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Abstract

Conversion of wild habitats to human dominated landscape is a major cause of biodiversity

loss. An approach to mitigate the impact of habitat loss consists of designating reserves

where habitat is preserved and managed. Determining the most valuable areas to preserve

in a landscape is called the reserve design problem. There exists several possible formula-

tions of the reserve design problem, depending on the objectives and the constraints. In this

article, we considered the dynamic problem of designing a reserve that contains a desired

area of several key habitats. The dynamic case implies that the reserve cannot be designed

in one time step, due to budget constraints, and that habitats can be lost before they are

reserved, due for example to climate change or human development. We proposed two heu-

ristics strategies that can be used to select sites to reserve each year for large reserve

design problem. The first heuristic is a combination of the Marxan and site-ordering algo-

rithms and the second heuristic is an augmented version of the common naive myopic heu-

ristic. We evaluated the strategies on several simulated examples and showed that the

augmented greedy heuristic is particularly interesting when some of the habitats to protect

are particularly threatened and/or the compactness of the network is accounted for.

Introduction

Today, one of the main causes of the loss of biodiversity is the conversion of wild habitats to

human dominated landscapes, for example for agricultural uses, oil and gas exploitation or

urbanization [1, 2]. Conversion of land generally results in habitat destruction or degradation

and habitat fragmentation, which dramatically changes the functioning of an ecosystem, i.e.

its ability to provide food, water, cover and space to the native species and humans [3]. As a

result, the remaining land may be inadequate to prevent the extinction of native species. One

approach to mitigate negative human effects consists of designating reserves [4] where habitat

is preserved and possibly managed. Determining the most valuable areas to preserve in order
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to support human development while ensuring species/population viability is called the reserve
design problem.

Different formulations of the reserve design problem are available, depending on the objec-

tives such as whether the reserve can be implemented immediately or over multiple years [5,

6]. This difference is known as the static reserve design problem (SRDP) versus the dynamic
reserve design problem (DRDP). In the former, adapted, for example, to the construction of

marine protected area [7, 8], the reserved sites are determined once as if the sites will all be

purchased simultaneously [9, 10]. In the latter, the reserve cannot be implemented all at once,

but sites have to be added to the reserve in an iterative way, over multiple years [11–14]. This

may be the case, for example, if the necessary budget to create the reserve is not available

instantaneously but is apportioned annually.

Common objectives of both approaches are to maximize representation, i.e. the number of

species present in the reserve network at the end of the planning period [12, 15] or to maxi-

mize retention, i.e. both the number of species present inside and outside the reserve at the

end of the planning period [14]. Another common objective consists of minimizing the cost of

the reserved network while meeting a set of biodiversity targets [16–20]. This problem has

been formulated using different frameworks and has various names in the literature, such as

minimum set problem, set covering problem, minimum area problem, or minimum representa-
tion problem. In the rest of the article, we will simply use DRDP for reference to the problem of

minimizing the cost of the reserved network while meeting a set of biodiversity targets. In the

static case, the Marxan software [21] is a well-known software which uses simulated annealing
to find a near-optimal reserve network. In the dynamic case, there does not exist universally

recognized approaches yet. Although the Marxan solution can be used in a sequential way, i.e.

the optimal reserve for the static problem is computed and then sites are acquired progres-

sively according to the yearly available budget, this approach is not ideal. In the dynamic case,

the future state of the landscape is uncertain and as a consequence, the optimal static solution

can exhibit poor efficiency if implemented dynamically [22]. The major drawback of this

approach is that sites can be lost before they can be purchased due for example to urban devel-

opment. A natural way of framing the DRDP is to use the Markov Decision Process (MDP)

framework. Then, MDP solution methods can be used, e.g. Stochastic Dynamic Programming

(SDP) [4, 15, 23], allowing computation of the optimal reserve policy that accounts for several

sources of uncertainty, such as the yearly budget, environmental losses and urban development

or future site prices [12, 14, 15, 24]. The output of the SDP approach is an optimal reserve pol-

icy, or in other words, a function that returns the next sites to reserve for each possible state of

the landscape (i.e. sites availability, biodiversity features and sites costs) and the yearly budget.

Each year, the decision made by the optimal reserve policy is optimal in expectation over all

possible future landscape availability changes and future budgets. But unfortunately, as in

other applications, SDP can be used only for relatively small size problems, e.g. 10 sites with a

6 years planning period and a fixed yearly budget that allows to reserve only one site per year

in [15]. In this article we are interested in large DRDP and we describe and explore approxi-

mate solution methods.

A common SDP alternative is to base the decision on heuristic policies, which either ignore

the uncertainty on the future landscape, e.g., the naive myopic [15], or account for uncertainty

only one time step ahead, e.g., the informed myopic [15]. Improvement of the naive myopic

strategies has been proposed in [24] with the so-called site-ordering algorithm. It is based on

the idea that the set of sites solution of the static problem should be computed first, and then

the optimal purchasing order of the sequence should be determined subsequently, based on

the expected value of a sequence.

Dynamic reserve design heuristics
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In this article we first propose an extension of the site-ordering algorithm to solve the

DRDP, by pairing the Marxan algorithm with the mechanism of the site-ordering algorithm.

Second, we propose a generalization of the common naive myopic heuristic, particularly rele-

vant when compactness of the network is important and rare biodiversity features can be lost

during the construction of the reserve network.

We start by framing the DRDP as a MDP, which allows all the tested reserve policies to be

described in a unifying framework.

Material and method

Problem description

To prevent future land conversion (e.g. urban development or agricultural use) and to be able

to support native wildlife in the long term, we assume that J key habitats have been identified.

These habitats are critical for the native species and we assume that target areas H1, . . ., HJ of

each type of habitat should be reserved to help their conservation. H1, . . ., HJ could be seen as

the minimum areas of target habitats that should be present in the landscape in order to sup-

port native wildlife.

Assume that there is a set St of available sites at time t. Each site s 2 St can be potentially

included into the network of reserved sites in order to help satisfy the habitat targets. Sites are

characterized by their value to each habitat, defined by the amount of each type of habitat in

the site h(s) = (h1(s), . . ., hJ(s)). The cost in $ of purchasing a site is c(s). The set of sites that

have been reserved during time period t is denoted Nt; and Nt ¼ [t� 1
t0¼1

Nt0 is the set of reserved

sites at the beginning of time period t. Thus, Ntþ1 ¼ Nt [ Nt is the network of reserved sites at

the end of time period t or, equivalently, at the beginning of time period t + 1. Finally, N 0 is

the set of sites that are already in the reserve network at the beginning of the decision problem.

Here we study the problem of choosing a set of sites achieving a minimal representation of

target habitats, as we were inspired from the real-world problem of extension of the Everglades

Headwaters National Wildlife Refuge (EHNWR) [25]. But the framework that we propose can

be used for any minimum representation problem. For example, J can be the number of spe-

cies that are concerned by a conservation program and for all sites s, hj(s) equals 1 if species j is

present in site s and 0 otherwise. H1, . . ., HJ are then the minimum number of reserved sites

where the species should be present. We use this set-up and compare some of our proposed

heuristics to the problem described in [15]. Results are discussed in S3 File.

