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Abstract 11 

This study aims reporting on 23 gridded precipitation datasets (P-datasets) reliability across West 12 

Africa through direct comparisons with rain gauges measurement at the daily and monthly time 13 

scales over a 4 years period (2000-2003). All P-datasets reliability vary in space and time. The most 14 

efficient P-dataset in term of Kling–Gupta Efficiency (KGE) changes at the local scale and the P-15 

dataset performance is sensitive to seasonal effects. Satellite-based P-datasets performed better 16 

during the wet than the dry season whereas the opposite is observed for reanalysis P-datasets. The 17 

best overall performance was obtained for MSWEP v.2.2 and CHIRPS v.2 for daily and monthly time-18 

step, respectively. Part of the differences in P-dataset performance at daily and monthly time step 19 

comes from the time step used to proceed the gauges adjustment (i.e day or month) and from a 20 

mismatch between gauge and satellite reporting times. In comparison to the others P-datasets, 21 

TMPA-Adj v.7 reliability is stable and reach the second highest KGE value at both daily and monthly 22 

time step. Reanalysis P-datasets (WFDEI, MERRA-2, JRA-55, ERA-Interim) present among the lowest 23 

statistical scores at the daily time step, which drastically increased at the monthly time step for 24 

WFDEI and MERRA-2. The non-adjusted P-datasets were the less efficient, but, their near-real time 25 

availability should be helpful for risk forecast studies (i.e. GSMaP-RT v.6). The results of this study 26 

give important elements to select the most adapted P-dataset for specific application across West 27 

Africa. 28 
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1. Introduction 31 

1.1.  Precipitation: a key factor subject to uncertainty 32 

Water resources are facing unprecedented changes related to redistribution of seasonal precipitation 33 

(Saeed et al., 2018) and intensity (Fischer and Knutti, 2015; Giorgi et al., 2018) owing to climate 34 

variability. With a six-fold increase of water extraction during the 20th century in response to 35 

increases in the world population (Cosgrove and Risberman, 2000), food requirements and the 36 

economy may be particularly affected by these changes. Accurate spatiotemporal precipitation 37 

monitoring is therefore crucial for detect and quantifying ongoing changes in optimising water 38 

resource management. Traditionally, the precipitation amount is measured at the point scale from 39 

gauge measurements. However, access difficulty, political instability, and economic issues have often 40 

resulted in sparse and unevenly distributed rain gauge networks that incorrectly capture the spatial 41 

precipitation variability (Lebel et al., 1997; Li and D.Heap, 2008). Alternatively, weather radar stations 42 

enable precipitation monitoring with spatial distribution over larger and even remote areas. 43 

However, radar stations are expensive, and only a few are available worldwide. In addition, large 44 

amounts of radar signal interference prevent accurate estimation of precipitation over complex 45 

terrains (Tang et al., 2016; Zeng et al., 2018). Several authors have recently reported on the potential 46 

of using cellular phone signal attenuation during precipitation events to retrieve precipitation 47 

measurements (Doumounia et al., 2014; Messer et al., 2006; Overeem et al., 2011; Zinevich et al., 48 

2008). Although these estimations are accurate, they are limited to regions with high antenna 49 

density (e.g. urban areas). Moreover, this technique faces the problem of accessing data owned by 50 

private cellular phone companies.  51 

Regardless of the technique employed, precipitation data collection at the regional scale usually 52 

includes potential conflicts of interest in water resource management between neighbouring 53 

countries. In this context, gridded precipitation datasets (P-dataset) at an almost global scale offer an 54 

unprecedented alternative. Over remote regions, P-datasets have already shown promising 55 
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perspective for water resource management by enhancing our understanding of drought (e.g. Agutu 56 

et al., 2017; Guo et al., 2017; Satgé et al., 2017; Toté et al., 2015) and flood (e.g. Gao et al., 2017; 57 

Nikolopoulos et al., 2013; Toté et al., 2015) events, precipitation variability (e.g. Arvor et al., 2017; 58 

Carvalho et al., 2012), streamflow (e.g. Collischonn et al., 2008; De Paiva et al., 2013; Satgé et al., 59 

2019; Sun et al., 2018b; Zhang et al., 2018) and snow cover dynamics (e.g. Satgé et al., 2019), and 60 

agriculture productivity (e.g. Thaler et al., 2018; Wit et al., 2010). 61 

1.2.  State of the art for P-datasets 62 

Three groups of gridded P-dataset can be defined depending on the input and technique 63 

used to retrieve the precipitation amounts: (1) those based on the spatial information of available 64 

gauges, (2) those based on reanalysis data derived from physical and dynamical models, and (3) 65 

those based on satellite information using passive-microwave (PMW) and infrared (IR) information. It 66 

is worth mentioning that most of the P-datasets merge aspects of these three inputs and techniques 67 

to ensure the best accuracy possible. Recently, 30 global-scale P-datasets with variable space–time 68 

coverage and resolution have been listed (Sun et al., 2018a) which present precipitation estimates 69 

discrepancy in space and time according to their different bases such as data capture, integration, 70 

and algorithms. For example, gauge-based P-dataset reliability varies in space and time according to 71 

changes in the number of available gauges used for the interpolation process (Sun et al., 2015). 72 

Similarly, satellite-based P-dataset reliability varies in space and time because the PMW and IR 73 

algorithms present limits over complex mountainous (Hussain et al., 2017; Satgé et al., 2017a) and 74 

snow-covered regions (Ferraro et al., 1998; Levizzani et al., 2002) and during short-term and slight 75 

precipitation events (Gebregiorgis and Hossain, 2013; Tian et al., 2009). Finally, reanalysis data-based 76 

P-datasets present variable reliability in space and time owing to the limited ability of the models 77 

used to represent small-scale convective cells (Beck et al., 2019). In this context, many studies assess 78 

P-dataset space–time uncertainties to evaluate their reliability (Maggioni et al., 2016; Maggioni and 79 

Massari, 2018).  80 
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 A recurrent drawback of assessment studies on P-dataset reliability is the consideration of a 81 

limited number of P-datasets. A comprehensive reliability overview of available P-datasets, as listed 82 

in Table 1, can be achieved only by backcrossing the results from different P-dataset assessment 83 

studies. However, the studies are conducted over distinct regions and are based on different 84 

statistical indices, spatial and temporal scales, and periods, thus creating difficulties in 85 

intercomparing P-dataset reliability assessments. For example, when comparing TMPA, CMORPH, 86 

and PERSIANN P-datasets with reference gauge estimates, CMORPH was shown to have the most 87 

reliable P-datasets in Pakistan, China, Bali, and Indonesia (Hussain et al., 2017; Rahmawati and 88 

Lubczynski, 2017; Su et al., 2017; Zeng et al., 2018). However, TMPA was the most reliable in India, 89 

Guyana, Chile, and the South American Andean plateau (Prakash et al., 2014a; Ringard et al., 2015; 90 

Satgé et al., 2016; Zambrano-Bigiarini et al., 2017). Hence, P-dataset reliability for a given region 91 

should not be determined from results reported for other regions. In this context, it is decisive to 92 

consider the most representative P-dataset sample to insure a consistent report on P-dataset 93 

reliability across the considered region.  94 

1.3.  The need for assessing P-datasets over West Africa 95 

Africa is particularly affected by climate changes threatening rainfed agriculture, which 96 

represents its main agricultural and economic activity (Sultan et al., 2013). However, owing to the 97 

socio-economic context, the available gauge network is limited by many spatial and temporal gaps 98 

which prevent efficient water management. According to the World Meteorological Organisation 99 

