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Between-population differences in the
genetic and maternal components of body
mass in roe deer
E. Quéméré1* , J. M. Gaillard2, M. Galan3, C. Vanpé2, I. David4, M. Pellerin5, P. Kjellander6, A. J. M. Hewison1

and J. M. Pemberton7

Abstract

Background: Understanding the genetic and environmental mechanisms governing variation in morphology or
phenology in wild populations is currently an important challenge. While there is a general consensus that
selection is stronger under stressful conditions, it remains unclear whether the evolutionary potential of traits
should increase or decrease with increasingly stressful conditions. Here, we investigate how contrasting
environmental conditions during growth may affect the maternal and genetic components of body mass in roe
deer, the most abundant and widespread wild ungulate in Western Europe. Body mass is a key life history trait that
strongly influences both survival and reproductive performance in large herbivores. We used pedigrees and animal
models to determine the variance components of juvenile and adult winter body mass in two populations
experiencing contrasting early-life conditions.

Results: Our analyses showed that roe deer at Chizé, where habitat was poor and unpredictable, exhibited very
low genetic variance in juvenile body mass. Instead, variance in mass was mainly driven by among-cohort
differences in early-life conditions and maternal environment. In contrast, roe deer at Bogesund, where resource
availability during the critical period of fawn rearing was higher, displayed a substantial level of genetic variance in
body mass. We discuss the potential role of past demography and viability selection on fawn body mass on the
erosion of genetic variance in the poor habitat.

Conclusions: Our study highlights the importance of accounting for both spatial (i.e. between-population variation)
and temporal (i.e. cohort variation) heterogeneity in environmental conditions, especially in early life, to understand
the potential for adaptive responses of wild populations to selection.
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Background
Understanding the environmental and evolutionary mech-
anisms governing variation in phenology [1, 2], behavior
[3] and morphology [4, 5] is an important challenge in
evolutionary ecology [6, 7]. Phenotypic plasticity, the abil-
ity of a given genotype to express different phenotypes de-
pending on environmental conditions, may enable
individuals to cope with environmental changes in the
short term, but a micro-evolutionary (genetic) response

may be required to sustain a directional response over
longer periods [8]. The evolutionary potential of a trait is
traditionally determined by its narrow-sense heritability
(h2), which is defined as the fraction of the total pheno-
typic variance (VP) due to the additive effects of genes,
measured as the additive genetic variance (VA) [9]. There-
fore, predicting the ability of a trait to respond to natural
selection requires knowledge about the amount of genetic
variation for that trait, but also about all environmental
factors, including maternal effects, that may affect its ex-
pression during ontogeny.
It is widely recognized that both selection and the ex-

pression of quantitative genetic variation can vary across
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environmental conditions [10]. However, while there is a
general consensus that selection is stronger under harsh
conditions [11], it remains unclear whether genetic vari-
ation should increase or decrease with increasingly
stressful conditions [12–15]. In a recent meta-analysis,
Rowinski & Rogell [16] pointed out that highly stressful
conditions generally lead to higher genetic variance in
life-history traits. However, a large proportion of the
studies analyzed in this work were conducted on Dros-
ophila spp. in laboratory conditions where the nature
and intensity of induced stress and the evolutionary
mechanisms implicated (e.g. increased rates of muta-
tion/recombination, expression of new genes) are differ-
ent from those observed in natural environments [13,
17]. By contrast, most studies in wild bird or mammal
populations ([12, 14, 18, 19], but see [20]) have provided
evidence for higher heritability under favourable condi-
tions, although differences in h2 often arise from differ-
ences in the levels of environmental or residual variance
rather than from different levels of VA per se. More re-
cently, Martinez-Padilla et al. [21] found a strong inverse
relationship between environmental harshness and evo-
lutionary potential of morphological traits across mul-
tiple bird populations covering a wide range of
environmental conditions. This lack of consensus in the
literature highlights the need for further empirical stud-
ies on a greater diversity of taxa to understand how en-
vironmental heterogeneity in the wild may affect the
expression of genetic variance and, thus, the potential
for evolution of fitness-related traits.
In a similar manner, little is known about how variation

in environmental conditions may alter trait variation
linked to maternal effects. Maternal effects are a special
case of environmental effects that occur when a mother
influences her offspring’s phenotype independently of the
offspring’s genetic make-up. These effects are expected to
be prevalent for traits expressed during early life stages,
especially in taxa that provide substantial maternal care
[22]. Variation in offspring growth may be partly shaped
by among-mother differences in the quantity or quality of
milk provided. If milk production is influenced by food
availability for mothers, this should give rise to maternal
environmental effects. However, maternal effects may also
result from among-mother genetic variation (maternal
genetic effects) and may evolve in response to selection
acting on offspring traits [23]. Whether genetic or envir-
onmental, maternal effects are expected to vary in inten-
sity in relation to the environment experienced by the
mother during the offspring birth and rearing periods [24,
25]. Again, the environmental dependence of maternal ef-
fects has been little studied in wild populations to date,
and there is currently no consensus about the expected
direction of differences in the expression of maternal ef-
fects as a function of environmental harshness [13].

