamics (measured by ) and volume (measured by  and 𝑟 𝛽 𝛾

):

, 𝐾𝐺𝐸 = 1 ― (𝑟 ― 1)2 + (𝛽 ― 1)2 + (𝛾 ― 1)2 (1)
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where  represents the Pearson coefficient (Eq. 2),  is the ratio between the mean observed and 𝑟 𝛽

predicted precipitation (Eq. 2), and  is the ratio of the estimated and observed coefficients of variation 𝛾

(eq. 3):

𝑟 =  
1
𝑛∑

𝑛

1

(𝑜𝑛 ― 𝜇𝑜) ∗ (𝑠𝑛 ― 𝜇𝑠)
𝜎𝑜 ∗ 𝜎𝑠

,
(2)

,𝛽 =
𝜇𝑠

𝜇𝑜

(3)

,𝛾 =
𝜎𝑠 𝜇𝑠
𝜎𝑜 𝜇𝑜

 (4)

where  and  are the distribution mean and standard deviation, respectively; and s and o indicate the 𝜇 𝜎

estimate and reference, respectively. KGE, , , and  have their optimum at unity. 𝛽 𝛾 𝑟

The analysis was performed considering all months of 2000–2003 and the wet and dry seasons 

months separately. For each grid-cell, the wet and dry seasons were selected according to their 

corresponding climatic zone (Fig. 1). The Sahel seasonality was applied for the grid-cells located up to 

latitude 16° N.

The values of KGE, , , and  were computed at each grid-cell location to observe the P-dataset 𝑟 𝛽 𝛾

reliability over space, and their median values was used to observe that at the regional scale. 

Considering the important gaps over space and time for SM2Rain-CCI v.2 (Fig. 2), its performance 

analysis was based on a reduced number of 0.1° grid-cells (79). Finally, GPCC v.7 is only available at the 

monthly time step (table 1). Consistent comparison between GPCC v.7 and the reference was possible 

only for grid-cells and months with complete daily observation series for a total of 183 grid-cells. 

2.5.Daily P-dataset estimate assessment
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The daily precipitation estimates were assessed on the basis of on both quantitative and categorical 

statistical metrics. The quantitative analysis relied on the median KGE, , , and  obtained from the 𝑟 𝛽 𝛾

187 considered grid-cells for all days and the wet and dry seasons days, separately, and from the 

79 (183) grid-cells for SM2Rain-CCI v.2 (GPCC v.7).

The categorical statistics were used to measure the P-dataset capacity for detecting the daily 

precipitation events. Daily precipitation events are considered as discrete values with only two 

observable cases: rainy or not rainy days. A rainy day was considered when the precipitation amount 

was greater than or equal to a prescribed threshold (mm.day-1). Four cases were possible (Table 2). 

Based on this characterisation, the Heidke Skill Score (HSS) (Eq. 4) evaluates the P-dataset ability for 

detecting precipitation events in comparison with a random based prediction. 

Table 2. Contingency table used to define HSS

Rain gauges

Precipitation No precipitation

Precipitation a bP-datasets

No precipitation c d

𝐻𝑆𝑆 =
2 ∗ (𝑎 ∗ 𝑑 ― 𝑏 ∗ 𝑐)

[(𝑎 + 𝑐) ∗ (𝑐 + 𝑑) + (𝑎 + 𝑏) ∗ (𝑏 + 𝑑)]
(5)

The HSS values range from -∞ to 1 with a perfect score of 1 and negative values indicating that 

random based prediction outperforms the P-dataset one. 

The mean HSS value was computed from those obtained for all of the considered grid-cells for 

threshold values ranging from 0 to 25 mm.day-1 with a 1 mm.day-1 increment. This consideration was 

used to assess the P-dataset performance based on light to heavy daily precipitation events. Finally, 
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using a 1mm.day-1, the HSS value was computed at each grid-cell location to observe the P-dataset 

reliability over space. 

3. Results

3.1.  P-dataset assessment at the monthly time step

With negative KGE values, three P-datasets (CMORPH-Raw v.1, TMPA-RT v.7, and PERSIANN-RT), were 

unable to represent the regional monthly precipitation (Fig.3). Interestingly, their adjusted versions, 

CMORPH-BLD v.1, TMPA-Adj v.7, and PERSIANN-CDR, respectively, performed much better with KGE 

greater than 0.8, correlation better than 0.9, and bias and variability close to the optimum values (1). 