(WMO), the African continent requires uniform distribution of at least 3000 stations (ideally 10,000); 100 

however, only 744 stations are present. Moreover, only one quarter of the 744 stations conform to 101 

international standards.  102 

 Because they provide precipitation information on a regular grid at the global scale, P-103 

datasets offer a unique opportunity for complementing traditional precipitation measurements and 104 

optimising population adaption to the ongoing changes. However, as previously mentioned, P-105 
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dataset estimates are indirect measurements with spatial and temporal uncertainties which need to 106 

be reported to evaluate their reliability. Some authors have already initiated this effort over West 107 

Africa. In 2012, seven P-datasets were tested over the basin of la Volta including CMORPH, GPROF-108 

v6, GSMaP-MVK v5, RFE-2.0, TMPA-v6, PERSIANN, and ERA-Interim (Thiemig et al., 2012). In 2013, 109 

nine P-datasets including CMORPH, EPSAT-SG, GPCP, GSMaP-MVK, GSMaP-RT, RFE-2, TMPA-v6, 110 

TMPA-RT v6, and PERSIANN and seven P-datasets including PERSIANN, CMORPH, TMPA-RT v.6, 111 

TMPA-Adj v.6, GSMaP-MVK, GCPC-1dd, and RFE-2 were tested in Benin and Niger for hydrological 112 

(Gosset et al., 2013) and agriculture applications (Ramarohetra et al., 2013), respectively. Both 113 

studies found that their use could introduce large biases in crop or hydrological modelling 114 

framework. More recently, six P-datasets including ARC-2, CMORPH, GSMaP-MVK, PERSIANN, 115 

TAMSAT, and TMPA-v.6 were compared with gauge measurements data over the entire African 116 

continent (Awange et al., 2016).  117 

All of the aforementioned studies focus mainly on P-datasets regularly updated by their 118 

developers to enhance the precipitation estimates. Since then, updated versions of the considered 119 

products have been made available with more accurate precipitation estimates. For example, the 120 

benefits brought by the new TMPA-v.7 in comparison to its previous version (TMPA-v.6 ) has been 121 

reported in many regions (e.g. Anjum et al., 2016; Prakash et al., 2014b; Satgé et al., 2016). 122 

Additionally, most of the tested P-datasets originate from the TRMM-era constellation which has 123 

limited temporal coverage from 1998 to the present. In this context, new studies have reported on 124 

recently released P-dataset versions with larger temporal coverage. For example, in 2016 over 125 

Burkina, seven P-datasets including ARC-2, CHIRPS v.2, PERSIANN-CDR, RFE v.2, TAMSAT v.2, TMPA 126 

v.7, and TMPA RT v.7 were assessed at the daily, decadal, and monthly timescales (Dembélé and 127 

Zwart, 2016). In 2017, TAMSAT v.3 was introduced and compared with its previous version (TAMSAT 128 

v.2) and with six P-datasets including ARC v.2, CHIRP v.2, CHIRPS v.2, CMORPH v.1, RFE and TMPA v.7 129 

over West Africa, specifically Nigeria and Niger; Uganda; Zambia; and Mozambique (Maidment et al., 130 

2017). In 2017, 10 P-datasets including CFSR, CHIRPS, CMORPH v.1 RAW and CRT, PERSIANN-CDR, 131 
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RFE-2, TAMSAT v.2, TMPA v.7, TMPA-RT v.7, and GPCC were assessed over six watersheds located in 132 

Burkina, Nigeria, and Ghana (Poméon et al., 2017). Nonetheless, the reported studies indicate that 133 

the results are mostly limited in space (country or basin scale) and in terms of considered P-datasets 134 

sample. To our knowledge, only one study has reported on P-datasets at the regional West African 135 

scale with a limited sample of P-datasets including TMPA v.7, UDEL v.3.1, CRU v.3, and ARC v.2 136 

(Akinsanola et al., 2016).  137 

 138 

1.4.  Objectives 139 

According to the previously described context, the present study aims to compare the accuracy of 23 140 

P-datasets in reproducing the characteristics of rain gauge measurements across West Africa, which 141 

is an unprecedented comparison. The consideration of a P-dataset sample ,as large as possible, aims 142 

to provide a robust overview of P-dataset performance over West Africa. The analysis is conducted at 143 

both daily and monthly time steps. This study provides important feedback to P-dataset developers 144 

for enhancing the algorithms for next-generation P-datasets and to potential users to support their 145 

P-datasets selection. 146 

2. Materials Methods 147 

2.1.  Study Area 148 

The study area, hereafter referred to as West Africa, extends from the Atlantic coast of Senegal to 149 

eastern Chad and the Gulf of Guinea to north of the Sahel (18° W–25° E, 4° N–25° N) (Fig. 1). The 150 

region is characterised by a marked south–north gradient of rainfall amount ranging from 5000 151 

mm.year-1 in Cameroon to less than 200 mm.year-1 in the northern Sahel. The West Africa region can 152 

be divided into three main climatic zones: (i) the Guinea Coast (4°–8° N), (ii) the Savannah (8°–11° N), 153 

and (iii) the Sahel (11°–16° N) (Abiodun et al., 2012; Akinsanola et al., 2016) (Fig. 1). For all zones, the 154 

year is characterised by a dry season in winter and a rainy season in summer linked to the West 155 

African Monsoon. This concentrates most of the annual rainfall amount from April to October for the 156 
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Guinea Coast zone and from June to September for both the Savanah and Sahel zones (Fig. 1). The 157 

rainfall interannual temporality is great with the occurrence of drought phases (dry spell) during the 158 

rainy season and in interannual rainfall with very dry and very wet years in the 1970s and 1950s, 159 

respectively.  160 

 161 

Figure 1. Study area with the considered 0.1° grid-cell locations and the mean monthly precipitation amount given for the 162 

three climatic regions based on gauge records of 2000–2003. 163 

2.2.  Selected P-datasets 164 

A sample of 23 gridded P-datasets including 13 long-term P-datasets with more than 35 years of 165 

continuous observation and 10 P-datasets spanning more than 15 years was selected. Table 1 166 

provides an overview of these P-datasets and relevant references for further information on their 167 

respective productions.  168 

 169 
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Acronym Full Name Data  
Temporal  

Coverage 

Temporal 

Resolution  

Spatial 

 Coverage 

Spatial  

Resolution 
Latency Link References 

ARC-2 

Africa Rainfall 

Climatology 

v.2 

S, G 1983–present Daily Africa 0.1° 2 days ftp://ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2/ Novella and Thiaw, 2012 

CHIRP v.2 

Climate 

Hazards 

Group 

InfraRed v.2 

S, R 1981–present Daily 50° 0.05° 2 days ftp://ftp.chg.ucsb.edu/pub/org/chg/products/ Funk et al. (2015) 

CHIRPS v.2 
CHIRP with 

Station v.2 
S, R, G 1981–present Daily 50° 0.05° 1 month ftp://ftp.chg.ucsb.edu/pub/org/chg/products/ Funk et al. (2015) 

CMORPH-Raw v.1 

Climate 

Prediction 

Center 

MORPHing 

raw v.1 

S 1998–present 3 h 60° 0.25° 2 days ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/ Joyce et al. (2004) 

CMORPH-CRT v.1 
CMORPH bias 

corrected v.1 
S, G 1998–present 3 h 60° 0.25° 6 months ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/ Xie et al. (2017) 

CMORPH-BLD v.1 

CMORPH 

satellite-

gauge 

merged v.1 

S, G 1998–present Daily 60° 0.25° 10 months ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/ Xie et al. (2017) 