A site s 2 St not reserved at time t can be converted during the next time step with a conver-

sion probability μ(s). This is the case for example when the site is bought and developed. The

set of converted sites at the end of time period t is Lt. If s is either converted or reserved, it is

removed from the set of available sites. Thus, we have

Stþ1 ¼ St n ðLt [ NtÞ; ð1Þ

where . \ . is the set subtraction operator. For example the subtraction of the set of sites {1, 2} to

the set {1, 2, 3, 4} is {3, 4}, i.e. {1, 2, 3, 4} \ {1, 2} = {3, 4}.

Not all sites can be reserved in one year and the set Nt has to satisfy the available budget Bt.
The set of sites Nt which are reserved at time t is feasible when the cost of reserving all sites in

Nt, i.e. ∑s2Nt c(s), does not exceed Bt, the available budget for reservation at time period t:

Nt is feasible ,
X

s2Nt

cðsÞ � Bt:

Dynamic reserve design heuristics
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A reserve design policy is a decision rule describing for each year the feasible set of sites to

reserve. A simple example is the cheapest sites first policy, where each year the cheapest sites

are purchased until the budget is consumed. Mathematically, a reserve design policy is a func-

tion d : ðSt;NtÞ ! Nt that decides the feasible set Nt� St to reserve as a function of the cur-

rently available and already reserved sites, ðSt;NtÞ. Note that, if all sites have a positive

conversion probability (μ(s)> 0), then, whatever reserve design policy is chosen, as t increases,

St will become empty with probability 1. Let N be the set of reserved sites as t! +1.

The objective of the DRDP is to find a reserve design policy which selects with high proba-

bility (the only source of uncertainty being site development) a fixed-point reserve network N
achieving all habitat targets:

8j ¼ 1 . . . J
X

s2N

hjðsÞ � Hj;

at a minimal cost.

Finally, the compactness of the the network can also be important. Let us define the

extended cost of a reserve network N :

cðN Þ ¼
X

s2N

cðsÞ þ PenaltyðN Þ þ BLM � BoundaryðNÞ; ð2Þ

The extended cost is used to evaluate the final reserve network N and should be minimized.

Boundary quantifies the compactness of N , as the length of the boundary surrounding the

reserve network:

BoundaryðN Þ ¼
X

s2N

ps � 2
X

ðs1 ;s2Þ2N

ps1 ;s2
:

ð3Þ

πs is the boundary length of site s, πs1,s2 is the length of the shared boundaries between sites s1
and s2, and ðs1; s2Þ 2 N represents all the pairs of distinct sites in the reserve network. Frag-

mented networks will have greater boundary length value. BLM is a constant used to scale the

influence of the Boundary values relative to cost and penalty factors, thereby influencing the

compactness of the reserve network [21].

PenaltyðN Þ penalizes reserve networks which cannot meet all habitat targets. PenaltyðNÞ is

equal to zero if the network N can meet all the habitat targets and is equal to a constant α, arbi-

trarily large but finite when at least one habitat target is not met. In this article, α is arbitrarily

fixed to twice the cost of the initial landscape: α = 2 � ∑s2S0 c(s).
We can now define the expected extended cost of a feasible policy δ in a reserve design prob-

lem with initial set of available sites S0 and initial reserve network N 0, as:

EECdðS0;N 0Þ ¼
X

N 0�N�ðS0[N 0Þ

PmðN jS
0;N 0; dÞ � cðN Þ:

ð4Þ

Intuitively, EECδ is the value of the extended cost that one can expect if the reserve design pol-

icy δ is used. Here the summation is over all fixed-point reserve networks N that can be

reached when the reserve design policy δ is used and when the initial state is ðS0 [ N 0Þ. In this

summation, it is necessary to consider every possible scenario of sites conversion. For example,

consider a problem with three sites (1, 2, 3) with unitary cost, where Bt = 1 for any time step t,
and where any combination of two sites can reach habitat targets. Suppose that our policy δ
reserves the first site during the first time step, i.e. N0 = {1}. Then, site 2 is reserved during the

second time step if it is available. Finally, δ reserves site 3 if site 2 is not available or reserves no

Dynamic reserve design heuristics
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site when all are converted. Note that the value of N0 is always deterministic and only depends

on the policy. Because only one site is reserved during the first time step, the two other sites

can be converted or not at the end of the first time step. There are thus 4 possible values of S1: a

first one where no sites are converted (then N1 = {2}), two scenarios where only one site is con-

verted (then N1 = {2} or N1 = {3}) and a final scenario where all sites are converted N1 = ;.

Each of these scenarios results in a fixed-point reserve network, which has to be included in

the summation. Then, PmðN jS0;N 0; dÞ is the probability that the fixed-point reserve network

N will be observed, or equivalently the probability of the associated site conversion scenario.

Finally, noting Δ the set of feasible reserve design policies for a given DRDP, the optimal
reserve design policy δ� (for a given pair of sets of initial available and developed sites) is defined

as:

d
�
¼ arg min

d2D
EECdðS

0;N 0Þ: ð5Þ

Thus, the optimal reserve design policy is the one with minimal expected extended cost. In

the following section, we show that the problem of finding an optimal reserve selection policy

can be modelled as a stationary, infinite-horizon Markov Decision Process [26]. The MDP

framework offers several exact (or approximate when the problem is too large to solve exactly,

as is the case here) solution algorithms and allows presenting various heuristic methods in a

unifying framework. The DRDP problem has already been modelled as a MDP, in [15] and

[27]. However, in the first article, only very small problems are dealt with, considering a very

short time horizon. The second article deals with large stationary, infinite-horizon problems,

for which approximate solution methods are proposed. However it assumes that only one site

can be reserved at each time step, which limits its applicability.

Framing the DRDP as a Markov Decision Process

Markov Decision Processes. A stationnary, infinite horizon Markov Decision Process
(MDP) is defined by a 4-tuple< X ;A;P; r >, where:

• X is the finite set of possible states of the world.

• A is the finite set of allowed actions.

• P : X �A� X ! ½0; 1� is a state transition probability. Pðx0jx; aÞ is the probability that if

the current state of the world is x and the applied action is a, then the following state is x0.

• r : X �A! < is an instant reward function. r(x, a) is the instant reward obtained when

action a is applied in state x.

