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Hyperspectral image unmixing with

LiDAR data-aided spatial regularization

Tatsumi Uezato, Mathieu Fauvel and Nicolas Dobigeon

Abstract

Spectral unmixing methods incorporating spatial regularizations have demonstrated increasing in-

terest. Although spatial regularizers which promote smoothness of the abundance maps have been

widely used, they may overly smooth these maps and, in particular, may not preserve edges present in

the hyperspectral image. Existing unmixing methods usually ignore these edge structures or use edge

information derived from the hyperspectral image itself. However, this information may be affected by

large amounts of noise or variations in illumination, leading to erroneous spatial information incorporated

into the unmixing procedure. This paper proposes a simple, yet powerful, spectral unmixing framework

which incorporates external data (i.e. LiDAR data). The LiDAR measurements can be easily exploited

to adjust standard spatial regularizations applied to the unmixing process. The proposed framework is

rigorously evaluated using two simulated datasets and a real hyperspectral image. It is compared with

competing methods that rely on spatial information derived from a hyperspectral image. The results

show that the proposed framework can provide better abundance estimates and, more specifically, can

significantly improve the abundance estimates for pixels affected by shadows.
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I. INTRODUCTION

Spectral unmixing (SU) has been used for a wide variety of applications [1]. SU consists in

decomposing spectral mixtures at the sub-pixel scale and estimates quantitative abundances of

materials [2]. In order to estimate accurate abundances, a variety of spectral unmixing methods

have been developed [2]–[4]. Among them, methods that incorporate spatial information have

proven to be a valuable approach [5]–[7]. A class of such methods assumes that a hyperspectral

image is composed of multiple spatially homogeneous regions where abundances of materials

share same statistical moments [8], [9]. The methods first classifies the hyperspectral images

into multiple homogeneous regions and then promote similar abundance estimates within each

segmented region. Another group of methods assumes that two neighboring pixels have similar

abundances and show smooth transitions in abundances [6], [7], [10], [11]. These methods

promote similar abundance estimates in a local neighborhood.

Recently, SU methods that promote the spatial homogeneity in a local neighborhood have

received an increasing attention [6], [7], [10]. These methods usually relies on `2-norm [12], [13],

`1-norm or total variation (TV) [6], [7], [14] regularizations to describe the spatial variations

of the abundance maps in a local neighborhood. The use of the `2-norm of the abundance map

gradient generally overly smooths edges and may not be suitable for estimating abundances

when considering a hyperspectral image with significant structured patterns [15]. Conversely,

the TV-based regularization is known to better preserve edges in the abundance maps. However,

it may also introduce shrinkage effects, in particular for pixels located on edges between areas

characterized by similar yet different abundance maps.

While the edge-preserving property is important and has been actively studied in hyperspectral

image classification [16]–[18], there are a few studies that consider edge-preserving spectral

unmixing. Edges are usually located in areas of junction of distinct materials and cause abrupt

changes in abundance maps. Once localized, these spatial changes can be incorporated into the

unmixing process by weighting the spatial regularization [19]–[21].

To encode this spatial information, the existing methods commonly use a so-called guidance

map, e.g., derived from the hyperspectral image or from the abundance maps. However, these

strategies exclusively relying on the hyperspectral image to be unmixed or associated derived

products may not be suitable. Indeed, the hyperspectral image may be greatly affected by

variations in illumination [22]–[24], leading to unreliable weighing function. Another issue results



3

from the fact that some materials (e.g., road or roof) show similar spectral shapes [25]. In this

case, by computing the weights directly from the hyperspectral image, some structures can

be missed. In both cases, these weights cannot correctly describe the correlation in the local

neighborhood pixels, which may significantly impact the relevance of the resulting weighted

spatial regularization.

From these findings, it clearly appears that a guidance image must be robust to the aforementioned

problems. LiDAR data have great potential to provide meaningful spatial information regarding

scenes where the elevation differences play an important role for discriminating different objects.

For example, LiDAR data enable the edges between spectrally similar vegetation classes to be

identified thanks to their different heights [26]. More generally, LiDAR data have been suc-

cessfully used for classification of hyperspectral images and show improvement in classification

accuracy [25]–[27]. Conversely, only a few studies have used LiDAR data for spectral unmixing.