CPC v.1 

Climate 

Prediction 

Center 

unified v.1 

G 1979–present Daily Global 0,5° 1 days ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/ 

Xie et al. (2007)  

Chen et al. (2008) 

ERA-Interim 

European 

Centre for 

Medium-

range 

Weather 

Forecast Re 

Analysis 

Interim 

R 1979–present 3 h 60° 0.75° 3 months 
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-

datasets/era-interim-land 
Dee et al. (2011) 

GSMaP-RT v.6 

Global 

Satellite 

Mapping of 

Precipitation 

standard v.6 

S 2000–present Hourly 60° 0.1° 3 days ftp://hokusai.eorc.jaxa.jp/standard/v6/ 

Ushio et al. (2009) 

Yamamoto and Shige (2014) 

GSMaP-Adj v.6 
GSMaP 

adjusted v.6 
S, G 2000-–resent Hourly 60° 0.1° 3 days ftp://hokusai.eorc.jaxa.jp/standard/v6/ 

Ushio et al. (2009) 

Yamamoto and Shige (2014) 

GPCC v.7 

Global 

Precipitation 

Climatology 

Center 

G 1901–2013 Monthly Global 1° Irregular 

https://rda.ucar.edu/datasets/ds496.0/ Becker et al., 2013; Schneider et al., 2014 

JRA-55 

Japanese 55-

year Re 

Analysis 

R 1959–present 3 h Global 0,56° 1 Month https://rda.ucar.edu/datasets/ds628.0/ Kobayashi et al. (2015) 

JRA-55 Adj 
JRA-55 

Adjusted 
R,G 1959–2013 3 h Global 0,56° Stopped http://search.diasjp.net/en/dataset/S14FD Izumi et al. (2017) 

MERRA-2 

Modern-Era 

Retrospective 

Analysis for 

Research and 

Applications 

2 

S, R, G 1980–present Hourly Global 0,5° 2 Months https://disc.gsfc.nasa.gov/ 

Gelaro et al. (2017) 

Reichle et al. (2017) 

MSWEP v.2.2 

Multi-Source 

Weighted 

Ensemble 

Precipitation 

v.2.2 

S, R, G 1979–present 3h Global 0.1° 
Few 

months 

http://www.gloh2o.org/  

(Personal communication) 

Beck et al. (2018) 

Beck et al. (2019) 

PERSIANN-CDR 

Precipitation 

Estimates 

from 

Remotely 

Sensed 

Information 

using 

Artificial 

Neural 

Network and 

Climate Data 

Record 

S, G 1983–2016 Daily 60° 0.25° 6 months https://chrsdata.eng.uci.edu/ Ashouri et al. (2015) 

PERSIANN-RT 
PERSIANN 

real time 
S 2000–present 6 h 60° 0.25° 2 days https://chrsdata.eng.uci.edu/ 

Hsu et al. (1997 

Sorooshian et al. (2000) 

PERSIANN-Adj 
PERSIANN 

Adjusted 
S, G 2000–2010 3 h 60° 0.25° Stopped http://fire.eng.uci.edu/PERSIANN/ 

Hsu et al. (1997) 

Sorroshian et al. (2000) 

SM2Rain-CCI v.2 

Soil Moisture 

to Rain 

applied on 

ESA Climate 

Change 

Initiative v.2 

S 1998–2015 Daily Global 0.25° Stopped https://zenodo.org/record/846260#.XQEZtYgzZaQ Ciabatta et al. (2018) 
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TAMSAT-v.3 

Tropical 

Applications 

of 

Meteorology 

using 

SATellite and 

ground-

based 

observations 

v.3 

S, G 1983–present Daily Africa 0.0375° 3 days https://www.tamsat.org.uk/about Maidment et al. (2017) 

TMPA-RT v.7 

TRMM Multi-

satellite 

Precipitation 

Analysis Real 

Time v.7 

S 1998–present 3 h 60° 0.25° 1 day https://mirador.gsfc.nasa.gov/ 

Huffman et al. (2018) 

Huffman et al. (2010) 

TMPA-Adj v.7 
TMPA 

Adjusted v.7 
S, G 2000–present 3 h 50° 0.25° 3 months https://earthdata.nasa.gov/ 

Huffman et al. (2018) 

Huffman et al. (2010) 

WFDEI 

WATCH 

Forcing Data 

methodology 

applied to 

ERA-Interim 

R, G 1979–2016 Daily Land 0.5° Stopped ftp://ftp.iiasa.ac.at/ Weedon et al. (2014) 

 170 

Table 1. Main characteristics and references of the  P-datasets. In the data source column, S, R, and G stands for satellite, 171 

reanalysis, and gauge information. Spatial coverage refers to the absolute maximum and minimum latitude with 172 

precipitation information, and latency refers to the time delay for data availability. The P-datasets including gauge-based 173 

information are represented in blue, and italic font is used for P-datasets available in NRT latency of one to three days. 174 

2.2.1. Comments on the selected P-datasets 175 

Some P-datasets use gauge-based information in their respective algorithms (Table 1). Three types of 176 

gauge-based information are used: (1) punctual precipitation estimates derived from gauge records, 177 

(2) gridded precipitation estimates based on interpolation of punctual gauge records, and (3) gauge 178 

precipitation estimates (punctual or gridded) merged with different satellite datasets of 179 

precipitation, brightness, or land surface temperature. 180 

Punctual precipitation estimates from the world meteorological organisation (WMO) Global 181 

Telecommunication System (GTS) (Novella and Thiaw, 2012) and numerous African national 182 

meteorological and hydrological centres (Maidment et al., 2014) are used for ARC-2 and TAMSAT v.3, 183 

respectively. In both cases, the gauge network is very sparse. For example, the GTS gauge network 184 

has a 1:23 000 km2 gauge-to-area ratio across the African continent (Novella and Thiaw, 2012).  185 

The gridded precipitation estimates are (i) GPCC with a 1° spatial resolution (Becker et al., 186 

2013; Schneider et al., 2014) and (ii) the daily CPC with 0.5° spatial resolution (Chen et al., 2008; Xie 187 
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et al., 2007). JRA-55 Adj, TMPA-Adj v.7, and WFDEI use GPCC monthly data, whereas CMORPH-CRT 188 

v.1, CMORPH-BLD v.1, GSMaP-Adj v.6, and MERRA-2 use CPC daily data.  189 

The gridded precipitation estimates merged with satellite precipitation estimates are (i) the 190 

CHPclim dataset with a 0.05° grid-cell size (Funk et al., 2015) and (ii) the GPCP dataset with a 2.5° 191 

grid-cell size (Adler et al., 2003, 2012) and (iii) the WorldClim 2 dataset with a 1km grid-cell size (Fick 192 

and Hijmans, 2017). CHPclim and WorldClim 2 use satellite observations as predictors to improve the 193 

interpolation from point gauge records, whereas GPCP uses the gauge record to adjust the 194 

precipitation fields derived from satellite observations. Further details are reported elsewhere (Adler 195 

et al., 2003; Funk et al., 2015). Among the considered P-datasets, CHIRPS v.2 use the CHPclim 196 

dataset, MSWEP v.2.2 use the WorldClim 2 dataset and PERSIANN-CDR uses the GPCP dataset.  197 

CHIRPS v.2 also includes punctual precipitation estimates from various public data streams, 198 

private archives, and national meteorological agencies, while MSWEP v.2.2 incorporates monthly 199 

GPCC and daily CPC gridded precipitation datasets.  200 

Another difference between the P-datasets is the time latency for their availability. The P-201 

datasets are generally available in (i) a few days or (ii) a few months after the observation (Table 1). 202 