In a stationary infinite horizon MDP, a stationary policy d : X ! A assigns an action at

any time step. Solving a MDP amounts to finding an optimal policy. The value function
Vd : X ! <, associated with an arbitrary policy δ is defined as:

VdðxÞ ¼ E
Xþ1

t¼0

rðXt; dðXtÞÞ j X0 ¼ x

" #

: ð6Þ

Note that the expectation of the infinite sum may not be finite in the general case. There-

fore, in general, one considers discounted infinite-horizon MDPs, instead of undiscounted

ones. That is, the reward at time t is discounted by a factor γt, where 0< γ< 1. This guarantees

that the expected value remains finite. However, in the DRDP case, with probability 1 an

Dynamic reserve design heuristics
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absorbing state with associated reward 0 is reached in a finite number of steps. This guarantees

that Vδ(x) is finite, even in the undiscounted case.

An optimal policy is then a policy which maximizes Vδ in every starting states:

Definition 1 (MDP optimal policy) Let< X ;A;P; r > be an infinite-horizon stationnary
MDP. d

�
: X ! A is an optimal policy for the MDP if and only if it satisfies:

Vd� ðxÞ � VdðxÞ; 8x 2 X ; for any policy d:

It is a well-known fact that whenever Vδ takes finite values for all policies and all states, then

a MDP admits an optimal policy (Puterman, 1994). Furthermore, such an optimal policy (and

its value function) can be computed in a time polynomial in the number of elements of X and

A, using Dynamic Programming algorithms, such as the Value Iteration or Policy Iteration algo-

rithms (Puterman, 1994).

A Markov Decision Process model for DRDP. From the definition of the DRDP we have

given, this problem seems to fit quite easily in the MDP framework. Indeed, let us define a

MDP < X ;A;P; r >, which optimal policies correspond to optimal policies of a given DRDP

problem.

Let us consider a DRDP with n sites. Then, the state of the world at any time is uniquely

defined by the knowledge of the pair ðS;N Þ of available sites and current reserve network,

where: S;N � f1; . . . ; ng and S \ N ¼ ;.
Thus, for the corresponding MDP,

X ¼ fx ¼ ðS;NÞ j ðS;NÞ � f1; . . . ; ng2 and S \ N ¼ ;g: ð7Þ

Note that the set L of developed sites can be deduced from S and N :

L ¼ f1; . . . ; ng n ðS [ NÞ.
In a DRDP, actions correspond to feasible subsets of available sites to reserve. Note that the

feasible set of actions of the DRDP, that is the feasible set of actions of the corresponding

MDP, depends on the currently available sites, i.e. on the current MDP state x. Even though

the MDP framework allows to define state-dependent actions sets, we find it more convenient

to define an action set which is independent of the current state (but depends on time to

account for budget variation in time) and to use the reward function to forbid some actions in

some states. Thus, for the corresponding MDP we simply define:

At
¼ fN � f1; . . . ; ng;

X

s2N

cðsÞ � Btg: ð8Þ

This means that we consider that, a priori, the reserve designer can choose any subset of sites

to reserve at any time step, even when some sites might have already been converted (provided

that the total reservation cost does not exceed the available budget).

We have to define the transition function Pðx0jx; aÞ of the MDP corresponding to the

DRDP. First, note that any x 2 X corresponds to a pair ðS;N Þ with ðS;N Þ � f1; . . . ; ng2
and

S \ N ¼ ; in the DRDP. In the same way, any action a 2 A corresponds to a subset ; � N�
{1, . . ., n}.

To define the transition function P, we will distinguish the case where a is unfeasible for x
from the case where it is feasible:

Dynamic reserve design heuristics
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• If S is non-empty, N� S and N is feasible in terms of cost, then, the set of possible successor

states fx0 ¼ ðS0;N 0Þg is defined by: (i) N 0 ¼ N [ N and (ii) S0 � S \ N and

Pðx0jx; aÞ ¼
Y

s2SnðN[S0Þ

mðsÞ

 !

�
Y

s2S0
ð1 � mðsÞÞ

 !

: ð9Þ

• In the case where S is empty, the only feasible action is a = N = ; and we simply have

Pðx0 ¼ xjx; aÞ ¼ 1.

• In all other cases, i.e. a unfeasible, we let Pðx0 ¼ xjx; aÞ ¼ 1 as well.

We define a reward function rðxt; atÞ ¼ rððSt;NtÞ;NtÞ, such that:

• If St 6¼ ;, i.e. some sites are still available:

• If Nt is feasible, i.e. Nt� St and ∑s2Nt c(s)� Bt and St+1 6¼ ;, an instant reservation cost is

incurred:

rðxt; atÞ ¼ �
X

s2Nt

cðsÞ;

• If Nt is feasible, i.e. Nt� St and ∑s2Nt c(s)� Bt and St+1 = ;, then the reserve design problem

is over. An instant reservation cost is incurred, as well as penalties linked to the conserva-

tion targets and to the reserve boundary length:

rðxt; atÞ ¼ � BLM � Boundary Nt [ Nt
� �

� PenaltyðNt [ NtÞ:

• If Nt is not feasible, r(xt, at) = −1.

• If St = ;, i.e. all sites are either converted or reserved,

• If Nt = ;, then r(xt, at) = 0.

• If Nt 6¼ ;, then r(xt, at) = −1.

Note that r(xt, at) = −1 is used to prohibit the cases where the action at is willing to reserve

sites that are not available. In practice, we assign r(xt, at) an arbitrary large negative value.

One can easily check that any reservation policy can be modeled as an MDP policy in the

corresponding MDP. Furthermore, it is also possible to show that a reservation policy has

finite value in all states if and only if it chooses only feasible sets of sites to reserve, in all config-

urations of sites. Finally, we can check that:

VdðS0;N 0Þ ¼ EECdðS0;N 0Þ:

Thus, we have modeled the Dynamic Reserve Design Problem as one of solving a stationary

infinite horizon MDP. We will see, in the following section, that even though we face a classical

MDP, usual MDP solution algorithms (value iteration, policy iteration, linear programming. . .)

are not able to solve this problem, due to the huge size of its state (and action) spaces. Some

Artificial Intelligence methods, based on simulation, may be able to solve problems with more

sites, however are still limited. Therefore, we propose heuristic approaches, extending the
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myopic approach and the well-known Marxan and myopic heuristics to the dynamic frame-

work, to solve this problem approximately.

Solution method

Exact method. A common approach that can be used for small problem, e.g. only 10 sites

in [15] or 12 sites in [22], consists in using a backward induction algorithm. The backward
induction algorithm is based on a particular organization of the computation: starting from the

end. First, one can see that the value of a policy can be computed recursively. Indeed, it is well

known (see, e.g. [26]) that Eq (6) is equivalent to:

Vd� ðxÞ ¼ max
a

X

x0
Pðx0 j x; aÞðrðx; aÞ þ Vd� ðx

0ÞÞ;

d
�
ðxÞ ¼ arg max

a

X

x0
Pðx0 j x; aÞðrðx; aÞ þ Vd� ðx

0ÞÞ:
ð10Þ

Second, let us define F ¼ fx ¼ ðS ¼ ;;N Þg, the set of final states. Note that, if x 2 F, we

have:

• p(x0 = x|x, a = ;) = 1 and r(x, a = ;) = 0, for the only applicable action, a = ;, and

• p(x0 = x|x, a) = 1 and r(x, a) = −1, for any non-applicable action, a 6¼ ;.