However, such data can be useful to design an appropriate guidance map, i.e., a weighting

function to be incorporated into the spatial regularizations. In [28], the authors used LiDAR data

to calculate the weights describing spatial correlations in a local neighborhood for constraining

spatial regularization. This study showed that including the weights into the spatial regularization

can improve abundance estimates for regions that are partially occluded by a shadow. However,

this study did not investigate whether LiDAR data can be combined with other guidance maps

derived from the hyperspectral image or abundance maps. This paper proposes to fill this gap.

More precisely, the contributions of this paper are twofold: 1) it develops a general spectral

unmixing framework which allows external data (i.e., LiDAR data) to be easily incorporated

to calculate weights and guide the spatial regularization; and 2) it provides a comprehensive

comparison of the weighting functions derived from the LiDAR data, the hyperspectral image or

abundance maps. The various instances of the proposed unmixing framework have been rigor-

ously validated using simulated data and hyperspectral imagery. It aims at evaluating whether the

LiDAR data used for spatial regularization can improve significantly the estimates of abundances.

The paper is organized as follows. Section II introduces the proposed spectral unmixing frame-

work which allows a conventional spatial regularization to be adjusted according to guidance

maps derived from internal (e.g., hyperspectral data, abundance maps) or external (e.g., LiDAR)

data. Experiments using simulated and real data are reported in Section III and IV, respectively.

Finally, the paper is concluded in Section V.
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II. PROPOSED METHOD

A. LiDAR data-aided spatial regularization

The linear mixture model (LMM) has been widely used to decompose a mixed spectrum into

a collection of “pure” spectra known as endmembers and their abundances. LMM represents a

mixed spectrum as the linear combination

yi = Eai + ni. (1)

where yi ∈ RL×1 is the mixed L-spectrum measured in the ith pixel, E ∈ RL×M is the matrix

of M endmembers, ai ∈ RM×1 represents the abundance fractions in the same spatial location,

ni ∈ RL×1 is an additive term associated with modeling error and noise measurements. The

abundance non-negativity constraint (ANC) and the abundance sum-to-one constraint (ASC) are

usually imposed as follows

∀i, ∀m, ami ≥ 0, and ∀i
M∑

m=1

ami = 1. (2)

where ami is the abundance fraction of the mth endmember in the ith pixel with ai = [a1i, . . . , aMi]
T .

The endmember signatures e1, . . . , eM can be chosen from a given spectral library or extracted

from the hyperspectral image. Once the endmember matrix E has been fixed, spectral unmixing

reduces to the estimation of the abundance vectors ai (i = 1, . . . , N , where N is the number of

pixels), which can be formulated as the following optimization problem

min
ai

1

2
‖yi − Eai‖22, subject to (2). (3)

In the optimization problem introduced above, abundance vectors ai are estimated for each pixel

independently, ignoring the possible spatial information underlying the hyperspectral image. In

order to take advantage of the spatial information, estimation of these abundance vectors should

be conducted jointly, where the optimization criterion is complemented by a spatial regularization

φ(·), i.e.,

min
A

1

2
‖Y − EA‖22 + λφ(A), subject to (2). (4)

where Y = [y1, . . . ,yN ] and A = [a1, . . . , aN ] are the matrices of measurements and abun-

dances, respectively, and λ is the regularization parameter which controls the balance between

the data fitting term and the spatial regularization. Various regularizations have been considered
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in the literature to promote spatial coherence of the abundance maps, see for instance [6]–[11].

One popular choice consists in resorting to the `p-norm of the finite differences, i.e.,

φ(A) =
N∑
i=1

∑
j∈N (i)

‖ai − aj‖pp. (5)

where N (i) is the set of pixels in the neighborhood1 of the ith pixel. In particular, when p = 2,

smooth transitions in the abundance maps are expected. Conversely, the specific case p = 1

leads to the anisotropic total variation (TV) penalization, which is known to promote piecewise

homogeneous abundance maps [14].

It is worth noting that, in (5), each neighboring pixel equally contributes to the spatial

regularization term. However, this property may be inappropriate for pixels located in edges.