The same results were shown for CHIRP v.2, GSMaP-RT v.6, and JRA-55, which were systematically 

outperformed by their corresponding adjusted versions (CHIRPS v.2, GSMaP-Adj v.6, and JRA-55 Adj, 

respectively). In a general way, all P-datasets using gauges-based information present higher KGE than 

the others. The P-datasets developed for the African continent, TAMSAT v.3 and ARC-2, did not 

outperform the global scale P-datasets. However, the TAMSAT v.3 reliability was very close to that of 

the other P-datasets (KGE = 0.8). 

The P-dataset performance expressed as KGE varied seasonally. P-datasets TAMSAT v.3, JRA-

55 Adj, PERSIANN-Adj, ARC-2, GSMaP-RT v.6, and GPCC v.7 were more effective during the wet season, 

and CMORPH-BLD v.1, MERRA-2, GSMaP-Adj v.6, CPC v.1, and ERA-Interim had better performance 

during the dry season. However, the most effective P-datasets, CHIRPS v.2, TMPA-Adj v.7, WFDEI, 

PERSIANN-CDR, and MSWEP v.2.2, performed similarly for both wet and dry seasons. Interestingly, all 

P-datasets presented higher correlation coefficient and bias values during the dry season. With respect 

to the variability ratio, no clear seasonal trend was observed for the different P-datasets. 
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Figure 3. P-dataset reliability at the regional. The right and left edges of the boxes represent the 25th and 75th percentile 

values, respectively. The P-datasets are sorted from the most (top) to the least (bottom) efficient in term of KGE. SM2Rain-CCI 

v.2 and GPCC v.7 are at the bottom because their analyses are based on a different number of 0.1° grid-cells, at 79 and 183, 

respectively. Blue and black colours are used to highlight P-datasets using or not using gauge-based information, respectively, 

and italic font is used for P-datasets available in NRT latency of one to three days. The graphics were inspired by Beck et al. 

(2019).

Adjustment of CHIRP v.2, JRA-55, PERSIANN-RT, TMPA-RT v.7, GSMaP-RT v.6, and CMORPH-

Raw v.1 increased the KGE values considerably at most of the grid-cell locations. The adjustment 

applied to GSMaP-Adj v.6 was not effective over the western region, where KGE values decreased in 

comparison to GSMaP-RT v.6, its non-adjusted version. Similarly, the CMORPH adjusted versions 

(CMORPH-CRT v.1 and BLD v.1) presented the lowest registered KGE values over the western region. 

CPC v.1, MERRA-2, and ARC-2 also presented the lowest KGE value over this region. Regarding the 

most effective P-datasets, CHIRPS v.2, GPCC v.7, WFDEI, and TMPA-Adj v.7 presented similar KGE 

distributions. 
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Figure 4. P-dataset reliability at the grid-cell level expressed in the form of KGE considering all months in 2000–2003. Arrows 

are used to highlight the potential benefit of using gauge-based information. Blue and black colours are used to highlight P-

datasets using or not using gauge-based information, respectively, and italic font is used for P-datasets available in NRT 

latency of one the three days.

Most of the P-datasets were well correlated to the reference, with correlation better than 0.8 (Fig.5). 

The adjusted version systematically presented higher correlation values, with MSWEP v.2.2 presenting 

the highest number of grid-cells with correlation better than 0.9 and only one grid-cell with correlation 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Satgé, F., Defrance, D., Sultan, Bonnet, Seyler, Rouché, Pierron, Paturel, J.-E. (2019).

Evaluation of 23 gridded precipitation datasets across West Africa. Journal of Hydrology. , DOI :
10.1016/j.jhydrol.2019.124412

18

worse than 0.7. Interestingly,  CHIRPS presented the lowest correlation score over the northern very 

arid region, with correlation worse than 0.7 (Fig.5). 

Figure 5. P-dataset reliability at the grid-cell scale expressed in the form of correlation considering all months in 2000–2003. 