Some are in near real time (NRT) latency of one to three days and are more adapted for flood or 203 

landslides forecasting, water resource management, and agriculture, while the others are more 204 

adapted for retrospective climatic studies.  205 

Figure 2 shows the mean annual precipitation patterns retrieved from all P-datasets. Except for 206 

CPC v.1 and the P-datasets, which use CPC v.1 for post adjustment processing (ARC-2, CMORPH-CRT 207 

v.1, CMORPH-BLD v.1, GSMaP-Adj v.6 and MERRA-2), all P-datasets represent the typical south–north 208 

precipitation gradient with two  precipitation hotspots located over the southwest and south region. 209 

It should be noted that SM2Rain-CCI v.2 estimates are based on soil moisture estimates, which are 210 

strongly attenuated by the vegetation canopy; this results in significant gaps over areas with 211 

moderate to dense vegetation, as observed over the southern region (Fig. 2) (Dorigo et al., 2015). 212 
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Additionally, a sensor failure in the ERS-2 gyroscope from January 2001 to June 2003 accentuated 213 

these gaps and explains the gaps observed over the central and northern regions (Fig. 2) (Dorigo et 214 

al., 2015).  215 

 216 

Figure 2. Mean annual precipitation for 2000–2003 retrieved from all P-datasets at their original grid sizes. For each P-217 

dataset, only the grid-cells with more than 80% of available daily data were retained. Blue and black colours are used to 218 

highlight P-datasets using and not using gauge-based information, respectively, and italic font is used for P-datasets 219 

available in NRT latency of one–three days. 220 
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2.2.2. P-dataset pre-processing  221 

The P-datasets available at a sub-daily time step (Table 1) were aggregated to obtain daily time step 222 

records matching the local gauge observations (8 h to 8 h local time). It is worth mentioning that P-223 

datasets delivered at daily time scales  (Table 1) use time-windows different from those of the gauge, 224 

which can compromise the comparison at the daily scale. This point is further discussed in section 225 

4.1. Moreover, the P-datasets differ in terms of grid-cell size, ranging from 0.0375° for TAMSAT v.3 to 226 

1° for GPCC v.7. To enable consistent comparison, all P-datasets were resampled to the 0.1° grid-cell 227 

size.  228 

Bilinear averaging (interpolation) are used for P-datasets with grid-cell size < 0.1°  (> 0.1°) (Beck et al., 229 

2019). 230 

2.3.  Reference precipitation dataset 231 

A database of 1,440 gauges were made available by several African national meteorological and 232 

hydrological centres. The stations are distributed onto 952 0.1° grid-cells. For each grid-cell, a 233 

reference daily precipitation series was obtained averaging the gauges included in the grid-cell. To 234 

ensure consistent analysis, only grid-cells with more than 80% of daily records were considered. The 235 

four-year period of 2000–2003 was finally retained to consider the largest number of 0.1° grid-cells 236 

(187) grid-cells.  237 

2.4.  Monthly P-dataset estimate assessment 238 

The monthly amounts were computed for only months with more than 80% of common daily records 239 

for all datasets (reference and P-datasets). The accuracy of monthly P-dataset estimates was 240 

assessed using a quantitative statistical analysis based on the modified Kling–Gupta Efficiency (KGE), 241 

an objective function combining correlation (�), bias (�), and variability (�) components (Gupta et 242 

al., 2009; Kling et al., 2012) (Eq. 1). We used KGE because water resource management requires 243 

reliable representation of precipitation temporal dynamics (measured by �) and volume (measured 244 

by � and �): 245 



13 

 

��� = 1 − �(� − 1)
 + (� − 1)
 + (� − 1)
,  

 

(1) 

where � represents the Pearson coefficient (Eq. 2), � is the ratio between the mean observed and 246 

predicted precipitation (Eq. 2), and � is the ratio of the estimated and observed coefficients of 247 

variation (eq. 3): 248 

 249 

� =  1
� � (�� − ��) ∗ (�� − ��)

�� ∗ ��

�

�
, 

 

(2) 

� = ��
��

, 

 

(3) 

� = �� ��⁄
�� ��⁄ , 

 

 (4) 

where � and � are the distribution mean and standard deviation, respectively; and s and o indicate 250 

the estimate and reference, respectively. KGE, �, �, and � have their optimum at unity.  251 

The analysis was performed considering all months of 2000–2003 and the wet and dry seasons 252 

months separately. For each grid-cell, the wet and dry seasons were selected according to their 253 

corresponding climatic zone (Fig. 1). The Sahel seasonality was applied for the grid-cells located up to 254 

latitude 16° N. 255 

The values of KGE, �, �, and � were computed at each grid-cell location to observe the P-dataset 256 

reliability over space, and their median values was used to observe that at the regional scale.  257 

Considering the important gaps over space and time for SM2Rain-CCI v.2 (Fig. 2), its performance 258 

analysis was based on a reduced number of 0.1° grid-cells (79). Finally, GPCC v.7 is only available at 259 

the monthly time step (table 1). Consistent comparison between GPCC v.7 and the reference was 260 

possible only for grid-cells and months with complete daily observation series for a total of 183 grid-261 

cells.  262 
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2.5. Daily P-dataset estimate assessment 263 

The daily precipitation estimates were assessed on the basis of on both quantitative and categorical 264 

statistical metrics. The quantitative analysis relied on the median KGE, �, �, and � obtained from the 265 

187 considered grid-cells for all days and the wet and dry seasons days, separately, and from the 266 

79 (183) grid-cells for SM2Rain-CCI v.2 (GPCC v.7). 267 

The categorical statistics were used to measure the P-dataset capacity for detecting the daily 268 

precipitation events. Daily precipitation events are considered as discrete values with only two 269 

observable cases: rainy or not rainy days. A rainy day was considered when the precipitation amount 270 

was greater than or equal to a prescribed threshold (mm.day-1). Four cases were possible (Table 2). 271 

Based on this characterisation, the Heidke Skill Score (HSS) (Eq. 4) evaluates the P-dataset ability for 272 

detecting precipitation events in comparison with a random based prediction.  273 

Table 2. Contingency table used to define HSS 274 

  Rain gauges 

Precipitation No precipitation 

P-datasets Precipitation a b 

No precipitation c d 

 275 

 276 

!"" = 2 ∗ ($ ∗ % − & ∗ ')
(($ + ') ∗ (' + %) + ($ + &) ∗ (& + %)) 

(5) 

 277 

The HSS values range from -∞ to 1 with a perfect score of 1 and negaSve values indicaSng 278 

that random based prediction outperforms the P-dataset one.  279 

The mean HSS value was computed from those obtained for all of the considered grid-cells for 280 

threshold values ranging from 0 to 25 mm.day-1 with a 1 mm.day-1 increment. This consideration was 281 

used to assess the P-dataset performance based on light to heavy daily precipitation events. Finally, 282 
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using a 1mm.day-1, the HSS value was computed at each grid-cell location to observe the P-dataset 283 

reliability over space.  284 

 285 

3. Results 286 

3.1.  P-dataset assessment at the monthly time step 287 

With negative KGE values, three P-datasets (CMORPH-Raw v.1, TMPA-RT v.7, and PERSIANN-RT), 288 

were unable to represent the regional monthly precipitation (Fig.3). Interestingly, their adjusted 289 

versions, CMORPH-BLD v.1, TMPA-Adj v.7, and PERSIANN-CDR, respectively, performed much better 290 

with KGE greater than 0.8, correlation better than 0.9, and bias and variability close to the optimum 291 

values (1). The same results were shown for CHIRP v.2, GSMaP-RT v.6, and JRA-55, which were 292 

systematically outperformed by their corresponding adjusted versions (CHIRPS v.2, GSMaP-Adj v.6, 293 

and JRA-55 Adj, respectively). In a general way, all P-datasets using gauges-based information 294 

present higher KGE than the others. The P-datasets developed for the African continent, TAMSAT v.3 295 

and ARC-2, did not outperform the global scale P-datasets. However, the TAMSAT v.3 reliability was 296 

very close to that of the other P-datasets (KGE = 0.8).  297 

The P-dataset performance expressed as KGE varied seasonally. P-datasets TAMSAT v.3, JRA-298 