Thus, obviously, δ�(x) = ;, 8x 2 F and Vδ�(x) = 0, 8x 2 F, Vδ�(x) = −1, 8x =2 F.

Then, we can pursue a backwards induction approach. We consider states x ¼ ðS;NÞ in

increasing size of S:

• Any state x ¼ ðS;NÞ with |S| = 1 and a 6¼ ; can only transition to states x0 ¼ ðS0 ¼ ;;N 0Þ.
Thus, Vδ�(x0) has already been computed for all such x0 and δ�(x) can be computed using

Eq (10).

• Then, we can progressively compute δ�(x) for states x ¼ ðS;N Þ, by increasing size |S| = 2,

|S| = 3. . . to obtain the optimal policy.

Reinforcement-learning and AI methods. Applying an exact dynamic programming

approach requires computing δ�(x) and Vδ�(x) in turn for all potential states x ¼ ðS;N Þ with

S \ N ¼ ;. The number of computations is huge (>> 2n). In addition, the number of potential

successors of x ¼ ðS;NÞ is also huge (2n), therefore, a single computation can be very costly to

compute. This means that exact dynamic programming is currently restricted to solving very

small problems. Reinforcement Learning approaches [28] use simulations of the MDP dynam-

ics and sampling to approximate δ�. For example, [27] have proposed to use a linear approxi-

mation of Vδ�(x), together with a sample-based approach to compute approximate policies.

This approach is promising, however it has several drawbacks:

1. It provides no guarantee about the suboptimality of the approximate policy,

2. It only considers unit budget limitations (one site can be reserved at each time step) and,

3. it is not well adapted to global constraints such as Boundary costs.

In this article, we propose heuristic approaches, based on a dynamic version of Marxan and

several augmented heuristics, to compute approximate policies. Even though no performance

guarantees are available for this method, it can easily consider global constraints and non-unit

costs and is quite fast and robust (see Results section).
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A dynamic version of Marxan. Marxan [21, 29, 30] was initially designed to solve the

SRDP. In this work, we propose a dynamic version of Marxan, where at each decision step, the

reserve network is computed using Marxan as usual, sites are then sorted by increasing prior-

ity, purchasing higher priority sites first, until the yearly budget is exhausted.

We first show that the Marxan solution can be viewed as a solution of a particular set-up of

our MDP: (i) with an infinite budget at the first time step and (ii) by defining the transition

probability such that all non-reserved sites are getting developed after the first time step. Here

the reward function to maximize is defined as follows:

rMarxanðNÞ ¼ �
X

s2N

cðsÞ � BLM � BoundaryðNÞ �
XJ

j¼1

SPFj � PenaltyðjÞ � CostThresholdðNÞ: ð11Þ

Penalty is used to ensure that the habitat targets are met for every habitat types. If the network

N does not meet the target for a specific habitat type j, then Penalty(j) represents an addi-

tional minimal cost needed to reach the target for this habitat. Again, SPF is used to define

some sort of habitat priority. Finally, a CostThreshold function is used in case a maximal

budget is available. The function is set extremely high when the cost of the network N is

higher than the budget and to zero otherwise. As we are considering an unlimited budget, we

fixed CostThreshold to zero. In addition, we will not use habitat priority, considering that all

habitats are of equal ecological interest. Nonetheless, we use SPF = 1×106 to ensure that the

computed network meets the target for every habitats. Indeed, using a low SPF value can lead

to networks that are not necessarily meeting exactly the target when it allows a large cost

saving.

The Marxan software uses a simulated annealing approach to find a near-optimal reserve

design N �Marxan maximizing rMarxan. More information on the reward function and the use of

this method is available in the Marxan manual [30] or in [29]. In all our experiments, Marxan

solutions N �Marxan were computed using R and the R-package described in [31].

In practice, N �Marxan represents a reserve network of minimal cost that meets the habitat tar-

gets, but a major issue is that this network cannot be implemented within a single year, due to

budget limitation. Then, some sites can be converted before being purchased. The purchasing

order of the sequence N �Marxan is of first importance to minimize the risk for sites in N �Marxan to

get developed before being reserved. This order should be based on the site conversion proba-

bilities as well as the site values (i.e. costs and amounts of target habitats). To do this, we pro-

pose to adapt the work from [24] with the so-called site-ordering algorithm. Intuitively, a

given purchasing order of a sequence is better than another one if it has a higher probability to

meet every habitat targets. Let’s denote, Aj(N) the abundance of habitat j in the reserve network

N:

AjðNÞ ¼
X

s2N

hjðsÞ:

And EAj(N), the effective abundance of habitat j in the reserve network j:

EAjðNÞ ¼ min ðHj;AjðNÞÞ:

The effective abundance is the amount of reserved habitat, upper bounded by the amount that

is required to be protected. A reserve network N that satisfies all the habitat target thus
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satisfies:

XJ

j¼1

EAjðNÞ
Hj

¼ J:

The problem in the dynamic case is that it can not be determined if N �Marxan will indeed ver-

ify the previous equation before all the sites have been purchased. A common practice in deci-
sion theory consists in taking a decision based on the expected value of the original criterion.

Let σMarxan = {s1, . . ., sp} be a particular ordering of the sequence N �Marxan. It is first necessary to

estimate the purchasing year of any site in this sequence. It is necessary to use a fixed value of

the yearly budget mB, which can be for example an average of the yearly budget one can expect

to have over the planning period. Then it is easy to compute the purchasing year of a given site

si, denoted tiBuy:

tiBuy ¼ d
Pi

i0¼1
cðsi0 Þ

mB
e;

Where d.e is the above rounding function. We can then define the expected value of the

sequence’s abundance:

E½AjðsMarxanÞ� ¼
Xp

i¼1

ð1 � mðsiÞÞ
tiBuy � 1 hjðsiÞ:

In this case, the abundance of a site is only accounted for if the site is not converted before it

has been purchased, which happens with a probability ð1 � mðsiÞÞ
tiBuy � 1

. The expected value of

the effective abundance is:

E½EAjðsMarxanÞ� ¼ min ðHj;E½AjðsMarxanÞ�Þ:

Then, the optimal sequence s�Marxan is simply the sequence maximizing the value of the

expected effective abundance:

s�Marxan ¼ arg max
sMarxan

XJ

j¼1

E½EAjðsMarxanÞ�

 !

: ð12Þ

Note that depending on the preferences of the decision maker, some other criteria could be

used. The previous criterion can be considered as “utilitarian”, since reaching the habitat target

for some species can compensate for others. An “egalitarian” decision maker, on his side,

would prefer to minimize the risk that any habitat target be not met. The following definition

of the optimal sequence could then be used:

s�Marxan ¼ arg max
sMarxan

min
j
ðE½EAjðsMarxanÞ�Þ

� �

: ð13Þ

The dynamic version of the Marxan algorithm can be decomposed into the following steps:

1. Compute the optimal reserve network N �Marxan using the Marxan algorithm to solve the static

problem.