Indeed, neighboring pixels belonging to different objects are expected to contribute to the spatial

regularization differently. To alleviate this issue, it is natural to weight this spatial regularization,

as in [19], [21], [29],

φ(A) =
N∑
i=1

∑
j∈N (i)

wij‖ai − aj‖pp. (6)

where wij is a weight describing the spatial similarity between ai and aj . In particular, when

the ith and jth pixels correspond to two distinct objects in the image, their respective abundance

vectors ai and aj are likely to be dissimilar and the weight wij can be tuned to zero. The set of

weights {wij}ij can be estimated using a so-called guidance map, which gathers relevant spatial

and edge information. It can be computed directly from the hyperspectral image, or learned

from the abundance maps [19], [21], [29]. Another strategy, widely adopted when conducting

hyperspectral image classification, consists in computing the first principal component (PC)

of the hyperspectral image [16]. However, deriving the guidance maps from the hyperspectral

data itself, i.e., by considering the hyperspectral measurements or associated quantities such

as abundance maps or principal components, suffer from several drawbacks. First, the hyper-

spectral image can be corrupted by measurement noise or illumination variations, which would

significantly impact the relevance and confidence of the resulting computed weights. Moreover,

the information present in the hyperspectral image may not be sufficient to properly identify

distinct yet neighboring objects, resulting in inappropriate spatially coherent regularization. In

such cases, the digital surface model (DSM) derived from LiDAR data represents a promising

1In this work, the conventional 4-order neighborhood structure will be considered for simplicity.
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and interesting opportunity to guide the guidance map elaboration. Indeed, since DSM encodes

the object heights, its variation is expected to be highly correlated with the spatial distribution

of the endmembers, implicitly identifying edges between non-homogeneous regions. Thus, as

highlighted earlier, in particular the the edge areas, DSM can be useful to switch off the spatial

regularization by imposing wij = 0 for the couples of pixels (i, j) located in these edges.

Besides, one great advantage of the LiDAR-based DSM is that it is not impacted by possible

illumination conditions. This property is particularly useful within urban or forest areas where

the height of objects plays an important role [25], [27]. This paper proposes to capitalize on the

availability of LiDAR as complementary data to incorporate the DSM model into the unmixing

process. Moreover, it shows that this complementary guidance maps can be easily coupled with

other more conventional guidance maps derived from the hyperspectral data, e.g., in terms of

measurements, principal components or abundances.

B. Different types of weights

A variety of guidance images can be used to adjust the weights wij in the spatial regularization

(6). In what follows, in addition to the DSM-based guidance map, three distinct guidance maps

are presented, as well as their combinations with the DSM one. These weighting functions are

introduced in the following paragraphs.

1) Weights derived from the hyperspectral image (w-HI): The most natural way to derive

weights consists in estimating the similarity between pixels within the hyperspectral image itself,

i.e.,

wij =
1

Qi

exp

(
− 1

σ2
y

‖yi − yj‖22
‖yi + yj‖22

)
. (7)

where yi and yj are the spectra measured in the ith and jth pixels of the hyperspectral image,

σ2
y is a parameter controlling the weight range and Qi is a normalizing constant ensuring∑
j∈N (i)wij = 1. The resulting weighting function will be referred to as w-HI.

2) Weights derived from principal components (w-PCK): Principal component analysis (PCA)

is known to concentrate most of the useful information into a few components. Formally, it

transforms the L×N -data matrix Y into the K×N matrix P of K principal components, with

K ≤ L. Weights can be estimated from the similarity between pixels of the principal components

wij =
1

Qi

exp

(
− 1

σ2
p

‖pi − pj‖2

‖pi + pj‖2

)
. (8)



7

where pi and pj are the ith and jth pixels of the principal component matrix P, σ2
p is the

parameter adjusting the weight range. In what follows, only the first principal component will

be considered, i.e., K = 1 and the resulting weighting function will be referred to as w-PC1.

3) Weights derived from abundances (w-A): The similarity between pixels can be computed

from the abundance maps, leading to the following guidance map denoted w-A

wij =
1

Qi

exp

(
− 1

σ2
a

‖ai − aj‖22
‖ai + aj‖22

)
. (9)

where ai and aj are the abundance vectors associated with the the ith and jth pixels, σ2
a is a

parameter controlling the weight range. Note that, within an unmixing framework, this guidance

map cannot be computed directly since relying on unknown abundance quantities.