55 Adj, PERSIANN-Adj, ARC-2, GSMaP-RT v.6, and GPCC v.7 were more effective during the wet 299 

season, and CMORPH-BLD v.1, MERRA-2, GSMaP-Adj v.6, CPC v.1, and ERA-Interim had better 300 

performance during the dry season. However, the most effective P-datasets, CHIRPS v.2, TMPA-Adj 301 

v.7, WFDEI, PERSIANN-CDR, and MSWEP v.2.2, performed similarly for both wet and dry seasons. 302 

Interestingly, all P-datasets presented higher correlation coefficient and bias values during the dry 303 

season. With respect to the variability ratio, no clear seasonal trend was observed for the different P-304 

datasets.  305 
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 306 

Figure 3. P-dataset reliability at the regional. The right and left edges of the boxes represent the 25th and 75th percentile 307 

values, respectively. The P-datasets are sorted from the most (top) to the least (bottom) efficient in term of KGE. SM2Rain-308 

CCI v.2 and GPCC v.7 are at the bottom because their analyses are based on a different number of 0.1° grid-cells, at 79 and 309 

183, respectively. Blue and black colours are used to highlight P-datasets using or not using gauge-based information, 310 

respectively, and italic font is used for P-datasets available in NRT latency of one to three days. The graphics were inspired 311 

by Beck et al. (2019). 312 

Adjustment of CHIRP v.2, JRA-55, PERSIANN-RT, TMPA-RT v.7, GSMaP-RT v.6, and CMORPH-313 

Raw v.1 increased the KGE values considerably at most of the grid-cell locations. The adjustment 314 

applied to GSMaP-Adj v.6 was not effective over the western region, where KGE values decreased in 315 

comparison to GSMaP-RT v.6, its non-adjusted version. Similarly, the CMORPH adjusted versions 316 

(CMORPH-CRT v.1 and BLD v.1) presented the lowest registered KGE values over the western region. 317 

CPC v.1, MERRA-2, and ARC-2 also presented the lowest KGE value over this region. Regarding the 318 

most effective P-datasets, CHIRPS v.2, GPCC v.7, WFDEI, and TMPA-Adj v.7 presented similar KGE 319 

distributions.  320 
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 321 

Figure 4. P-dataset reliability at the grid-cell level expressed in the form of KGE considering all months in 2000–2003. Arrows 322 

are used to highlight the potential benefit of using gauge-based information. Blue and black colours are used to highlight P-323 

datasets using or not using gauge-based information, respectively, and italic font is used for P-datasets available in NRT 324 

latency of one the three days. 325 

Most of the P-datasets were well correlated to the reference, with correlation better than 0.8 (Fig.5). 326 

The adjusted version systematically presented higher correlation values, with MSWEP v.2.2 327 

presenting the highest number of grid-cells with correlation better than 0.9 and only one grid-cell 328 



18 

 

with correlation worse than 0.7. Interestingly,  CHIRPS presented the lowest correlation score over 329 

the northern very arid region, with correlation worse than 0.7 (Fig.5).  330 

 331 

Figure 5. P-dataset reliability at the grid-cell scale expressed in the form of correlation considering all months in 2000–2003. 332 

Arrows are used to highlight the potential benefit of using gauge-based information. Blue and black colours are used to 333 

highlight P-datasets using or not using gauge-based information, respectively, and italic font is used for P-datasets available 334 

in NRT latency of one to three days. 335 
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The P-datasets without gauge-based information presented higher bias (Fig.6). PERSIANN-RT highly 336 

overestimate precipitation throughout the region (bias > 1.55). The bias decreased in the post-337 

adjusted version (PERSIANN-Adj) with acceptable bias estimates (1.15 < bias < 1.35) over many grid-338 

cells 339 

Similar results were observed for PERSIANN-CDR. CMORPH-Raw v.1 and TMPA-RT v.7 presented 340 

similar bias distributions, from overestimation to underestimation in the northern arid and southern 341 

humid regions, respectively. TMPA-RT gauge adjustment was highly successful, with most of the 342 

TMPA-Adj v.7 grid-cells presenting acceptable bias values at 0.85 < bias < 1.15. CPC v.1 strongly 343 

underestimates precipitation over the western region. This bias spread for all P-datasets using CPC 344 

v.1 for their adjustement process (CMORPH-CRT and BLD v.1, ARC-2, GSMaP-Adj v.6 and MERRA-2). 345 

Interestingly, the precipitation adjustment applied on GSMaP-RT v.6 increased the bias on GSMaP-346 

Adj v.6. WFDEI, TMPA-Adj v.7, and CHIRPS v.2 presented less-biased precipitation estimates with 347 

reasonable bias values of 0.85 < bias < 1.15 in most of the considered grid-cells. 348 
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 349 

Figure 6. P-dataset reliability at the grid-cell scale expressed in the form of bias considering all months for in 2000–2003. 350 

Arrows are used to highlight the potential benefit of using gauge-based information. Blue and black colours are used to 351 

highlight P-datasets using or not using gauge-based information, respectively, and italic font is used for P-datasets available 352 

in NRT latency of one to three days. 353 

Regarding the variability ratio distribution, the efficiency of using gauge-based information to 354 

retrieve the precipitation estimates was obvious when comparing PERSIANN-RT, TMPA-RT v.7, and 355 

CMORPH-Raw v.1 with their post-adjusted versions (Fig.7). The non-adjusted products CMORPH-356 
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RAW v.1, and TMPA-RT v.7 strongly overestimated the precipitation variability in the majority of grid-357 

cells with variability ratios better than 1.25. To the contrary, PERSIANN-RT strongly underestimated 358 

the precipitation variability in most grid-cells, with a variability ratio worse than 0.85. However, when 359 

considering JRA-55 (JRA-55 Adj) and CHIRP v.2 (CHIRPS v.2), the use of gauge-based information did 360 

not significantly enhance the variability ratio. Finally, the two African P-datasets underestimated the 361 

precipitation variability, over most of the grid-cells (variability ratios < 0.90). 362 
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 363 

Figure 7. P-dataset reliability at the grid-cell scale expressed in the form of variability ratio considering all months for in 364 

2000–2003. Arrows are used to highlight the potential benefit of using gauge-based information. Blue and black colours are 365 

used to highlight P-datasets using or not using gauge-based information, respectively, and italic font is used for P-datasets 366 

available in NRT latency of one to three days. 367 

3.2.  P-dataset assessment at the daily time step 368 
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At the regional scale, the ability of the P-datasets to quantify the daily precipitation amount was 369 

relatively low, with most having median KGE values worse than 0.4 (Fig.8). Only MSWEP v.2.2, TMPA-370 

Adj v7, CMORPH-BLD v.1, CMORPH-CRT v.1, GSMaP-RT v.6, and PERSIANN-Adj had KGE scores 371 

superior to 0.4, with the best score achieved by MSWEP v.2.2 (KGE = 0.52). Generally, non-adjusted 372 