Arrows are used to highlight the potential benefit of using gauge-based information. Blue and black colours are used to 

highlight P-datasets using or not using gauge-based information, respectively, and italic font is used for P-datasets available 

in NRT latency of one to three days.
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The P-datasets without gauge-based information presented higher bias (Fig.6). PERSIANN-RT highly 

overestimate precipitation throughout the region (bias > 1.55). The bias decreased in the post-adjusted 

version (PERSIANN-Adj) with acceptable bias estimates (1.15 < bias < 1.35) over many grid-cells

Similar results were observed for PERSIANN-CDR. CMORPH-Raw v.1 and TMPA-RT v.7 presented 

similar bias distributions, from overestimation to underestimation in the northern arid and southern 

humid regions, respectively. TMPA-RT gauge adjustment was highly successful, with most of the TMPA-

Adj v.7 grid-cells presenting acceptable bias values at 0.85 < bias < 1.15. CPC v.1 strongly 

underestimates precipitation over the western region. This bias spread for all P-datasets using CPC v.1 

for their adjustement process (CMORPH-CRT and BLD v.1, ARC-2, GSMaP-Adj v.6 and MERRA-2).

Interestingly, the precipitation adjustment applied on GSMaP-RT v.6 increased the bias on GSMaP-Adj 

v.6. WFDEI, TMPA-Adj v.7, and CHIRPS v.2 presented less-biased precipitation estimates with 

reasonable bias values of 0.85 < bias < 1.15 in most of the considered grid-cells.
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Figure 6. P-dataset reliability at the grid-cell scale expressed in the form of bias considering all months for in 2000–2003. 

Arrows are used to highlight the potential benefit of using gauge-based information. Blue and black colours are used to 

highlight P-datasets using or not using gauge-based information, respectively, and italic font is used for P-datasets available 

in NRT latency of one to three days.

Regarding the variability ratio distribution, the efficiency of using gauge-based information to retrieve 

the precipitation estimates was obvious when comparing PERSIANN-RT, TMPA-RT v.7, and CMORPH-

Raw v.1 with their post-adjusted versions (Fig.7). The non-adjusted products CMORPH-RAW v.1, and 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Satgé, F., Defrance, D., Sultan, Bonnet, Seyler, Rouché, Pierron, Paturel, J.-E. (2019).

Evaluation of 23 gridded precipitation datasets across West Africa. Journal of Hydrology. , DOI :
10.1016/j.jhydrol.2019.124412

21

TMPA-RT v.7 strongly overestimated the precipitation variability in the majority of grid-cells with 

variability ratios better than 1.25. To the contrary, PERSIANN-RT strongly underestimated the 

precipitation variability in most grid-cells, with a variability ratio worse than 0.85. However, when 

considering JRA-55 (JRA-55 Adj) and CHIRP v.2 (CHIRPS v.2), the use of gauge-based information did 

not significantly enhance the variability ratio. Finally, the two African P-datasets underestimated the 

precipitation variability, over most of the grid-cells (variability ratios < 0.90).
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Figure 7. P-dataset reliability at the grid-cell scale expressed in the form of variability ratio considering all months for in 2000–

2003. Arrows are used to highlight the potential benefit of using gauge-based information. Blue and black colours are used to 

highlight P-datasets using or not using gauge-based information, respectively, and italic font is used for P-datasets available 

in NRT latency of one to three days.

3.2.  P-dataset assessment at the daily time step
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At the regional scale, the ability of the P-datasets to quantify the daily precipitation amount was 

relatively low, with most having median KGE values worse than 0.4 (Fig.8). Only MSWEP v.2.2, TMPA-

Adj v7, CMORPH-BLD v.1, CMORPH-CRT v.1, GSMaP-RT v.6, and PERSIANN-Adj had KGE scores superior 

to 0.4, with the best score achieved by MSWEP v.2.2 (KGE = 0.52). Generally, non-adjusted P-datasets 

presented the lowest KGE values except for GSMaP v.6. The KGE decreased from 0.44 (GSMaP-RT v.6) 

to 0.35 for (GSMaP-Adj v.6). Interestingly, PERSIANN-RT presented a negative KGE value but one of the 

highest correlation score, at 0.5. Therefore, its low KGE score appears to be influenced by its very high 

positive bias value of 2.5. This is in line with observation made at the monthly time step and the 

dominant influence of the bias values on the KGE score. 

In term of KGE, the P-dataset accuracy was higher during the wet than that in the dry season. 