In this study we aim to investigate how variation in
environmental conditions during early growth may affect
the maternal and genetic components of body mass in
the roe deer (Capreolus capreolus, Linnaeus 1758), the
most abundant and widespread large herbivore in the
wild in Western Europe [26]. Body mass has been inten-
sively studied in a wide range of vertebrates because of
its marked influence on both survival and reproductive
performance [27, 28] and, more generally, population
dynamics [29–31]. We analyzed body mass data col-
lected from two long-term individual-based studies of
populations living in very different ecological contexts.
The roe deer population at Chizé, in Western France,
experiences large inter-annual variation in habitat qual-
ity, especially during the critical fawn rearing period in
spring and summer [32]. By contrast, roe deer at Boge-
sund, in South-eastern Sweden, have access to rich and
rather more predictable resources during early life.
We investigated how variance components of juvenile

body mass were associated with yearly variation in early-
life conditions at Chizé where substantial cohort effects
have previously been documented [33]. Roe deer are in-
come breeders (sensu Jönsson [34]) that rely on current
resource intake to offset the costs of reproduction [35].
Previous work has shown that population density and
spring temperature during early life markedly affect fawn
early growth and, thereby, juvenile winter body mass in
roe deer [33, 36, 37]. We thus expected a greater influ-
ence of early-life environmental conditions (i.e. cohort
variation) on juvenile body mass at Chizé than at Boge-
sund, with carry-over effects on adult body mass [38].
The lack of consensus among previous studies prevented
us from formulating explicit predictions regarding the
direction of any differences in the expression of the
additive genetic variance, maternal variation and herit-
ability in relation to environmental conditions, whether
between the two populations or among years at Chizé.

Methods
Study sites and data collection
The study used data collected from populations of roe
deer that differ markedly in terms of environmental con-
ditions. The first population inhabits a 2614 ha enclosed
forest in western France, the Réserve Biologique Inté-
grale of Chizé (GPS coordinates: 46°11’N;-0°34’W).
Chizé has an oceanic climate with some Mediterranean
influence, with mild winters and warm, often dry, sum-
mers. The primary production of this forest is quite low
due to poor soils, and the availability of food for roe deer
is limited by summer drought. Previous work has shown
that the demographic performance of roe deer in Chizé
is strongly limited by a combination of harsh climatic
events and a relatively high population density in certain
years [39] which depresses both juvenile body mass [36]
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and fawn survival [32]. The second study site, Bogesund,
is a small peninsula (2600 ha) in south eastern Sweden
(GPS coordinates: 59°38’N; 18°28′E) surrounded by
water on all sides except to the north. The landscape is
composed of a mosaic of forested (65% of the surface
area) and field habitats. The climate in Bogesund is more
seasonal than in Chizé, with snow cover that partially
limits access to food for deer during 1–3 winter months.
However, during the critical period for fawn rearing, in
spring and summer, the climate is mild, with more pre-
cipitation than at Chizé, so that roe deer have access to
richer and more predictable resources (see [40] for fur-
ther comparisons between Scandinavia and France in
terms of seasonality and stochasticity of resource avail-
ability). Neither summer nor winter climate influenced
winter fawn body mass in this population [37].
The two populations have been intensively monitored for