2. Compute the optimal sequence s�Marxan and purchase the first sites of the sequence until the

annual budget is spent.
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3. Update the set of available sites (i.e. removed sites that are converted and sites that have

been reserved) and go to 1., until all habitat targets have been met or there are no available

sites in the landscape.

Note that when the remaining annual budget is lower than the cheapest site, it is automati-

cally transferred to the next decision step. We used the same rule for all the tested strategies.

Greedy heuristics. Greedy, or naive myopic, heuristics consist in considering that only

one site can be purchased per time period, while again considering that the problem is static.

Each greedy heuristic is based on a reward function representing the value of a particular site.

We will consider two different heuristics: the richness heuristic and the rarity heuristic. These

heuristics are two variations of what is often called naive myopic heuristic and a complete

description can be found in [30], pages 110–114. In the following, we propose a description

using our MDP framework.

The richness heuristic consists in putting more value on sites that allow the highest gain in

terms of effective abundance of habitats. The reward function can be defined as follows:

rtRichðsÞ ¼ �
XJ

j¼1

rtRichjðsÞ: ð14Þ

Where:

rtRichj sð Þ ¼

hjðsÞ
Hj � ðcðsÞ þ BLM � ðBoundaryðNt [ fsgÞ � BoundaryðNtÞÞÞ

if
P

s2N t hjðsÞ < Hj:

1 Otherwise:

8
><

>:

The richness heuristic tends to select sites with high ecological value first and as a conse-

quence, habitats that are present in low quantity tend to be selected last. This is particularly

problematic when sites can be converted over the year. It can lead to situations where some

particular type of habitat, not frequent over the landscape, gets exhausted before the target is

met. On the contrary, the rarity heuristic takes into account the initial amount of each habitat

present in the landscape so as to select rare habitats first:

rtRar sð Þ ¼ �
XJ

j¼1

EAj½Nt [ fsg�
P

s02St hjðs0Þ
cðsÞ þ BLM � BoundaryðNt [ fsg

� �
� BoundaryðNtÞÞ

2

6
6
6
4

3

7
7
7
5
: ð15Þ

Using a greedy heuristic involves:

1. Purchasing the sites with highest rewards in an iterative fashion, until the yearly budget

does not allow to purchase new sites anymore.

2. Update the set of available sites (i.e. removed sites that are converted and sites that have

been reserved) and go back to 1.

Augmented greedy heuristics. Both previous heuristics do not account for the fact that

some habitats can be more subject to conversion than others. We propose augmented greedy

heuristics which attempt to weight each biodiversity feature automatically, allowing for exam-

ple to account for the effect of habitat loss. We propose to use weights λ1, . . ., λJ in the reward

function of the two previous heuristics, such that some habitats are given more weight, for
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example to counter-balance a high conversion rate or the effect of habitat rarity:

rtARich sð Þ ¼ �
XJ

j¼1

lj

lc
rtRichj sð Þ: ð16Þ

And

rtARar sð Þ ¼ �
XJ

j¼1

lj

lc

EAj½Nt [ fsg�
P

s02St hjðs0Þ
cðsÞ þ BLM � ðBoundaryðNt [ fsgÞ � BoundaryðNtÞÞ

2

6
6
6
4

3

7
7
7
5
: ð17Þ

Note that the weights for the augmented richness and augmented rarity are not necessarily

equal and have to be computed separately. We define an extra weight λc that is used to model

the contribution of the site’s extended cost.

Providing any set of weights λ1 and λ2 is sufficient to entirely define the reserve design pol-

icy d
l1

ARich and d
l2

ARar . Then for the augmented richness and rarity heuristics, it is clear that the

optimal set of weights are the weights resulting in the reserve policy with the highest expected

extended cost. Finding the optimal set of weights requires solving one of the following optimi-

zation problems:

ðl1; . . . ; lJÞ
�

ARich ¼ arg max
ðl1;...;lJ Þ

EECdl
ARich
ðS0;N 0Þ; ð18Þ

ðl1; . . . ; lJÞ
�

ARar ¼ arg max
ðl1 ;...;lJ Þ

EECdl
ARar
ðS0;N 0Þ: ð19Þ

In order to solve (approximately) these optimization problems, we:

• Computed Monte-Carlo approximations dEECdl
AR�

, since the exact values are too costly to

compute and

• Discretized the domains Dj of the variables λj and used a genetic algorithm provided by

Matlab, to compute the optimal discrete values.

The genetic algorithm is simply searching for the effect of varying the value of the differ-

ent weights and ultimately results in a near-optimal combination of these weights. For exam-

ple, using a high value of λ1 compared to the other weights creates a reserve design policy

that first selects sites with a large quantity of the first habitat. If using this rule of thumb is

beneficial (i.e. translates to a high value of the expected extended cost), as is the case, for

example, when the first habitat is subject to a high conversion rate, the genetic algorithm will

save this combination and potentially return it, if no better combinations are found. What is

particularly interesting is that the weights values are computed automatically, as a function

of the landscape’s characteristics, such as relative quantity of each habitat and conversion

rates.

To approximate the expected extended cost, we proposed a simulation approach, where the

strategy is applied on simulated scenarios and the EEC is averaged. The simulation procedure

is detailed in the section Value of the reserve policies.

Experiments

We conducted simulation experiments to compare the dynamic Marxan heuristics, the two

greedy heuristics and the two augmented greedy heuristics.
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Comparison on a small landscape. We first compare the policies on a small simulated

landscape in order to be able to compute the optimal policy using the backward induction algo-

rithm. We simulate a landscape composed of 9 square sites of unit cost distributed on a grid of

3 rows and 3 columns. We consider two habitat targets, i.e. J = 2, and to determine the amount

of habitat per site, we use a Gaussian random field. We use a third habitat which represents a

non-target habitat, so that not all sites have target habitats. We use a Gaussian random field to

be able to simulate spatially coherent habitats, which is a more realistic situation. We set the

parameters of the model such that the first habitat is rare and the second habitat is more com-

mon. We use a Gaussian random field of mean equal to 5 for each habitat with the following

scaling parameters of the co-variance structure: (5, 2) for the first habitat, (1, 2) for the second

habitat and (1.5, 2) for the third habitat. The first parameter is the sill and the second parame-

ter is the range of the covariance. We use an exponential covariance function and obtain a sim-

ulated landscape with 133,730m2 of h1 and 348,479m2 of h2. For both habitats, the targets H1

and H2 are fixed to 50% of the entire amount of this initial amount. The amount of each habi-

tat in each site is presented in Fig 1a and 1b.

As in [24], we simulate conversion rates under two different scenarios: (i) a non-correlated
scenario where the conversion rate and amount of target habitats are independent, and the

conversion probability is drawn from a uniform distribution on [0.01; 0.3]; and (ii) a correlated
scenario, where the conversion rate increases with the amount of target habitats in the site.