Interestingly, MERRA-2, WFDEI, ERA-Interim, and JRA-55 performed better during the dry season, 

which is line with the results obtained over the Continental United States (CONUS) (Beck et al., 2019). 

However, the performances of MERRA-2, WFDEI, ERA-Interim, and JRA-55 were very low, with KGE < 

0.2.
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Figure 8. P-dataset reliability at the regional scale. The right and left edges of the box represent the 25th and 75th percentile 

values, respectively. The P-datasets are sorted from the most (top) to the least (bottom) efficient in terms of KGE. SM2Rain-

CCI v.2 and GPCC v.7 are at the bottom because their analyses are based on a different number of 0.1° grid-cells, at 79 and 

183, respectively. Blue and black colours are used to highlight P-datasets using or not using gauge-based information, 

respectively, and italic font is used for P-datasets available in NRT latency of one to three days. The graphics were inspired by 

Beck et al. (2019).

Most of the P-datasets presented the highest HSS scores using a threshold value of 1 mm.day-1 

(Fig.9). In particular, the HSS values of CHIRP v.2 and MERRA-2 were close to 0 when considering a 0 

mm.day-1 threshold value; the values jumped to 0.3 and 0.36, respectively, when considering a 1 

mm.day-1 threshold value. Actually, the P-datasets detected many precipitation events with less than 

1 mm.day-1 which were not detected by the gauges. This can be explained by different factors: (1) The 

gauges are not sensitive enough to such precipitation amounts; (2) difference in the spatial scale 

between point (gauge) and  average area (P-dataset grid-cell) measurements; (3) the P-dataset 

algorithm is deficient. Because these precipitation events are insignificant (< 1 mm.day-1), they should 

be considered as no-precipitation events. 
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The highest HSS score was achieved by CMORPH-BLD v.1 (HSS = 0.58) and MSWEP v.2.2 (HSS 

= 0.55). The P-dataset ability in reproducing daily precipitation amounts  decreased for increasing 

intensity. Two P-dataset groups measured  differently events of more than 15 mm.day-1. The first group 

(CMORPH-CRT and BLD v.1, GSMaP-RT and Adj v.6, MSWEP v.2.2, PERSIANN-RT and -Adj, ARC-2, and 

CPC and TMPA-Adj v.7) was much more suited for reproducing high-intensity precipitation events than 

the second group (CHIRP, CHIRPS, CMORPH-RAW v.1, JRA-55, JRA-55 Adj, PERSIANN-CDR, TAMSAT v.3, 

TMPA-RT v.7, WFDEI, MERRA-2, ERA-Interim, and SM2Rain CCI v.2). It is worth mentioning that the 

first group includes (i) P-datasets with gauge-based calibration using daily data and (ii) P-datasets 

available at the sub-daily time step. The second group includes (i) non-adjusted P-datasets or (ii) those 

adjusted with monthly gauges-based data, (iii) P-datasets delivered at the daily time step, and (iv) 

reanalysis P-datasets which generally have the largest discrepancies when compared with other P-

datasets (Sun et al., 2018a). Therefore, the gauge-based information used for P-datasets and the 

delivered time step (daily or sub-daily) considerably influence the P-dataset reliability at the daily time 

scale. This point is further discussed in section 4 in the Discussion. 
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Figure 9. P-dataset ability in reproducing daily precipitation events of different intensities expressed in the form of HSS. Blue 

and black colours are used to highlight P-datasets using or not using gauge-based information, respectively, and italic font is 

used for P-dataset available in NRT latency of one to three days.

Using gauge-based information improved the HSS score over space. For instance, TMPA-RT v.7 

, CMORPH-Raw v.1, CHIRP v.2 and PERSIANN-RT adjusted versions provided much better HSS scores 

throughout the region. The adjusted versions of JRA-55, and GSMaP-RT v.6 did not show significant 

enhancement. Overall, the first group identified in Fig. 9 (CMORPH-CRT and BLD v.1, GSMaP-RT and 

Adj v.6, MSWEP v.2.2, PERSIANN-RT and -Adj, ARC-2, CPC and TMPA-Adj v.7) presents the highest HSS 

all over West Africa. 
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Figure 10. Daily P-dataset reliability expressed in the form of HSS considering all days for 2000–2003 period. The HSS was 

obtained for a threshold value of 1 mm/month. Arrows are used to highlight the potential benefit of using gauge-based 

information. Blue and black colours are used to highlight P-datasets using or not using gauge-based information, respectively, 

and italic font is used for P-datasets available in NRT latency of one to three days.