more than 30 years using annual capture-mark-recapture
sessions (see [41, 42] for further details). A substantial pro-
portion of individuals were first captured as neonates dur-
ing spring (within their first three weeks of life). Then, each
year, during winter, more than 50% of individuals were
caught either as juveniles (i.e. at about 8 months old) or as
adults (i.e. at 20 months old or older) in box traps (Boge-
sund) or nets (Chizé). At each capture, all animals are
sexed, weighed, measured (hind foot length), and inspected
for marks or newly marked with ear-tags and collars (dur-
ing winter captures only). Age is either known (for individ-
uals first caught as newborns or juveniles) based on tooth
eruption [43] or estimated from tooth wear (for individuals
older than 1 year of age). As the reliability of age assess-
ment from tooth wear is rather low [44], we pooled all ani-
mals older than one year into an adult age class and we
took the median adult body mass when the same individual
was repeatedly weighed during its adult life. As juvenile
body mass at the onset of winter changes with Julian date
of capture at both Chizé (slope of the linear regression be-
tween body mass and Julian date ± SE = 0.012 ± 0.002, t =
7.09, P < 10− 3) and Bogesund (− 0.0047 ± 0.002, t = 2.21, P
= 0.028) [37], juvenile body mass was standardized for cap-
ture date prior to analysis by adjusting juvenile body mass
to February 14, the median date of the entire capture
period in both sites. Since 1996 (at Chizé) and 1988 (at
Bogesund), ear punches have been collected for genetic
analysis from individuals at their first capture. Some tissue
samples and body mass measurements were also obtained
from individuals that were either shot or removed during
experimental manipulation of density in the two study areas
(the removal or hunting of roe deer was not related to body
mass; for further details see [41, 45]).

Pedigree reconstruction
A total of 1941 and 2109 roe deer were genotyped using
overlapping sets of 11 and 21 microsatellites at Chizé

and Bogesund, respectively (see [46] for the detailed
genotyping protocol). Note that we used twice as many
loci in Bogesund than in Chizé because the level of poly-
morphism was much lower at Bogesund (see results).
We reconstructed a multigenerational pedigree for both
populations to quantify relatedness among all pairs of
individuals. Maternity was either known from field ob-
servations or assigned using parentage analysis as imple-
mented in COLONY 2 [47, 48], while paternity was
inferred solely from COLONY 2 (see supplementary ma-
terial). The pedigree for Bogesund contained 2066 indi-
viduals (born between 1983 and 2011), with 1041
maternal links (50%) and 789 paternal links (39%) (from
325 different dams and 381 different sires). The pedigree
for Chizé contained 1696 individuals (born between
1996 and 2012), with 675 maternal links (48%) and 645
paternal links (46%) (from 360 different dams and 304
different sires).

Estimation of variance components
We investigated how the variance components of juven-
ile and adult body mass differed between populations.
As a first step, we sought to tease apart the relative im-
portance of the early-life environment, the mother (both
genetic and permanent environment effects) and genes
on juvenile body mass. For each population, we fitted a
univariate model which partitions the total phenotypic
variance (VP) in juvenile body mass (JBM) into additive
genetic variance (VA), early life environmental variance
represented by birth year (VBY), maternal environmental
variance (VME), maternal additive genetic variance
(VMA), and residual variance (VR). Maternal identity was
thus fitted twice, once including pedigree information
(i.e. genetic relatedness among mothers) and once with-
out, to partition maternal effects into additive genetic
(MA) and permanent environmental (ME) effects. To
ensure model convergence, we assumed no covariance
between direct and maternal additive genetic effects.
Variance components were estimated using the re-
stricted maximum likelihood (REML) method [49] in
ASReml 3.0 [50]. Sex was included as a fixed effect
(two-level factor) because the average body mass differs
between males and females [51]. Statistical significance
of random components was assessed using likelihood ra-
tio tests (LRT). Narrow-sense heritability h2 was calcu-
lated as the ratio of additive genetic variance (VA) to
total phenotypic variance (VP). The maternal genetic ef-
fect was calculated as the ratio of VMA to total pheno-
typic variance (VP) and total heritability h2T as (VA +
0.5VMA)/VP following Willham [52]. Because body mass
increases with age and differs between populations (see
below), scale effects may preclude direct comparison of
the magnitude of variance components between popula-
tions and between age-classes. For each variance
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component, we therefore calculated the corresponding coef-
ficient of variation (CV) [53] by scaling the variance relative
to the mean as follows: CVi = 100 √Vi/ Xi with the variance
of the component (i=A, BY, ME, MA, R or (P = pheno-
typic)) and X i the mean of the trait. To explicitly test
whether variance components for juvenile body mass dif-
fered between Chizé and Bogesund, we combined the
phenotypic data set and pedigree information from both
populations [20] and fitted bivariate models in which mass
in the two populations was considered as two different traits
(i.e. JBMCH and JBMBO). For each random component, we
fitted a first model constraining the respective variance com-
ponents to be equal in each population. We then used LRTs
to compare this model and a bivariate model in which the
variance components were allowed to differ between popu-
lations. Differences between coefficients of variation were
tested by t-tests (assuming Gaussian uncorrelated estimates)
using the “BSDA” R package (Arnholt 2012).
In a second step, to investigate how variance compo-