P-datasets presented the lowest KGE values except for GSMaP v.6. The KGE decreased from 0.44 373 

(GSMaP-RT v.6) to 0.35 for (GSMaP-Adj v.6). Interestingly, PERSIANN-RT presented a negative KGE 374 

value but one of the highest correlation score, at 0.5. Therefore, its low KGE score appears to be 375 

influenced by its very high positive bias value of 2.5. This is in line with observation made at the 376 

monthly time step and the dominant influence of the bias values on the KGE score.  377 

In term of KGE, the P-dataset accuracy was higher during the wet than that in the dry season. 378 

Interestingly, MERRA-2, WFDEI, ERA-Interim, and JRA-55 performed better during the dry season, 379 

which is line with the results obtained over the Continental United States (CONUS) (Beck et al., 2019). 380 

However, the performances of MERRA-2, WFDEI, ERA-Interim, and JRA-55 were very low, with KGE < 381 

0.2. 382 
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 383 

Figure 8. P-dataset reliability at the regional scale. The right and left edges of the box represent the 25th and 75th percentile 384 

values, respectively. The P-datasets are sorted from the most (top) to the least (bottom) efficient in terms of KGE. SM2Rain-385 

CCI v.2 and GPCC v.7 are at the bottom because their analyses are based on a different number of 0.1° grid-cells, at 79 and 386 

183, respectively. Blue and black colours are used to highlight P-datasets using or not using gauge-based information, 387 

respectively, and italic font is used for P-datasets available in NRT latency of one to three days. The graphics were inspired 388 

by Beck et al. (2019). 389 

Most of the P-datasets presented the highest HSS scores using a threshold value of 1 390 

mm.day-1 (Fig.9). In particular, the HSS values of CHIRP v.2 and MERRA-2 were close to 0 when 391 

considering a 0 mm.day-1 threshold value; the values jumped to 0.3 and 0.36, respectively, when 392 

considering a 1 mm.day-1 threshold value. Actually, the P-datasets detected many precipitation 393 

events with less than 1 mm.day-1 which were not detected by the gauges. This can be explained by 394 

different factors: (1) The gauges are not sensitive enough to such precipitation amounts; (2) 395 

difference in the spatial scale between point (gauge) and  average area (P-dataset grid-cell) 396 

measurements; (3) the P-dataset algorithm is deficient. Because these precipitation events are 397 

insignificant (< 1 mm.day-1), they should be considered as no-precipitation events.  398 
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The highest HSS score was achieved by CMORPH-BLD v.1 (HSS = 0.58) and MSWEP v.2.2 (HSS 399 

= 0.55). The P-dataset ability in reproducing daily precipitation amounts  decreased for increasing 400 

intensity. Two P-dataset groups measured  differently events of more than 15 mm.day-1. The first 401 

group (CMORPH-CRT and BLD v.1, GSMaP-RT and Adj v.6, MSWEP v.2.2, PERSIANN-RT and -Adj, ARC-402 

2, and CPC and TMPA-Adj v.7) was much more suited for reproducing high-intensity precipitation 403 

events than the second group (CHIRP, CHIRPS, CMORPH-RAW v.1, JRA-55, JRA-55 Adj, PERSIANN-404 

CDR, TAMSAT v.3, TMPA-RT v.7, WFDEI, MERRA-2, ERA-Interim, and SM2Rain CCI v.2). It is worth 405 

mentioning that the first group includes (i) P-datasets with gauge-based calibration using daily data 406 

and (ii) P-datasets available at the sub-daily time step. The second group includes (i) non-adjusted P-407 

datasets or (ii) those adjusted with monthly gauges-based data, (iii) P-datasets delivered at the daily 408 

time step, and (iv) reanalysis P-datasets which generally have the largest discrepancies when 409 

compared with other P-datasets (Sun et al., 2018a). Therefore, the gauge-based information used for 410 

P-datasets and the delivered time step (daily or sub-daily) considerably influence the P-dataset 411 

reliability at the daily time scale. This point is further discussed in section 4 in the Discussion.  412 
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 413 

Figure 9. P-dataset ability in reproducing daily precipitation events of different intensities expressed in the form of HSS. Blue 414 

and black colours are used to highlight P-datasets using or not using gauge-based information, respectively, and italic font is 415 

used for P-dataset available in NRT latency of one to three days. 416 

Using gauge-based information improved the HSS score over space. For instance, TMPA-RT 417 

v.7 , CMORPH-Raw v.1, CHIRP v.2 and PERSIANN-RT adjusted versions provided much better HSS 418 

scores throughout the region. The adjusted versions of JRA-55, and GSMaP-RT v.6 did not show 419 

significant enhancement. Overall, the first group identified in Fig. 9 (CMORPH-CRT and BLD v.1, 420 

GSMaP-RT and Adj v.6, MSWEP v.2.2, PERSIANN-RT and -Adj, ARC-2, CPC and TMPA-Adj v.7) presents 421 

the highest HSS all over West Africa.  422 
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 423 

Figure 10. Daily P-dataset reliability expressed in the form of HSS considering all days for 2000–2003 period. The HSS was 424 

obtained for a threshold value of 1 mm/month. Arrows are used to highlight the potential benefit of using gauge-based 425 

information. Blue and black colours are used to highlight P-datasets using or not using gauge-based information, 426 

respectively, and italic font is used for P-datasets available in NRT latency of one to three days. 427 

 428 

4. Discussion 429 

4.1.  Monthly versus daily P-dataset reliability  430 
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Interestingly, the P-dataset performance ranking differed at the monthly and daily timescale 431 

(Fig. 11). We identified two main factors to explain these discrepancies.  432 

The first is related to the gauge-based information time step used to adjust P-dataset 433 

estimates. Indeed, the five most efficient P-datasets at the monthly time step, CHIRPS v.2, TMPA-Adj 434 

v.7, WFDEI, PERSIANN-CDR, and MSWEP v2.2, were adjusted using monthly gauge-based 435 

information, whereas three of the five most efficient P-datasets at the daily time step, MSWEP v.2.2, 436 

CMORPH-BLD v.1, and CMORPH-CRT v.1, were adjusted using daily gauge-based information (Fig. 437 

11). Additionally, the reliability of the gauge-based information can also influence the P-dataset 438 

accuracy. Accordingly, over the Sahel region, the CHPclim monthly dataset reliability was higher than 439 

that of GPCC (Funk et al., 2015). Because most of the considered grid-cells used to assess P-dataset 440 

reliability are in the Sahel region (Fig. 1), CHIRPS, which uses CHPclim, provides more realistic 441 

monthly precipitation estimates, at KGE = 0.86, than WFDEI and PERSIANN-CDR, which uses GPCC 442 

and GPCP, respectively (Fig. 3). This demonstrates the importance of maintaining reliable gauge 443 

networks to insure accurate P-dataset estimates. 444 

The second factor is the P-datasets delivered time step. Some P-datasets are delivered at the 445 

daily aggregation level (Table 1), which is based on different time windows than those used for local 446 

records. For example, PERSIANN-CDR daily estimates correspond to a given 0 h to 0 h UTC 447 

aggregation time period, whereas the gauges used in this study register daily amount from 8 h to 8 h 448 

UTC. Such temporal inconsistency can introduce large differences between the P-datasets and the 449 

gauge measurements (Ashouri et al., 2015; Satgé et al., 2019). Therefore, only one of the P-datasets, 450 