4. Discussion

4.1.  Monthly versus daily P-dataset reliability 
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Interestingly, the P-dataset performance ranking differed at the monthly and daily timescale 

(Fig. 11). We identified two main factors to explain these discrepancies. 

The first is related to the gauge-based information time step used to adjust P-dataset 

estimates. Indeed, the five most efficient P-datasets at the monthly time step, CHIRPS v.2, TMPA-Adj 

v.7, WFDEI, PERSIANN-CDR, and MSWEP v2.2, were adjusted using monthly gauge-based information, 

whereas three of the five most efficient P-datasets at the daily time step, MSWEP v.2.2, CMORPH-BLD 

v.1, and CMORPH-CRT v.1, were adjusted using daily gauge-based information (Fig. 11). Additionally, 

the reliability of the gauge-based information can also influence the P-dataset accuracy. Accordingly, 

over the Sahel region, the CHPclim monthly dataset reliability was higher than that of GPCC (Funk et 

al., 2015). Because most of the considered grid-cells used to assess P-dataset reliability are in the Sahel 

region (Fig. 1), CHIRPS, which uses CHPclim, provides more realistic monthly precipitation estimates, 

at KGE = 0.86, than WFDEI and PERSIANN-CDR, which uses GPCC and GPCP, respectively (Fig. 3). This 

demonstrates the importance of maintaining reliable gauge networks to insure accurate P-dataset 

estimates.

The second factor is the P-datasets delivered time step. Some P-datasets are delivered at the 

daily aggregation level (Table 1), which is based on different time windows than those used for local 

records. For example, PERSIANN-CDR daily estimates correspond to a given 0 h to 0 h UTC aggregation 

time period, whereas the gauges used in this study register daily amount from 8 h to 8 h UTC. Such 

temporal inconsistency can introduce large differences between the P-datasets and the gauge 

measurements (Ashouri et al., 2015; Satgé et al., 2019). Therefore, only one of the P-datasets, 

CMORPH-BLD v.1, delivered at the daily time step ranked in the top five most efficient P-datasets. On 

the contrary, four of the five most efficient P-datasets at the daily time step were delivered at the sub-

daily  time step (3-hourly) (Table 1 and Fig. 11). The 3-hourly time step enables matching of the 

computed daily estimates with the local record time windows to ensure consistent comparison 

between gauges and P-dataset estimates. 
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Our results demonstrate the importance of considering both daily and monthly time steps 

when assessing P-dataset reliability because the latter is influenced by the gauge-based adjustment 

process and the delivered time step. 

Figure 11. P-dataset top-five ranking for the (a) monthly and (b) daily precipitation estimates based on their median KGE value.

Generally, P-datasets using gauge-based information achieved highest KGE scores at both 

monthly and daily time step (Figs. 3 and 8), which supports previous results obtained over West African 

regions (Casse et al., 2015; Gosset et al., 2013; Poméon et al., 2017) and elsewhere (Beck et al., 2019; 

Dinku et al., 2007; Satgé et al., 2017a). However, the use of gauge-based information for P-dataset 

adjustment is not always as effective. Indeed, GSMaP-RT v.6 outperformed its adjusted version 

GSMaP-Adj v.6 at the daily time step. This result is consistent with previous observation over the 

CONUS, (Beck et al., 2019) and illustrates the potential limit  P-dataset algorithm to consider the best 

of gauge data. GSMaP-RT v.6 is the only P-dataset with no gauge-based information of the top-five 

daily ranking. Therefore, GSMaP-Adj v.6 should be highly effective if using the gauge-based 

information in the optimal form. 