4) Weights derived from the digital surface model (w-DSM): When LiDAR provides DSM as

complementary data, the weights can be adjusted by computing the similarity between neigh-

boring pixels from their respective heights

wij =
1

Qi

exp

(
− 1

σ2
h

(hi − hj)2

(hi + hj)2

)
. (10)

where hi and hj are the heights associated with the ith and jth pixels provided by DSM and σ2
h

is a parameter controlling the weight range.

5) Combining DSM and other guidance maps: Based on the previous definitions, the guidance

maps can be derived by combining the similarity between neighboring pixels estimated by

DSM and other quantities, such as the hyperspectral image, leading to the w-HI-DSM weighting

function

wij =
1

Qi

[
exp

(
− 1

σ2
y

‖yi − yj‖22
‖yi + yj‖22

)
+exp

(
− 1

σ2
h

(hi − hj)2

(hi + hj)2

)]
.

(11)

the first principal component, leading to the w-PC1-DSM weighting function

wij =
1

Qi

[
exp

(
− 1

σ2
p

(pi − pj)2

(pi + pj)2

)
+exp

(
− 1

σ2
h

(hi − hj)2

(hi + hj)2

)]
.

(12)

or the abundances, leading to the w-A-DSM weighting function

wij =
1

Qi

[
exp

(
− 1

σ2
a

‖ai − aj‖22
‖ai + aj‖22

)
+exp

(
− 1

σ2
h

(hi − hj)2

(hi + hj)2

)]
.

(13)
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C. Optimization

This paragraph details the optimization procedure implemented to solve (4) when the regu-

larization term is defined by (6) with the weighting functions introduced in Section II-B. More

precisely, in this work, we consider the case where the function φ(·) in (6) is chosen as a TV-

regularization, i.e., with p = 1. By denoting W = [W←W→W↑W↓] ∈ RN×4N the sparse matrix

associated with the weighted difference operator between a target pixel and the neighboring

pixels in the four canonical directions, estimating the N abundance vectors can be rewritten as

the following optimization problem

min
A

1

2
‖Y − EA‖2F + λ‖AW‖1,1 + ιN (A) + ιS(A). (14)

where ιC(·) is the indicator function of the set C defined by

ιC(u) =

 1, if u ∈ C;

∞, otherwise.
(15)

The convex sets N and S are associated with the nonnegativity and additivity constraints (2)

defined by

N =
{
U = [u1, . . . ,uN ] ∈ RM×N : ui � 0M

}
. (16)

S =
{
U = [u1, . . . ,uN ] ∈ RM×N : 1T

Mui = 1
}
. (17)

where 0M and 1M are the M -dimensional vectors composed of 0 and 1, respectively, and� stands

for componentwise inequalities. Following the strategy proposed in [7], [30], this problem can

be solved using the alternating direction method of multipliers (ADMM) [31]. The optimization

problem can be rewritten as

min
U,V

1

2
‖V1 −Y‖2F + λ‖V3‖1,1 + ιN (V4) + ιS(V5).

s.t.


V1 = EU

V2 = U

V3 = V2W

and

 V4 = U

V5 = U

(18)

with V , [V1 V2 V3 V4 V5]. By introducing

G =



E

I

0

I

I



T

and B =



−I 0 0 0 0

0 −I W 0 0

0 0 −I 0 0

0 0 0 −I 0

0 0 0 0 −I


. (19)
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the problem can be rewritten as

min
U,V

g(V) subject to GU+VB = 0. (20)

whose augmented Lagrangian is

L(U,V,D) = g(V) +
µ

2
‖GU+VB−D‖2F . (21)

where µ is a positive parameter and D = [D1, . . . ,D5] is the Lagrange multiplier. The general

algorithmic scheme implemented to solve (21) is detailed in Algo. 1, whose steps are detailed

in the Appendix.