nents of body mass differed between age classes (i.e. ju-
venile vs. adult), we next fitted a bivariate animal model
for each population with variance decomposition for
mass in each age class. We used the same variance parti-
tioning as in the univariate models described above ex-
cept that, to ensure model convergence, we fitted a
simple maternal effect without distinguishing a maternal
genetic effect. Genetic, maternal and environmental co-
variances between juvenile and adult body masses and
corresponding between-age correlations (rG, rM, rBY)
were also estimated. To test between-age differences in
variance components in the two populations formally,
we used the same procedure as described above for
between-population comparisons (i.e. LRTs between “re-
laxed” and “constrained” variance components).

Influence of early conditions on variance components of
juvenile body mass
For juvenile body mass at Chizé, we analyzed the sensitivity
of the maternal variance component (i.e. the only statistically
significant source of variance in juvenile body mass– see re-
sults) to yearly fluctuations in early environmental condi-
tions using the analytical technique of “random regression
models” [sensu [54] ]. We used the following model: JBMijky

= μ + Sexk+ yeary+ ai+m0j +m1jEy + eijky where JBMijky is
the juvenile body mass of animal i born in year y, of sexe k,
from mother j. The sex (Sexk) and the birth year (yeary) were
fitted as fixed effects (two and thirty levels respectively). ai is
the direct genetic effects of animal i (with a mean of zero
and variance AVA), m0j and m1j the 2 random regression co-
efficients of mother j (i.e. intercept and slope, with a mean

of zero and a covariance- matrix
σ2m0

σm0m1

σm0m1 σ2m1

� �
), eijky is

the residual term (with a mean of zero and variance VR). A

is the known relationship matrix. Ey is the environmental
quality during the birth year y and was measured as the
cohort-specific juvenile survival over the spring-summer, i.e.
the proportion of juveniles surviving to 8 months of age.
The variances (and standard errors) of maternal effect in ju-
venile environment Ey were computed using the following
formula in ASReml 3.0: σ2m0

þ 2Eyσm0m1 þ E2
yσ

2
m1
. A previ-

ous study in this population has shown that neonatal sur-
vival decreases with increasing density, and increases with
increasing rainfall in May and June [33]. VA and VR were as-
sumed to be constant across environments. To test this as-
sumption, we ran bivariate animal models using data
subsets for good and poor environments (based on upper
and lower 50 percentiles of E). We did not find any detect-
able differences in estimated additive genetic (χ2 = 2.41, d.f.
= 1, P= 0.12) or residual (χ2 = 0.37, d.f. = 1, P= 0.79) vari-
ances between the two environments.

Results
Comparison of variance components of juvenile body
mass among populations
There was a marked difference in average body mass of
roe deer between the two populations for both juveniles
(F1,1272 = 178, P < 10− 4) and adults (F1,1195 = 291, P < 10−
4) (Table 1). At any given age, and in both sexes, roe
deer were heavier at Bogesund than at Chizé. The uni-
variate analysis of variance components of juvenile win-
ter body mass also revealed marked differences between
populations (Table 1). At Bogesund, standardized addi-
tive genetic variance (CVA) among juveniles
(11.34 ± 2.14) (mean ± SE) was three times larger than
at Chizé (3.85 ± 2.87). In the direct test for differences
in VA between Chizé and Bogesund, VA differed between
populations (χ2 = 4.5, d.f. = 1, P = 0.03). Early-life condi-
tions (VBY) had a pronounced effect on juvenile body
mass in both populations, but this effect tended to be
larger at Chizé (VBY = 2.67 ± 1.07) than at Bogesund
(1.3 ± 0.52) (χ2 = 1.8, d.f. = 1, P = 0.17). The same trend
was observed when considering CVBY (11.45 ± 2 .14 at
Chizé versus 7.98 ± 1.59 at Bogesund, t1270 = 1.16, P =
0.24). We also detected a maternal effect in both popula-
tions, but this derived from different sources: at Chizé,
the maternal effect was almost entirely due to among-
mother environmental differences (CVME = 6.11 ± 1.07
and CVMA = 0.02 ± 0.01), whereas at Bogesund, we only
detected maternal genetic variance (CVME = 1.12 ± 17.03
and CVMA = 8.29 ± 3.07). We found substantial direct
heritability (h2) of juvenile winter body mass at Boge-
sund (h2 = 0.44 ± 0.11), while it was not statistically dif-
ferent from zero at Chizé (h2 = 0.05 ± 0.07, χ2 = 0.46, d.f.
= 0.5, P = 0.24). Total heritability, incorporating both
maternal and direct genetic effects (hT