4.2.  P-dataset reliability in space and time

CMORPH-BLD v.1, CMORPH-CRT v.1, GSMaP-Adj v.6, and MERRA-2 presented weaker 

performance over the western region in comparison with other P-datasets (Fig. 3). We identified one 

factor to explain this spatial inconsistency. 
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Different from other P-datasets which use GPCC or GPCP data, CMORPH-BLD v.1, GSMaP-Adj 

v.6, and MERRA-2 use CPC data. The gauge number used to retrieve CPC is lower than that used to 

retrieve GPCC (Fig. 12a). Over the Senegal, Gambia, Guinea-Bissau, and Guinea regions only two CPC 

grid-cells counted with more than one gauge against seven for GPCC (Fig. 12b and c). As a result, 

compared with GPCC v.7, CPC v.1 presents the lowest efficiency over the western region (Fig. 4), which 

propagates into the use of CPC by the P-datasets to adjust their estimates. 

The available gauge information for retrieving CPC and GPCC datasets also varies with time 

(Fig. 12a). Therefore, the P-dataset reliability could be better (worse) if considering a period with more 

(fewer) available gauges for retrieving GPCC or CPC datasets. In this context, TAMSAT v.3 uses 

consistent gauge-based information in space and time rather than a continuously updated information 

to avoid adding any space or time discrepancy (Maidment et al., 2017). 

Actually, P-datasets present space and time inconsistencies which cannot be reported by using 

single temporal windows (Satgé et al., 2019). The authors assessed P-dataset reliability over three 

different four years period and one twelve years period across the Lake Titicaca region. Results show 

that the P-dataset reliability conclusion vary according to the considered period.  Therefore, the 

analysis should be conducted over different temporal windows to adequately evaluate the P-dataset 

space and time reliability. Such a consideration is challenging over West Africa owing to the scarcity of 

gauge networks and the important temporal gaps present. To overcome this issue, an alternative 

method could use satellite-based soil moisture estimates rather than traditional rain gauges 

measurements as a reference benchmark (Massari et al., 2017). 
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Figure 12. (a) Mean numbers of available gauges used to retrieve GPCC and CPC for 1985–2015 and their spatial distribution 

for the analysed period 2000–2003 (b,c). The black points in (b) and (c) represent the centroid of the 0.1° grid-cell considered 

in this study to assess P-dataset reliability.

It is worth mentioning that GPCC and CPC share common gauges with the reference network used in 

this study as highlighted by many overlapping between both network (Fig. 12 b and c). Similar 

observation should be done if considering the others gauges based datasets used for P-dataset 

calibration and presented in section 2.2.1. Therefore, the gauges network used for the assessment is 

not totally independent of the considered P-datasets and could influence P-dataset reliability 

conclusions. The P-dataset reliability conclusion could have been less optimist if only based on 

independent gauges network. In this context, future studies should try to consider totally independent 

gauges network to provide more consistent feedback on actual P-dataset reliability. However, 

information on the shared information between national gauges networks and gauges based dataset 

(i.e. CPC and GPCC) is hard to obtain and compromise this kind of consideration. 

4.3.  P-datasets sensitivity to seasonal variation
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Reanalysis P-datasets, ERA-Interim, MERRA-2, JRA-55 and WFDEI, performed better during the dry 

than during the wet season (Fig. 3). This agrees with previous results obtained over the CONUS (Beck 

et al., 2019). The authors explained that reanalysis P-datasets are better adapted to detecting large-

scale stratiform systems, which are typical in the dry season, than unpredictable small-scale convective 

cells, which are typical in the wet season. On the contrary, only satellite-based P-datasets performed 

better during the wet than the dry season (Beck et al., 2019; Salles et al., 2019; Satgé et al., 2017a). 

Actually, the irregular sampling of the low earth orbiting satellites and the limited number of 

overpasses hardly captures short precipitation events which are typical during the dry season 

(Gebregiorgis and Hossain, 2013; Tian et al., 2009). Therefore, GSMaP-RT v.6 presented a better KGE 

value during the wet than that during the dry season (Fig. 3). The seasonality sensitivity of the other P-

datasets incorporating satellite, reanalysis, or gauge-based information shows a greater contrast 

because they consider the different inputs.