More precisely, if a site has a proportion of h1 higher than 5%, its conversion rate is drawn

from a uniform distribution on [0.02; 0.6] and from [0.001, 0.1] otherwise. Sites with a large

proportion of the first target habitat are thus more threatened by conversion. The conversion

probabilities are available in Fig 1c and 1d.

Finally, only one site per year can be purchased, i.e. Bt = 1 for all t. In addition, compactness

is not accounted for and we use BLM = 0. In this case, only the cost of the network is

minimized.

Comparison on large landscapes without compactness, i.e. BLM = 0. Except for the

small landscape example, it is not possible to compute the exact expected extended cost of all

the policies and simulation has to be used. As in [15], we propose to compute the expected

extended cost of each strategy using a Monte Carlo approach. A scenario τ is a sampling of the

possible land conversion when no reserve design policy is used and of the possible yearly bud-

get:

t ¼ fðS1
t
;B1

t
Þ; ðS2

t
;B2

t
Þ; . . .g

Each scenario ends when all sites are converted. Then we apply each policy separately on this

Fig 1. Landscape set-up in the small landscape example. There are 9 sites with unitary cost and unitary yearly budget. Amount of (a) the first

target habitat h1 and (b) second target habitat h2. Conversion rate in the (c) non-correlated scenario and (d) correlated scenario.

https://doi.org/10.1371/journal.pone.0193093.g001
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scenario, where at each time step, the set of available sites is St ¼ St
t
n Nt and the policy deter-

mines a feasible set of sites. The process ends when the targets are met for all habitats or when

no sites are available. The EEC is finally computed accordingly. We use 1,000 simulated sce-

narios for each policy and approximated their EEC by averaging their results on the simulated

scenarios.

We use the same set-up as in section Comparison on a small landscape but with 880 sites

and introduce cost dissimilarity. We propose to base the site cost on the amounts of target hab-

itats available in the site:

cðsÞ ¼ $4; 000 � ðh1ðsÞ þ h2ðsÞÞ:

The average price per site is $216,000 (range: $4,300–$790,000). We propose to simulate sites

of random shape by first simulating the centroid of every sites using a uniform distribution

and second determine site’s boundaries by computing a voronoï diagram out of the centroids

using Matlab. The simulated landscapes, conversion probabilities and costs are available in Fig

2. The first habitat is rare in the landscape and is mostly found on a long strip located West.

The second habitat is present on most sites but preferentially in the North part of the landscape

as well as in the South East part. For this experiment, compactness is not accounted for and we

Fig 2. Landscape set-up in the large landscape without compactness. Amount of (a) the first habitat target h1 and (b)

second habitat target h2. (c) Sites costs. Loss probability in the (d) non-correlated scenario and (e) correlated scenario.

https://doi.org/10.1371/journal.pone.0193093.g002
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use BLM = 0. We define a stochastic yearly budget equal to US$5,000,000 with probability 2

3
,

US$3,000,000 with probability 1

6
and US$1,000,000 with probability 1

6
.

Comparison on large landscapes with compactness, i.e. BLM > 0. We propose a last

experiment where the compactness of the reserve network is also optimized using BLM> 0.

The sites attributes and problem features are inspired from a real world problem, the extension

of the Everglades Headwaters National Wildlife Refuge (EHNWR) and Conservation Area in

central Florida. The extension of this reserve aims at contributing to the conservation of over

160 protected species living in the refuge boundaries and mitigate future effects of climate

change and urbanization [25]. An extensive presentation of the problem parameters can be

found online at https://globalchange.ncsu.edu/secsc/wp-content/uploads/014-Final-Memo-

Romanach.pdf. For privacy reasons, we also use a simulated landscape instead of using the

true GPS coordinates of the sites.

There are five key habitats listed in Table 1. The target for each habitat is defined as a pro-

portion of the available habitat in the initial landscape. We use the same proportion as

observed for the EHNWR project for our simulated landscape (see Table 1).

To simulate habitat, we first compute the empirical variogram of each habitat based on

their observed spatial distribution in central Florida. We then use this estimation to construct

an exponential covariance matrix associated with each habitat. We simulate the value of a mul-

tivariate Gaussian vector, with mean and variance estimated from the true landscape and the

covariance matrix computed from the estimated variogram. We normalize the amount of each

habitat per site, such that the total amount of habitat does not exceed the site’s area. Finally,

the boundaries of the sites are simulated using a Voronïo diagram. In the simulated landscape,

“wet prairies and freshwater marshes” (h5) is the most frequent habitat while the four others

are nearly present in the same proportion (see S1 Fig). Note that a large proportion of the first

habitat (i.e. 67% of the initial amount) has to be reserved, thus habitat conversion can be criti-

cal to reserve the required amount of this habitat. Indeed, on average over the 1,000 simulated

scenarios of habitat conversion, 37% of the first habitat is lost after only 8 years if not pro-

tected. In other words, there is not enough of the first habitat after 8 years to meet the habitat

target if nothing was reserved before. More than 50% of the first habitat is lost after 13 years.

The amounts of habitat are provided in S1 Fig. To determine the conversion rate, we first

divide the sites into three different categories, depending on the amount of target habitats. The

first category contains the sites with a cumulative proportion of target habitats lower than

30%. A cumulative proportion between 30% and 60% for the second category and between

60% and 100% for the third category. Then, for each category, we estimated from the data set

the probability distribution over conversion rates. Finally, we drew the conversion rate of each

site using the estimated probability distribution corresponding to the site’s category. The sites’

conversion rates are provided in S2a Fig. The data set does not exactly provide conversion

rates, but urbanization forecasts to year 2060. This forecast provides projection of the future

Table 1. List of the 5 key habitats used for the comparison and proportion of the initial available habitat that should be reserved. The parameters of the Gaussian ran-

dom field used to simulate the amount of habitat are also provided.

Habitat Target Mean m2 (variance) Range Sill

h1 Dry prairies. 67% 51582 (153047) 0.888 0.954

h2 High pines, Florida scrub and sandhills. 38.8% 29836 (101547) 0.713 0.931

h3 Freshwater forested wetlands. 26% 71027 (143387) 0.58 1

h4 Mesic and hydric pine flatwoods and scrubby flatwoods. 32% 109553 (223443) 0.693 1

h5 Wet prairies and freshwater marshes. 38.8% 133791 (186932) 0.693 1

Non-key habitat 0 604207 (351229) 0.793 0.986

https://doi.org/10.1371/journal.pone.0193093.t001
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urban development due to sea level rise. We interpreted them as a measures of conversion

rates as in [15]. For the sites’ costs, we fitted an exponential distribution to the observed site

costs in the data set. The mean of the exponential distribution, which is the per km2 land cost,

is estimated to US$25,242 (see S2b Fig). In this case, the cost of a site only depends on the site

surface area and not on the amount of key habitats. We used the same stochastic budget as

described in the previous experiment. We solved the DRDP with four different BLM values:

BLM = 0, BLM = 500, BLM = 1,000 and BLM = 2,000.