CMORPH-BLD v.1, delivered at the daily time step ranked in the top five most efficient P-datasets. On 451 

the contrary, four of the five most efficient P-datasets at the daily time step were delivered at the 452 

sub-daily  time step (3-hourly) (Table 1 and Fig. 11). The 3-hourly time step enables matching of the 453 

computed daily estimates with the local record time windows to ensure consistent comparison 454 

between gauges and P-dataset estimates.  455 
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Our results demonstrate the importance of considering both daily and monthly time steps 456 

when assessing P-dataset reliability because the latter is influenced by the gauge-based adjustment 457 

process and the delivered time step.  458 

 459 

Figure 11. P-dataset top-five ranking for the (a) monthly and (b) daily precipitation estimates based on their median KGE 460 

value. 461 

Generally, P-datasets using gauge-based information achieved highest KGE scores at both 462 

monthly and daily time step (Figs. 3 and 8), which supports previous results obtained over West 463 

African regions (Casse et al., 2015; Gosset et al., 2013; Poméon et al., 2017) and elsewhere (Beck et 464 

al., 2019; Dinku et al., 2007; Satgé et al., 2017a). However, the use of gauge-based information for P-465 

dataset adjustment is not always as effective. Indeed, GSMaP-RT v.6 outperformed its adjusted 466 

version GSMaP-Adj v.6 at the daily time step. This result is consistent with previous observation over 467 

the CONUS, (Beck et al., 2019) and illustrates the potential limit  P-dataset algorithm to consider the 468 

best of gauge data. GSMaP-RT v.6 is the only P-dataset with no gauge-based information of the top-469 

five daily ranking. Therefore, GSMaP-Adj v.6 should be highly effective if using the gauge-based 470 

information in the optimal form.  471 

4.2.  P-dataset reliability in space and time 472 

CMORPH-BLD v.1, CMORPH-CRT v.1, GSMaP-Adj v.6, and MERRA-2 presented weaker 473 

performance over the western region in comparison with other P-datasets (Fig. 3). We identified one 474 

factor to explain this spatial inconsistency.  475 
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Different from other P-datasets which use GPCC or GPCP data, CMORPH-BLD v.1, GSMaP-Adj 476 

v.6, and MERRA-2 use CPC data. The gauge number used to retrieve CPC is lower than that used to 477 

retrieve GPCC (Fig. 12a). Over the Senegal, Gambia, Guinea-Bissau, and Guinea regions only two CPC 478 

grid-cells counted with more than one gauge against seven for GPCC (Fig. 12b and c). As a result, 479 

compared with GPCC v.7, CPC v.1 presents the lowest efficiency over the western region (Fig. 4), 480 

which propagates into the use of CPC by the P-datasets to adjust their estimates.  481 

The available gauge information for retrieving CPC and GPCC datasets also varies with time 482 

(Fig. 12a). Therefore, the P-dataset reliability could be better (worse) if considering a period with 483 

more (fewer) available gauges for retrieving GPCC or CPC datasets. In this context, TAMSAT v.3 uses 484 

consistent gauge-based information in space and time rather than a continuously updated 485 

information to avoid adding any space or time discrepancy (Maidment et al., 2017).  486 

Actually, P-datasets present space and time inconsistencies which cannot be reported by 487 

using single temporal windows (Satgé et al., 2019). The authors assessed P-dataset reliability over 488 

three different four years period and one twelve years period across the Lake Titicaca region. Results 489 

show that the P-dataset reliability conclusion vary according to the considered period.  Therefore, 490 

the analysis should be conducted over different temporal windows to adequately evaluate the P-491 

dataset space and time reliability. Such a consideration is challenging over West Africa owing to the 492 

scarcity of gauge networks and the important temporal gaps present. To overcome this issue, an 493 

alternative method could use satellite-based soil moisture estimates rather than traditional rain 494 

gauges measurements as a reference benchmark (Massari et al., 2017).  495 
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 496 

Figure 12. (a) Mean numbers of available gauges used to retrieve GPCC and CPC for 1985–2015 and their spatial distribution 497 

for the analysed period 2000–2003 (b,c). The black points in (b) and (c) represent the centroid of the 0.1° grid-cell considered 498 

in this study to assess P-dataset reliability. 499 

It is worth mentioning that GPCC and CPC share common gauges with the reference network used in 500 

this study as highlighted by many overlapping between both network (Fig. 12 b and c). Similar 501 

observation should be done if considering the others gauges based datasets used for P-dataset 502 

calibration and presented in section 2.2.1. Therefore, the gauges network used for the assessment is 503 

not totally independent of the considered P-datasets and could influence P-dataset reliability 504 

conclusions. The P-dataset reliability conclusion could have been less optimist if only based on 505 

independent gauges network. In this context, future studies should try to consider totally 506 

independent gauges network to provide more consistent feedback on actual P-dataset reliability. 507 

However, information on the shared information between national gauges networks and gauges 508 

based dataset (i.e. CPC and GPCC) is hard to obtain and compromise this kind of consideration.  509 

4.3.  P-datasets sensitivity to seasonal variation 510 
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Reanalysis P-datasets, ERA-Interim, MERRA-2, JRA-55 and WFDEI, performed better during the dry 511 

than during the wet season (Fig. 3). This agrees with previous results obtained over the CONUS (Beck 512 

et al., 2019). The authors explained that reanalysis P-datasets are better adapted to detecting large-513 

scale stratiform systems, which are typical in the dry season, than unpredictable small-scale 514 

convective cells, which are typical in the wet season. On the contrary, only satellite-based P-datasets 515 

performed better during the wet than the dry season (Beck et al., 2019; Salles et al., 2019; Satgé et 516 

al., 2017a). Actually, the irregular sampling of the low earth orbiting satellites and the limited 517 

number of overpasses hardly captures short precipitation events which are typical during the dry 518 

season (Gebregiorgis and Hossain, 2013; Tian et al., 2009). Therefore, GSMaP-RT v.6 presented a 519 

better KGE value during the wet than that during the dry season (Fig. 3). The seasonality sensitivity of 520 

the other P-datasets incorporating satellite, reanalysis, or gauge-based information shows a greater 521 

contrast because they consider the different inputs. 522 

Despite the seasonal variation in KGE value, the P-datasets presented significantly higher 523 

coefficient correlation during the dry season (Fig. 3). This difference could be related to the higher 524 

monthly precipitation variability during the dry season (Fig. 1) tending to increase the correlation 525 

coefficient. Accordingly, all P-datasets presented higher correlation coefficients considering the 526 

entire period because the precipitation variability is even more marked than at the seasonal scale. At 527 

the contrary, the P-datasets were more biased during the dry season (Fig. 3) except for CPC v.1, 528 

GSMaP-Adj v.6, and ERA-Interim. The P-datasets with higher (TAMSAT v.3, PERSIANN-Adj, ARC-2, 529 

GSMaP-RT v.6, SM2Rain CCI v.2, JRA-55 Adj, and GPCC v.7) and lower (CPC v.1, GSMaP-Adj v.6, and 530 

ERA-Interim) bias values during the dry season presented higher KGE scores during the dry season 531 

whereas the P-datasets with close bias values for both wet and dry seasons (CHIRPS v.2, TMPA-Adj 532 

v.7, WFDEI, PERSIANN-CDR, MSWEP v2.2, CMORPH-CRT v.1, CHIRP v.2) presented similar KGE values 533 

for both seasons. Considering the similar seasonal trend observed for both KGE and bias values, the 534 

bias  appears to have a dominant influence on the KGE score. 535 
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Interestingly, if considering the P-dataset bias in millimetres, all P-datasets had systematically 536 

higher bias values during the wet season (Fig. 13). Because lower monthly precipitation occurred 537 

during the dry season, the same volumetric error (millimetres) expressed in ratio (Eq.2) corresponds 538 

to higher bias during the dry in comparison to that during the wet season. For most of the P-datasets, 539 

the reported bias value during the dry season was less than 5 mm.month-1 (Fig. 13), which should 540 

have an insignificant influence on the water budget.  541 

 542 

Figure 13: Monthly bias value expressed in millimetres for both dry and wet seasons. The values are expressed in terms of 543 

absolute values. To facilitate the analysis, bias values greater than 50 mm are not shown.  544 