Despite the seasonal variation in KGE value, the P-datasets presented significantly higher 

coefficient correlation during the dry season (Fig. 3). This difference could be related to the higher 

monthly precipitation variability during the dry season (Fig. 1) tending to increase the correlation 

coefficient. Accordingly, all P-datasets presented higher correlation coefficients considering the entire 

period because the precipitation variability is even more marked than at the seasonal scale. At the 

contrary, the P-datasets were more biased during the dry season (Fig. 3) except for CPC v.1, GSMaP-

Adj v.6, and ERA-Interim. The P-datasets with higher (TAMSAT v.3, PERSIANN-Adj, ARC-2, GSMaP-RT 

v.6, SM2Rain CCI v.2, JRA-55 Adj, and GPCC v.7) and lower (CPC v.1, GSMaP-Adj v.6, and ERA-Interim) 

bias values during the dry season presented higher KGE scores during the dry season whereas the P-

datasets with close bias values for both wet and dry seasons (CHIRPS v.2, TMPA-Adj v.7, WFDEI, 

PERSIANN-CDR, MSWEP v2.2, CMORPH-CRT v.1, CHIRP v.2) presented similar KGE values for both 

seasons. Considering the similar seasonal trend observed for both KGE and bias values, the bias  

appears to have a dominant influence on the KGE score.
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Interestingly, if considering the P-dataset bias in millimetres, all P-datasets had systematically 

higher bias values during the wet season (Fig. 13). Because lower monthly precipitation occurred 

during the dry season, the same volumetric error (millimetres) expressed in ratio (Eq.2) corresponds 

to higher bias during the dry in comparison to that during the wet season. For most of the P-datasets, 

the reported bias value during the dry season was less than 5 mm.month-1 (Fig. 13), which should have 

an insignificant influence on the water budget. 

Figure 13: Monthly bias value expressed in millimetres for both dry and wet seasons. The values are expressed in terms of 

absolute values. To facilitate the analysis, bias values greater than 50 mm are not shown. 

Therefore, despite the low KGE value during the dry season, P-datasets still provide valuable 

additional information to follow both temporal and volume monthly precipitation dynamics over 

West Africa. 

4.4.  P-dataset time latency

Fig. 14 shows the KGE scores of the NRT P-datasets in comparison with the most accurate P-dataset at 

the daily time step. 
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Figure 14. NRT P-dataset reliability at both daily time steps in comparison to the most effective P-datasets, represented in 
blue. 

At the daily time step, GSMaP-RT v.6 was the most reliable NRT P-dataset. With three days of time 

latency, the GSMaP-RT KGE, at 0.44, was close to the most effective P-dataset (MSWEP v2.2) with KGE 

= 0.52, which is available with a few months of latency. 

It is worth mentioning that the low score achieved by the P-datasets at the daily time step is partly 

related to the difference between spatially averaged (P-dataset grid-cell) and point (reference gauges) 

measurements (Salles et al., 2019; Satgé et al., 2019; Tang et al., 2018). The P-dataset reliability 

increased with the number of gauges used to represent the spatially average grid-cell measurement 

(Salles et al., 2019; Tang et al., 2018). In this study, most of the considered 0.1° grid-cells were counted 

with only one gauge. Therefore, the presented KGE score may underestimate the actual P-dataset 

reliability. Testing the sensitivity of streamflow modelling to P-datasets at basin outlets overcome the 

influence of scarce and unevenly distributed gauge networks. Indeed, aggregation of precipitation at 

the basin scale eliminates the difference in spatial representation between point (gauge) and areal (P-

datasets) measurements because both gauge and P-datasets represent precipitation at the basin 

spatial scale. Therefore, the reliability of P-datasets varies significantly when used to reproduce gauge 

precipitation estimates or streamflow observations (Satgé et al. 2019). 
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In this context, NRT P-dataset coverage and latency can fit the needs of an early warning system across 

sparsely gauged or ungauged regions. Recent studies have successfully used NRT P-datasets to follow 

flood events in terms of streamflow (Yuan et al., 2019) and flood extent (Belabib et al., 2019) or for 

landslide occurrence estimations (Brunetti et al., 2018). Future studies should assess NRT P-datasets 

in the scope of early warning studies to consistently evaluate NRT dataset reliability in this specific 

context.