2), was 0.04 ± 0.07
at Chizé and 0.56 ± 0.14 at Bogesund.
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Comparison of variance components of body mass across
age classes
Bivariate models produced similar estimates for variance
components in juvenile body mass as the univariate
model (Table 2, Fig. 1). At Chizé, the bivariate analysis
revealed a low but statistically significant additive gen-
etic variance of body mass in adults (VA = 1.33 ± 0.45)
(Table 2). VA tended to be higher among adults than
among juveniles (VA = 0.63 ± 0.36) (χ2 = 1.62, d.f. =1, P
= 0.20), but this pattern was not reflected in the coeffi-
cients of variation (CVA) and is, therefore, due to scale
effects (Table 2). At Bogesund, VA was very similar
among juveniles (VA = 3.25 ± 0.66) and adults (VA =
3.21 ± 1.13). We found substantial direct heritability of
body mass among both juveniles (h2 = 0.53 ± 0.10) and
adults (h2 = 0.32 ± 0.10) in Bogesund (Fig. 1). Con-
versely, at Chizé, direct heritability was detectable
among adults only and was relatively low (h2 =
0.16 ± 0.06). We detected a high positive additive genetic

Table 2 Variance components of juvenile and adult winter
body mass in the two study populations derived from a
bivariate model for each population

Population CHIZÉ BOGESUND

Age-class Juvenile Adult Juvenile Adult

Mean BM 14.27(0.09) 22.04(0.08) 16.27(0.11) 24.09(0.09)

VP 6.64(0.98) 8.25(1.21) 6.15(0.67) 10.39(0.7)

N 1455 1413

Nm 1812 1651

VA 0.63(0.36) 1.33(0.45) 3.25(0.66) 3.32(1.13)

Vby 2.67(0.33) 3.6(0.39) 1.5(0.56) 0.75(0.36)

VM 0.77(0.24) 0.13(0.21) 0.48(0.34) 0.74(0.53)

Vr 2.57(0.95) 3.19(1.18) 0.93(0.44) 5.59(0.97)

h2 0.1(0.06) 0.16(0.06) 0.53(0.1) 0.32(0.1)

by2 0.39(0.09) 0.39(0.09) 0.24(0.08) 0.07(0.03)

m2 0.12(0.04) 0.02(0.03) 0.08(0.06) 0.07(0.05)

r2 0.4(0.07) 0.44(0.08) 0.15(0.07) 0.54(0.1)

CVP 18.04(1.33) 13.01(0.96) 15.23(0.82) 13.38(0.45)

CVA 5.58(1.59) 5.23(0.89) 11.07(1.12) 7.48(0.76)

CVBY 11.21(2.07) 8.09(1.49) 7.51(1.4) 3.57(1.27)

CVM 6.15(0.96) 1.61(1.32) 4.26(1.58) 3.58(1.62)

CVR 11.44(0.7) 8.59(0.46) 5.91(1.4) 9.81(0.85)

BM: winter body mass in kg; N: total sample size for juveniles and adults; Nm:

total number of measurements for juveniles and adults; components of
phenotypic variance VP (Va: additive genetic variance; VM: maternal variance;
VB: early environment variance; VR: residual variance) and their associated
ratios (h2: heritability, m2, by2 and r2) and coefficients of variation (CVA, CVM,
CVBY, CVR, CVP). All values (except sample sizes) are given as the mean with
standard errors indicated in brackets

Fig. 1 Age-class-dependent differences in variance components for
roe deer winter body mass at Chizé and Bogesund derived from a
bivariate model for each population. Proportion of the phenotypic
variance of juvenile and adult body mass explained by heritability (h2),
maternal effect (m2), birth year effect (by2), and residual effect (r2)

Table 1 Variance components from univariate models of
juvenile body mass in the two study populations

Population CHIZÉ BOGESUND

Mean JBM 14.27(0.09) 16.27(0.11)

NJUV 782 490

NMOT 572 309

VP 6.68(1.02) 5.97(0.68)

VA 0.30(0.45) 2.63(0.97)

VBY 2.67(1.01) 1.3(0.52)

VME 0.76(0.27) 0.03(0.78)

VMA < 10−5 1.4(1.04)

VR 2.94(0.4) 0.62(0.64)

h2 0.05(0.07) 0.44(0.16)

by2 0.4(0.09) 0.22(0.07)

me2 0.11(0.04) 0

ma2 0 0.23(0.17)

r2 0.44(0.08) 0.1(0.11)