The Matlab codes used to run all the experiments can be found in S2 File and the codes

used to simulate landscape in S3 File.

Results

Comparison on a small landscape

Among the approximate solutions, the augmented greedy heuristics provide the best results

(see Table 2). On average, they meet the habitat target with one or two fewer sites than the sim-

ple greedy heuristics in the non correlated and correlated scenarios.

The value of the parameters λ1 and λ2 of the augmented heuristics are presented in Fig 3.

Although the weights used by each strategy are different, both augmented heuristics give more

weight to the second habitat in the non correlated scenario and they give more weight to the

first habitat in the second scenario. In this case, the first habitat has a high conversion pressure

and it thus allows prioritizing sites with more of the first habitat at the beginning, thus prevent-

ing the future effect of sites’ conversion.

The adaptive Marxan strategy has surprisingly low efficacy. This can be explained by the

fact that when sites are selected, there is no consideration of the future possible conversion of

land. This can unfortunately result in excluding valuable sites from the sequence.

For example, let’s consider a landscape with 4 sites, s1, s2, s3 and s4, all with unitary cost.

Let’s consider only one key habitat with a target GH1
= 7 and the following amount of habitat

in each site: h1(s1) = 6, h1(s2) = 2, h1(s3) = 4 and h1(s4) = 3. Using Marxan, the networks

NT ¼ fs1; s3g and NT ¼ fs3; s4g have an equal extended cost of 2 (i.e., the price of the net-

work). There is thus no difference between these solutions in terms of value and Marxan can

for example return the solution N �Marxan ¼ fs3; s4g. Suppose that after computing the optimal

ordering of the sequence, site s3 is purchased first. There are 8 possible different landscapes for

the second time step, depending if sites s1, s2 and s4 are converted or not. On these 8 possibili-

ties, there are 2 scenarios where it will not be possible to meet the habitat target: (i) if all sites

are converted and (ii) if sites s1 and s4 are converted. But on the contrary, if the solution

returned by Marxan was N �Marxan ¼ fs1; s3g and site s1 was purchased first, it would have been

Table 2. Expected extended cost for the comparison on a small landscape.

Strategy Not correlated Correlated

Optimal 4.76 6.78

Marxan 7.02 9.92

Greedy Rarity 6.09 9.53

Greedy Richness 6.1 9.53

Augmented Rarity 5.04 7.27

Augmented Richness 5.04 7.21

In the non-correlated scenario, conversion probability and amount of habitat are independent. In the correlated

scenario, sites with high amount of the first habitat are more likely to have a high conversion probability.

https://doi.org/10.1371/journal.pone.0193093.t002
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possible to meet the target in 7 cases out of 8. Note that a greedy heuristic would have selected

site s1 first, which in this case would have increased the probability of meeting the habitat

target.

Comparison on a large landscape

Comparison without compactness. For both conversion scenarios, the greedy heuristic

using the rarity criterion and the two augmented heuristics provide similar results and per-

form best among all the tested strategies (see Fig 4a and 4b).

Fig 3. Value of the parameters λ1 and λ2 of the two augmented heuristics.

https://doi.org/10.1371/journal.pone.0193093.g003

Fig 4. Results for the large landscape experiment without compactness. Expected extended costs of the reserved

networks in (a) the non-correlated scenario and (b) correlated scenario. Average number of reserved sites in (c) the

non-correlated scenario and (d) correlated scenario.

https://doi.org/10.1371/journal.pone.0193093.g004
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In general the tested strategies reached the habitat targets except in the correlated scenario

where the Marxan heuristic did not reach the target for the first habitat on 3 trajectories and

on 33 trajectories for the greedy heuristic that uses the richness criterion. A particularity of the

simulated landscape is that the first habitat is rare and the second habitat is present in a large

quantity. When the selection of sites is based on richness, sites with a large amount of the sec-

ond habitat tend to be selected first. Indeed, the amount of first habitat in sites is generally too

low to influence the richness criterion. In this case, the best sites in terms of the first habitat

are selected later and unfortunately some of the most valuable sites might have already been

converted. Note that the same phenomenon is observed with the Marxan heuristic when the

optimal order is also based on a richness criterion. Nonetheless, conversion probabilities are

also accounted for, which certainly allows the policy to be more efficient. In all cases, both the

greedy heuristic based on richness and the Marxan heuristics need to purchase more sites to

reach the habitat targets (see Fig 4c and 4d). Even in the non-correlated scenario, this rule of

selecting first the valuable sites in terms of the second habitat increases the number of sites

needed to reach the targets, but the difference is greater in the correlated scenario.

For this landscape set-up the heuristic based on rarity is, unsurprisingly, one of the most

efficient strategies, as long as the criterion accounts for the fact that the first habitat is rare. In

this case, valuable sites for this habitat are selected first, thus preventing site conversion. The

efficiency of the augmented heuristics are very similar to the greedy heuristic based on rarity.

It is interesting to note that the augmented richness heuristic again uses λ1 > λ2 in the corre-

lated scenario, such that valuable sites for the first habitat are selected first.

For the next comparison, only the results for the augmented rarity heuristic are computed,

so as to save computation time, since the two augmented heuristics provide similar results.

Comparison with compactness. Increasing the BLM value forces the policies to construct

reserve networks that are highly connected. A possible side effect is that the goal of meeting

the habitat target for a minimal cost will become less important than having a compact net-

work. When sites can be converted during the construction of the network, large BLM values

can lead to situations where some of the habitat targets are not met before the habitat has been

entirely converted (see Fig 5a). For BLM = 2,000 the greedy richness and rarity heuristics are

highly affected and they do not meet the habitat targets in nearly any simulated scenarios. The

Marxan and augmented rarity heuristics are less affected by the BLM value, even if the habitat

targets were not met in nearly 30% of the simulated trajectories when BLM = 2,000. For the

Fig 5. Results for the large landscape experiment with compactness. (a) Probability that the policy allows to meet the habitat targets. (b) Value of the

weights used by the augmented rarity heuristic.

https://doi.org/10.1371/journal.pone.0193093.g005
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simulated landscape that we used, the first habitat target is the hardest to meet and it is the

only target that is missing.

Among the greedy heuristics, again the one based on the rarity criterion is more efficient

(see Fig 6).

But this time, the difference between the greedy and augmented rarity heuristics is much

greater when BLM is high. The augmented rarity policy is the one providing the best results in

terms of network compactness (see Fig 6b) and expected extended cost (see Fig 6c). But it is

important to note that the efficiency of the Marxan policy and the augmented rarity are much

closer in this case. In fact, the Marxan policy is even performing better in terms of $ cost when

BLM = 2,000 (see Fig 6a). This is explained by the fact that the Marxan strategy is more likely

to meet the habitat target in this case (see Fig 5a).