Therefore, despite the low KGE value during the dry season, P-datasets still provide valuable 545 

additional information to follow both temporal and volume monthly precipitation dynamics over 546 

West Africa.  547 

4.4.  P-dataset time latency 548 

Fig. 14 shows the KGE scores of the NRT P-datasets in comparison with the most accurate P-dataset 549 

at the daily time step.  550 
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 551 

Figure 14. NRT P-dataset reliability at both daily time steps in comparison to the most effective P-datasets, represented in 552 
blue.  553 

At the daily time step, GSMaP-RT v.6 was the most reliable NRT P-dataset. With three days of time 554 

latency, the GSMaP-RT KGE, at 0.44, was close to the most effective P-dataset (MSWEP v2.2) with 555 

KGE = 0.52, which is available with a few months of latency.  556 

It is worth mentioning that the low score achieved by the P-datasets at the daily time step is partly 557 

related to the difference between spatially averaged (P-dataset grid-cell) and point (reference 558 

gauges) measurements (Salles et al., 2019; Satgé et al., 2019; Tang et al., 2018). The P-dataset 559 

reliability increased with the number of gauges used to represent the spatially average grid-cell 560 

measurement (Salles et al., 2019; Tang et al., 2018). In this study, most of the considered 0.1° grid-561 

cells were counted with only one gauge. Therefore, the presented KGE score may underestimate the 562 

actual P-dataset reliability. Testing the sensitivity of streamflow modelling to P-datasets at basin 563 

outlets overcome the influence of scarce and unevenly distributed gauge networks. Indeed, 564 

aggregation of precipitation at the basin scale eliminates the difference in spatial representation 565 

between point (gauge) and areal (P-datasets) measurements because both gauge and P-datasets 566 

represent precipitation at the basin spatial scale. Therefore, the reliability of P-datasets varies 567 

significantly when used to reproduce gauge precipitation estimates or streamflow observations 568 

(Satgé et al. 2019).  569 
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In this context, NRT P-dataset coverage and latency can fit the needs of an early warning system 570 

across sparsely gauged or ungauged regions. Recent studies have successfully used NRT P-datasets to 571 

follow flood events in terms of streamflow (Yuan et al., 2019) and flood extent (Belabib et al., 2019) 572 

or for landslide occurrence estimations (Brunetti et al., 2018). Future studies should assess NRT P-573 

datasets in the scope of early warning studies to consistently evaluate NRT dataset reliability in this 574 

specific context. 575 

4.5.  Towards an enhanced P-dataset over West Africa 576 

This study considers an unprecedented sample of 23 P-datasets over the West African region to 577 

provide a consistent guideline for potential users. The results suggest that during 2000–2003, CHIRPS 578 

v.2 and MSWEP v.2.2 showed the best estimates of monthly and daily precipitation, respectively. The 579 

most reliable P-dataset can change at the local scale. As an example, Fig. 15 shows the most suitable 580 

P-datasets for representing both monthly and daily precipitation at the grid-cell level. Interestingly, 581 

at the daily time step, MSWEP v.2.2 was more consistent for the western region, whereas CMORPH 582 

P-datasets provided more accurate estimates over the central and southern regions (Fig. 15). At the 583 

monthly time step, even if CHIRP(S) P-datasets are counted with the highest number of grid-cells, 584 

large spatial heterogeneity is observed with many grid-cells where WFDEI, JRA-55 Adj, CMORPH, and 585 

TMPA outperformed CHIRP(S) (Fig. 15). To take advantage of all available P-datasets, merging all P-586 

datasets to produce an enhanced P-dataset over the region is a good option. Previous studies have 587 

reported on the benefit of such an approach to retrieve a more realistic P-dataset over Pakistan 588 

(Muhammad et al., 2018; Rahman et al., 2018),Tibet (Ma et al., 2018) and different tropical complex 589 

terrain (Bhuiyan et al., 2019). These ensemble precipitation datasets enhance the regional 590 

precipitation representation and should be used as guideline over West Africa. 591 
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 592 

Figure 15. Most efficient P-datasets at the grid-cell level. For simplification, the P-datasets were aggregated in main groups: 593 

GSMaP = GSMaP-RT + Adj v.6; TMPA = TMPA-RT + TMPA-Adj; JRA-55 = JRA-55 + JRA-55 Adj; PERSIANN = PERSIANN-RT + 594 

PERSIANN-Adj + PERSIANN-CDR. 595 

5. Conclusions 596 

The present study evaluates the accuracy of 23 gridded P-datasets over the West African region at 597 

both monthly and daily time step for the 2000-2003 period. Despite the limited coverage and scarcity 598 

of the ground reference points, some consistent features emerged from the analysis: 599 

• The P-dataset performance ranking differs at the monthly and daily timescale. P-datasets 600 

using sub-daily (monthly) gauge information perform better at the daily (monthly) time step. 601 

Additionally, for the P-datasets released at the daily time step, the temporal mismatch 602 

between gauge and satellite reporting times decrease their reliability at the daily time step. 603 

In this line, MSWEP v.2.2 and CHIRPS v.2 provide the most reliable daily and monthly 604 

precipitation estimates, respectively whereas TMPA-Adj v.7 performance is very good for 605 

both daily and monthly estimates. 606 
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• The only satellite based P-datasets (CMORPH-RT v.1, TMPA-RT v.7, PERSIANN-RT, GSMaP v.6-607 

RT) performance is very low at both monthly and daily time scale. Their reliability drastically 608 

increase for their adjusted versions (CMORPH-CRT and BLD v.1, TMPA-Adj v.7, PERSIANN-609 

Adj) excepted for GSMaP v.6 at the daily time step.  610 

• All the considered reanalysis P-datasets (WFDEI, JRA-55, JRA-55 Adj, ERA-Interim) are 611 

unreliable at the daily time step. The use of monthly GPCC P-dataset to adjust their estimates 612 

considerably increase their reliability at the monthly time step (WFDEI, JRA-55 Adj).   613 

• The two African P-datasets (TAMSAT v.3 and ARC-2) present an overall lower performance in 614 

comparison to the almost global scale P-datasets at both daily and monthly time-step. 615 

Despite good performance in some parts of the region, SM2Rain-CCI v.2 still suffers too many 616 

gaps in space and time across West African. 617 

• All P-datasets present spatial discrepancies in their statistical score suggesting the use of a 618 

spatial P-datasets’ merging approach to take advantage from all available P-datasets across 619 

West Africa. 620 

It should be reminded that most of the considered 0.1° grid-cells count with only one gauge to 621 

represent the observed precipitation. Because of spatial inconsistency between point (gauges) and 622 

spatially average (P-datasets) measurement, different conclusion regarding the P-datasets reliability, 623 

could have been drawn if more gauges had been available per grid-cells or if using P-datasets as 624 

forcing data for hydrological modelling. Additionally, the study is based on a single four years 625 

temporal window. However, P-dataset reliability vary in time and the results could have been 626 

different if considering another four years temporal window or a larger one. Therefore, this study 627 

aims more at compare the P-dataset reliability between them rather than to provide definitive 628 

conclusion on their respective accuracy.  629 
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