CVP 18.08(1.38) 17.11(0.97)

CVA 3.85(2.87) 11.34(2.08)

CVBY 11.45(2.14) 7.98(1.59)

CVME 6.11(1.07) 1.12(17.03)

CVMA 0.02(0.01) 8.29(3.07)

CVR 12(0.82) 5.52(2.85)

hT
2 0.05(0.07) 0.56(0.14)

JBM: winter juvenile body mass in kg; NJUV: number of juveniles used in the
study; NMOT: number of mothers used in the study; Components of phenotypic
variance VP (VA: additive genetic variance; VBY: early environment variance;
VME: maternal environment variance VMA: maternal additive genetic variance,
VR: residual variance) and their associated ratios (h2: heritability, me2, ma2, by2

and r2) and coefficients of variation (CVA, CVME, CVMA, CVBY, CVR, CVP) (see
main text for details). hT

2: total heritability. All values (except sample sizes) are
given as the mean with standard errors indicated in brackets
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correlation between juvenile and adult body mass at
Bogesund (rA = 0.66 ± 0.13) (not estimated at Chizé due
the very low VA in juvenile body mass).
In Bogesund, early-life environment accounted for

twice as much variance in body mass of juveniles (VBY =
1.5 ± 0.56) as of adults (0.75 ± 0.36) (χ2 = 1.52, d.f. = 1, P
= 0.23) and this trend was reflected in the coefficients of
variation (CVBY = 7.51 ± 1.40 in adults vs 3.57 ± 1.27 in
juveniles) (t1549 = 1.82, P < 0.07). Early-life environment
accounted for about 25% (± 8%) of VP in body mass
among juveniles, but only about 7% (± 3%) among
adults. In contrast, in Chizé, early-life environment ef-
fects were similarly high in adults (VBY = 3.6 ± 0.39) and
juveniles (2.67 ± 0.33) (χ2 = 0.74, d.f. = 1, P = 0.38), ac-
counting for 40% (± 8%) of VP in both age classes.
Lastly, in both populations, we observed a trend for
lower maternal variance in body mass of adults com-
pared to juveniles, although this difference was only sta-
tistically significant in Chizé (χ2 = 4.02, d.f. = 1, P = 0.04).
This pattern was consistent with the coefficients of vari-
ation (CVME = 6.15 ± 0.95 in juveniles vs 1.61 ± 1.32 in
adults, t2026 = 2.79, P < 0.01).

Maternal-by-environment interaction for juvenile body
mass at Chizé
The model incorporating covariation between the mater-
nal environmental variance component and early-life en-
vironmental conditions provided a better fit than the
baseline model where variance is assumed to be constant
(χ2 = 5.88, d.f. = 2, P = 0.048). We observed an increase
in maternal environmental variance (VME) with more
favourable conditions during early life (Fig. 2). A mater-
nal environmental effect on juvenile body mass was not
detectable when environmental conditions were poor,
but accounted for more than 25% of the total phenotypic
variance when conditions were favourable (m2 = 0.25–
0.41 in years when summer juvenile survival was > 0.7).
From this model, the additive genetic variance and re-
sidual components of variance of body mass were esti-
mated as VA = 0.40 ± 0.46 and VR = 2.79 ± 0.41,
respectively.

Discussion
Our results confirm that the quantitative architecture of
body mass can differ widely among populations within a
given species. Heritability of juvenile winter body mass
was particularly low at Chizé due to low additive genetic
variance combined with marked effects of early-life con-
ditions, giving rise to pronounced among-cohort vari-
ation in body mass. In contrast, at Bogesund, additive
genetic variance and heritability (h2 = 0.44) of juvenile
body mass were much higher than at Chizé and con-
cordant with the few published estimates of the herit-
ability of juvenile mass in wild ungulates (e.g. h2 = 0.43

in Bighorn sheep [55], 0.58–0.64 in white-tailed deer
Odocoileus virginianus [56]), but larger than those re-
cently estimated in Soay Sheep (h2 = 0.16–0.21) [57].