4.5.  Towards an enhanced P-dataset over West Africa

This study considers an unprecedented sample of 23 P-datasets over the West African region to 

provide a consistent guideline for potential users. The results suggest that during 2000–2003, CHIRPS 

v.2 and MSWEP v.2.2 showed the best estimates of monthly and daily precipitation, respectively. The 

most reliable P-dataset can change at the local scale. As an example, Fig. 15 shows the most suitable 

P-datasets for representing both monthly and daily precipitation at the grid-cell level. Interestingly, at 

the daily time step, MSWEP v.2.2 was more consistent for the western region, whereas CMORPH P-

datasets provided more accurate estimates over the central and southern regions (Fig. 15). At the 

monthly time step, even if CHIRP(S) P-datasets are counted with the highest number of grid-cells, large 

spatial heterogeneity is observed with many grid-cells where WFDEI, JRA-55 Adj, CMORPH, and TMPA 

outperformed CHIRP(S) (Fig. 15). To take advantage of all available P-datasets, merging all P-datasets 

to produce an enhanced P-dataset over the region is a good option. Previous studies have reported on 

the benefit of such an approach to retrieve a more realistic P-dataset over Pakistan (Muhammad et 

al., 2018; Rahman et al., 2018),Tibet (Ma et al., 2018) and different tropical complex terrain (Bhuiyan 

et al., 2019). These ensemble precipitation datasets enhance the regional precipitation representation 

and should be used as guideline over West Africa.
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Figure 15. Most efficient P-datasets at the grid-cell level. For simplification, the P-datasets were aggregated in main groups: 

GSMaP = GSMaP-RT + Adj v.6; TMPA = TMPA-RT + TMPA-Adj; JRA-55 = JRA-55 + JRA-55 Adj; PERSIANN = PERSIANN-RT + 

PERSIANN-Adj + PERSIANN-CDR.

5. Conclusions

The present study evaluates the accuracy of 23 gridded P-datasets over the West African region at 

both monthly and daily time step for the 2000-2003 period. Despite the limited coverage and scarcity 

of the ground reference points, some consistent features emerged from the analysis:

 The P-dataset performance ranking differs at the monthly and daily timescale. P-datasets using 

sub-daily (monthly) gauge information perform better at the daily (monthly) time step. 

Additionally, for the P-datasets released at the daily time step, the temporal mismatch 

between gauge and satellite reporting times decrease their reliability at the daily time step. In 

this line, MSWEP v.2.2 and CHIRPS v.2 provide the most reliable daily and monthly 

precipitation estimates, respectively whereas TMPA-Adj v.7 performance is very good for both 

daily and monthly estimates.
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 The only satellite based P-datasets (CMORPH-RT v.1, TMPA-RT v.7, PERSIANN-RT, GSMaP v.6-

RT) performance is very low at both monthly and daily time scale. Their reliability drastically 

increase for their adjusted versions (CMORPH-CRT and BLD v.1, TMPA-Adj v.7, PERSIANN-Adj) 

excepted for GSMaP v.6 at the daily time step. 

 All the considered reanalysis P-datasets (WFDEI, JRA-55, JRA-55 Adj, ERA-Interim) are 

unreliable at the daily time step. The use of monthly GPCC P-dataset to adjust their estimates 

considerably increase their reliability at the monthly time step (WFDEI, JRA-55 Adj).  

 The two African P-datasets (TAMSAT v.3 and ARC-2) present an overall lower performance in 

comparison to the almost global scale P-datasets at both daily and monthly time-step. Despite 

good performance in some parts of the region, SM2Rain-CCI v.2 still suffers too many gaps in 

space and time across West African.

 All P-datasets present spatial discrepancies in their statistical score suggesting the use of a 

spatial P-datasets’ merging approach to take advantage from all available P-datasets across 

West Africa.

It should be reminded that most of the considered 0.1° grid-cells count with only one gauge to 

represent the observed precipitation. Because of spatial inconsistency between point (gauges) and 

spatially average (P-datasets) measurement, different conclusion regarding the P-datasets reliability, 

could have been drawn if more gauges had been available per grid-cells or if using P-datasets as forcing 

data for hydrological modelling. Additionally, the study is based on a single four years temporal 

window. However, P-dataset reliability vary in time and the results could have been different if 

considering another four years temporal window or a larger one. Therefore, this study aims more at 

compare the P-dataset reliability between them rather than to provide definitive conclusion on their 

respective accuracy. 
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 Unprecedented report on 23 precipitation datasets reliability across West Africa
 Large discrepancies are observed between the precipitation datasets reliability 
 The datasets reliability differ in space and according to the considered time step
 MSWEP is the most accurate dataset to represent the daily precipitation dynamic
 CHIRPS is the most accurate dataset to represent the monthly precipitation dynamic