The augmented rarity is using a value of the weight λ1 which favors the first habitat, for

which the habitat target is the hardest to meet (see Fig 5b). The value of λC is also increasing

for BLM = 500 to 2,000, which reflects the increasing influence of having a network as compact

as possible. One can see that the efficiency of the augmented rarity heuristic is surprisingly

decreasing in terms of boundary value from BLM = 1,000 to BLM = 2,000. It is explained by

the fact that for BLM = 2,000 meeting the habitat targets becomes less important in the process

of selecting the reserved sites. As explained earlier, a side effect is that valuable sites in terms of

the first habitat are lost before being reserved. In this case, all policies need more sites to meet

the target (when possible), which indirectly increases the value of the boundary. For example,

the augmented heuristics is purchasing on average 264 sites for BLM = 1,000 when it is 389 for

BLM = 2,000. The marxan heuristics is purchasing on average 451 sites for BLM = 1,000 and

522 for BLM = 2,000; note that the augmented heuristics is purchasing far fewer sites, which

explains the better efficacy in terms of compactness.

Finally, it is interesting to note that the five policies have quite different behaviors (see the

sites’ selection frequency in S3 Fig. The greedy heuristics are highly influenced by habitat con-

version and as a result, the reserved network can be very different between two land conver-

sion scenarios. In contrast, the augmented rarity seems to be quite stable among the different

simulated trajectories.

Discussion

This article presents different solution methods for the problem of dynamic construction of a

reserve network that minimizes cost while meeting habitat targets. Although commonly

needed in practice, relatively few solutions are available for problems of large size. By nature

the DRDP is computationally costly, and with current technology there is no hope that exact

Fig 6. Results for the large landscape experiment with compactness. Cost of the reserved network (b) Value of the boundary computed on the

reserved network (see Eq 11). (c) Estimated value of the expected extended cost (see Eq 4).

https://doi.org/10.1371/journal.pone.0193093.g006
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solution methods can be used, even for modest problems (e.g. one hundred sites). We pro-

posed different heuristics that can be run for large problems. We first proposed a natural

extension of the Marxan solution that accounts for the conversion rate of the selected sites. To

do this, we first computed the optimal network with Marxan at each decision step, and then

computed the optimal purchasing order using the principle of the site-ordering algorithm

[24]. In addition, we proposed an augmented version of two common naive myopic heuristics.

At each decision step, these heuristics define the value of each site V(s) as a linear combination

of features VðsÞ ¼
PJ

j¼1
fjðs;Nt; StÞ, where each feature fj is based on a richness or rarity crite-

rion. In some problems, some biodiversity features should be selected first, either because of

high conversion rates and/or because of habitats rarities, which we proposed to model using

weights λ1, . . ., λJ in front of each feature function: V 0ðsÞ ¼
PJ

j¼1
lj fjðs;Nt; StÞ. To compute

the weights, we proposed to combine a simulation approach with a genetic algorithm, such

that each biodiversity feature weight λj is automatically fitted according to the specificity of the

decision problem.

In order to test this method and verify that weights were actually learned from the structure

of the problem, we designed two simulated examples (small and large landscapes with

BLM = 0), where one habitat was rare and subject to a high conversion probability and showed

that the weights for this habitat were higher, allowing the augmented heuristics to be the best

tested strategies. One drawback of the naive myopic strategies is that cost, biodiversity and

compactness measures are all mixed in one same criterion. Thus, we also proposed to use

weights for the cost and boundary length criterion to automatically scale them with the biodi-

versity features. We showed on the last experiment with BLM > 0)that this drastically

increases the performance over the non-augmented greedy strategies and even outperformed

the dynamic version of Marxan.

One general conclusion of this work is that the augmented greedy strategies are able to

automatically learn from the structure of the problem to weight biodiversity, cost and com-

pactness measures in order to outperform the common greedy strategies. However, when

compactness is not accounted for and conversion probabilities are approximately equal among

the biodiversity features, the augmented and non-augmented greedy heuristics are likely to

provide similar results. On the example inspired from the extension of the EHNWR, the aug-

mented greedy heuristic and dynamic Marxan exhibit similar performances, although the aug-

mented heuristic allows much better performance in terms of boundary length and thus

compactness. These encouraging results suggest that the augmented heuristics can provide

useful reserve design policy to decision makers.

Other solutions might also be investigated. For example, the principle that we used to

extend the Marxan solution to a dynamic problem can also be used to extend the solution

computed with integer linear programming. Indeed, the static reserve design problem can also

be formulated as an Integer Linear Programming (ILP) problem (see for example [10]) to

compute a solution of the static problem. Then, NMarxan can be replaced with N ILP, the solution

provided by any software suitable for solving ILP problems. Criteria other than rarity or rich-

ness can also be used, such as the irreplaceability criterion [22].

When compactness is accounted for, defining an adapted BLM value seems to be critical. In

our last experiment, we showed that with the augmented rarity heuristic, BLM = 500 greatly

improves the compactness of the network without significantly increasing the cost (in $).

On the other hand, for BLM = 1,000 the gain in compactness appears to be small while the

network cost (in $) is nearly double compared to the case where BLM = 0. Finally, for

BLM = 2,000 the efficiency in terms of compactness is reduced while the network cost is signif-

icantly increased, showing that neither the compactness nor the price increase linearly with
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the BLM. In practice, applying different policies on simulated land conversion trajectories

might be a useful way to determine the best BLM value that represents the best compromise

between compactness and cost of the network. Also note that we used the boundary length as a

criterion to quantify the compactness of a network, in order to be able to compare with the

Marxan solution. But this might not be suitable in some situations, as for example marine pro-

tected areas [32], but different criterion for compactness or connectivity can be used to define

the augmented heuristics [33, 34], given they are relatively easy to compute as far as our

method relies on intensive simulations.

Supporting information

S1 Fig. Spatial distribution of the five targets habitats in the large landscape with compact-

ness example. The gray color indicates the proportion of habitat in the site, such that a white

(black) site indicates that the habitat is not present in (fully cover) the site.

(EPS)

S2 Fig. (a) Conversion rates in the large landscape with compactness example and (b) cost

of the sites. For (a), the gray color indicates the conversion probability, from white (μ = 0) to

black (μ = 1). For (b), the cheapest site is in white, while the most expensive one is in black.

(EPS)

S3 Fig. Site selection frequency in the large landscape with compactness experiment with

BLM = 500. The frequency is represented in gray scale, meaning that black sites are always

selected for the 1,000 simulated trajectories of land conversion, while white sites are never

selected by the policy.

(EPS)

S1 File. Comparison_Costello_Polasky.pdf. Details and results of the comparison with the

Costello & Polasky problem [15].

(PDF)

S2 File. ComparisonPresentedInTheArticle.zip. All the necessary Matlab codes to run all the

experiments presented in the article.

(ZIP)

S3 File. LandscapeSimulation.zip. All the necessary Matlab codes to simulate landscape.

(ZIP)
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