A marked long-lasting influence of early-life conditions
on heritability of body mass
As predicted, among-cohort variation in early-life envir-
onmental conditions had a marked influence on juvenile
winter body mass at Chizé (CVBY = 11.21 ± 2.07), consti-
tuting nearly 40% of the total phenotypic variance. Since
female roe deer rely almost exclusively on available re-
sources for their high energetic needs during fawn rear-
ing [35], early fawn growth is particularly sensitive to
variations in climate conditions that occurred at Chizé,
influencing both resource quantity and quantity [58].
Such high environmental variance in morphological
traits has been observed under stressful conditions for
many species (see [13]). However, in most cases, this re-
sulted from spatial rather than temporal variation in re-
source quality (but see [14, 59] on Soay sheep).
Interestingly, we found that among-cohort variation in
early-life conditions remained a major driver of pheno-
typic variance in body mass of adults at Chizé (CVBY =
8.09 ± 1.49, 39% of VP) in agreement with previous work
[38, 39]. This carry-over effect of early-life environment
meant that heritability of adult body mass was unusually
low (h2 = 0.16 ± 0.06). At Bogesund, we observed lower,
but detectable, environmental variance in juvenile body
mass (CVBY = 7.51 ± 1.4, 24% of VP) that likely reflects

Fig. 2 Estimated maternal variance of juvenile winter body mass in
relation to early-life environmental conditions at Chizé. Early-life
environmental quality was defined as the cohort-specific juvenile
summer survival rate, i.e. the proportion of juveniles born that survived
to 8 months of age. Dashed lines indicate standard error interval for
the estimated maternal variance (VM). The random regression model
suggests a general increase in VM as early-life environment quality
increases. The univariate analysis presented in Table 1 suggests that
maternal variance is nearly all environmental in origin in
this population
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among-cohort variation in first winter snow conditions
(e.g. > 28 days with > 10 cm of snow in 1991 vs. 5 days
in 2007–2009). In contrast to Chizé, this among-cohort
effect was no longer detectable at the adult stage (7% of
VP), when the residual variance of body mass was mark-
edly higher (54% of VP).

Understanding the particularly low VA in juvenile body
mass at Chizé
A particularly striking result of the present study is the
unusually low genetic variance in juvenile body mass at
Chizé (CVA = 3.85 ± 2.87) compared to Bogesund (CVA

= 11.3 ± 2.08). However, one must be cautious when
interpreting this difference in relation to prevailing en-
vironmental conditions because our work is based on
the comparison of only two populations. Such differ-
ences could, in theory, have arisen solely due to distinct
past demographic histories and effective population
sizes. Indeed, genetic variance is predicted to decrease
with decreasing population size at the same rate as neu-
tral variation [60]. Here, data on selectively neutral gen-
etic markers did not provide any support for a role of
recent population history because microsatellite genetic
diversity was much lower in Bogesund where heritability
estimates were highest (mean number of alleles per
locus = 4.19 at Bogesund vs. 6.67 at Chizé). However, the
two populations are thousands of kilometers away from
each other and we cannot rule out a role of historical
biogeographic events. An alternative hypothesis is that
genetic variance of body mass at Chizé has been de-
pleted by persistent and strong viability selection on this
trait [10]. Both summer and winter juvenile body mass
have a marked influence on juvenile survival at Chizé
[31, 42, 61], with delayed and long-lasting effects on the
reproductive performance of adults [62]. To investigate
this hypothesis, we quantified the response of early fawn
survival to neonatal body mass in the two populations
(see supplementary material). We found strong evidence
of viability selection before the first winter at Chizé
(mean coefficient ± SE = 0.46 ± 0.15, P < 0.001) but not
at Bogesund (mean coefficient ± SE = − 0.23 ± 0.19, P =
0.22) (Additional file 1: Figure S1). By filtering out small
individuals, condition-dependent survival over the first
summer at Chizé might have led to the depletion of the
genetic variance of body mass after the critical stage
compared to its initial level at birth [22, 63]. As the crit-
ical stage for roe deer is pre-weaning survival between
May and September, body mass at 8 months of age
(JBM) might reflect this process. Conversely, the much
higher level of genetic variance in body mass at Boge-
sund may be related to the absence of detectable viabil-
ity selection on juvenile body mass in this population.
As food is abundant and more predictable during the
critical period of fawn rearing at this site, fawn mortality

by starvation is unlikely, so that survival is not related to
early mass [64]. However, while appealing, this hypoth-
esis was, for now, somewhat speculative given that previ-
ous published work has indicated that strong and
persistent selection generally fails to deplete genetic vari-
ance in life-history traits that are closely related to fit-
ness [65]. Furthermore, this hypothesis implies a strong
genetic correlation between neonatal and first winter
body mass and that early viability selection has a genetic
component and is not entirely due to variation in micro-
environmental quality [66, 67]. Further investigation is
clearly needed to assess the potential role of viability se-
lection on the depletion of genetic variance.

Maternal genetic and environmental effects on juvenile
body mass
Maternal effects arise because of variation among
mothers in traits that influence offspring phenotype [23, 68].
While maternal effects have been widely quantified in
diverse taxa [25, 69, 70], the presence of heritable compo-
nents in maternal care and their indirect effects on off-
spring traits have rarely been investigated in wild
populations (but see Wilson et al. [71] in Soay sheep;
Räsänen et al. [72] in frogs; McFarlane et al. [73] in North
American red squirrels Tamiasciurus hudsonicus). In
some wild mammal populations, such as Soay sheep or
North American red squirrels, the maternal genetic effect
is the main source of heritable variation in traits that are
expressed early in life, such as birth mass [71, 74]. In our
study, we were unable to detect any maternal genetic vari-
ance (VMA) for juvenile body mass at Chizé, while this ef-
fect represented more than 20% of the total phenotypic
variance at Bogesund. In mammals, maternal care is posi-
tively associated with early growth and survival of off-
spring [75, 76]. We can therefore hypothesize that viability
selection acting on juveniles at Chizé has also eroded the
among-mother genetic variation in traits that indirectly
influence offspring phenotype. At Chizé, maternal effects
appeared to be almost entirely generated by among-
mother environmental differences and may result from
long-lasting effects of early-life conditions on maternal
traits. Indeed, since 40% of the variation in adult body
mass is due to cohort effects, we can reasonably assume
that other traits involved in maternal care are also strongly
determined by the early-life conditions a given mother ex-
periences. Environmental maternal effects could also be
partly explained by pronounced spatial variation in food
resources [58]. Indeed, fine-scale spatial heterogeneity in
forage availability and quality markedly impacts variation
in offspring growth and survival among mothers in this
population.
Interestingly, our results at Chizé revealed that the

magnitude of the maternal environment effect on winter
juvenile body mass varies among cohorts depending on
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early-life climatic conditions. The effects of the maternal
environment were not detectable for those cohorts that
had experienced poor environmental conditions during
early-life, but these effects were marked when early-life
conditions were better. At Chizé, harsh climatic condi-
tions, such as intense summer droughts, affect all indi-
viduals and likely override among-mother differences in
rearing performance, leading to the suppression of ma-
ternal variance in juvenile body mass. Among-individual
differences in the expression of maternal effects in rela-
tion to environmental stress have been reported in a
number of wild populations [24, 25]. In blue tits (Cya-
nistes caeruleus, Linnaeus 1758), environmental stress
linked to parasitism leads to an increase in variance of
offspring growth rates due to shared environmental ef-
fects between nests [which is mainly determined by par-
ental effects, 19]. In Soay sheep, another species in
which females allocate a lot per breeding attempt, the
maternal genetic component of variance in lamb birth
mass was lower in poor environments [14].

Conclusions
This study illustrates that the genetic, maternal and en-
vironmental architecture of a given trait may vary
strongly among wild populations of the same species. A
striking pattern is the very low level of additive genetic
variance in juvenile body mass we reported at Chizé,
which suggests that this trait cannot evolve in response
to the direct selection acting on it. Mean juvenile body
mass at the onset of winter has declined continuously
over the last two decades in this population (from
15.69 kg in 1997 to 12.98 kg in 2014), with the steadily
earlier onset of spring over time [39]. Phenotypic vari-
ance in juvenile body mass at Chizé is mainly driven by
cohort effects and by differences in maternal environ-
ment that influence maternal provisioning and thereby
offspring growth. This suggests that selection is acting
mainly on the environmental part of the trait. In other
words, among-individual genetic variation in body mass
did not offset the effects of a deteriorating environment.
By contrast, in the Bogesund population, where no de-
tectable viability selection occurred on neonatal body
mass, we observed a substantial level of genetic variance
and heritability for the same trait. This study highlights
the importance of considering the impact of spatial (i.e.
between populations) and temporal (i.e. among cohorts)
heterogeneity in environmental conditions, especially
during early life stages, for understanding the genetic
architecture of the potential responses of wild popula-
tions to environmental changes. Our findings also dem-
onstrate the importance of assessing the evolutionary
potential of critical traits for fitness in populations faced
with contrasting environmental contexts so as to predict

the effect of a given environmental change on popula-
tion persistence in a conservation perspective [21].

Additional file

Additional file 1: Pedigree-reconstruction method (Supp text 1) and
analysis of viability selection on neonatal body mass (Supp Text 2,
Figure S1). (DOCX 16292 kb)
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