Algorithm 1 ADMM for the optimization problem (21)
Input: Y, E, W

Initialization: U(0),V(0),D(0)

while not convergence do

U(k+1) ← argmin
U
L(U,V(k),D(k))

V(k+1) ← argmin
V
L(U(k+1),V,D(k))

D(k+1) ← argmin
D
L(U(k+1),V(k+1),D)

end while

Output: U(k+1), V(k+1), D(k+1)

When the regularizer φ(· · · ) is defined from the hyperspectral image (7), its first principal

component (8), DSM (10) or their combinations (11) and (12), the weighted difference operator

W can be computed before the optimization process. However, the problem is more challeng-

ing when the weighted difference operator W is defined by a guidance map relying on the

abundances, as in (9) and (13). In this work, one proposes to follow a strategy similar to the

reweighted-`1 minimization [32], which has been for instance used in [33], [34] to conduct sparse

unmixing. It consists in alternatively updating the weighting operator W after each update of

the abundance matrix A. The optimization process is summarized in Algo. 2.

III. EXPERIMENTS USING SIMULATED DATA

To validate the proposed spectral unmixing algorithm, experiments are first conducted on

simulated hyperspectral images. Two distinct synthetic datasets are considered, referred to as
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Algorithm 2 Reweighted `1-minimization
Input: Y, E, W

Initialization: W

while not convergence do

Updating A using Algo. 1

Updating W with the new state A

end while

Output: A
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Fig. 1: SIM1: (a) Endmember spectra used for simulated data. (b) Color composition of the

synthetic hyperspectral image. (c) Synthetic DSM data. (d) Extracted edge pixels.

SIM1 and SIM2 in what follows. The first dataset (SIM1) relies on synthetically generated

hyperspectral and DSM data while the second dataset (SIM2) combines a synthetically generated

hyperspectral data with a real DSM. Their respective generation processes are described in the

following paragraphs. For both datasets, quantitative validation has been conducted by computing

the root mean square error (RMSE) associated with the estimated abundances, i.e.,

RMSEw =

√√√√ 1

NM

N∑
i=1

M∑
m=1

(ami − âmi)
2. (22)

where ami and âmi are the actual and estimated abundance of the mth endmember in the ith

pixel, respectively, and N is the number of pixels in the whole image. The RMSE has been

also computed for the pixels located on the edges between heterogeneous regions. In this case,
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RMSE is computed similarly as follows

RMSEe =

√√√√ 1

NeM

Ne∑
i=1

M∑
m=1

(ami − âmi)
2. (23)

where Ne is the number of the pixels located on the edges. The identification of the edge areas

in the two synthetic datasets will be conducted based on the available DSM.

A. Synthetic hyperspectral and LiDAR data (SIM1)

1) Simulation protocol: The first synthetic dataset is composed of a simulated hyperspectral

image and simulated LiDAR measurements. To generate the hyperspectral image, M = 5

endmember spectra have been randomly selected from the USGS spectral library (see Fig. 1a).

Each endmember spectrum is composed of L = 224 spectral bands ranging from visible and

near-infrared (VNIR) to short-wave infrared (SWIR). The spatial mapping of these components is

chosen according to a piecewise homogeneous distribution following a Potts-Markov model [8].

Within each homogeneous class, the abundances are randomly generated while ensuring the

ANS and ASC constraints. The hyperspectral data is finally generated according to the LMM,

corrupted by a white Gaussian noise corresponding to a signal-to-noise ratio (SNR) of 20dB.

A color composition of the resulting hyperspectral image is represented in Fig. 1b. Moreover,

the piecewise homogeneous distribution is also used to define a synthetic DSM, corrupted by

a additive white Gaussian noise with SNR= 50dB. This DSM is represented in Fig. 1c. Note

that, for brevity, results obtained from DSM with different SNRs (40dB and 30dB) are not

reproduced in the present manuscript but are reported in the supplementary document [35].

Finally, to compute RMSE in the edge areas following (23), the edges are automatically extracted

by thresholding the gradient magnitude of the generated DSM, leading to the binary mask in

Fig. 1d.

All compared methods require a parameter λ controlling the spatial regularization. This

parameter may greatly affect the accuracy of estimating abundances. To analyze the sensitivity of

the methods with respect to (w.r.t.) this parameter, the quantitative figures-of-merit RMSEw and

RMSEe are computed for λ ∈ {0.001, 0.05, 0.1, 0.5, 1, 1.5}. The weighting functions introduced

in Section II-B also require the parameters σ2
p , σ2

y , σ2
a and σ2

h controlling the weight range.

They are chosen in the set σ2 ∈ {10−5, 10−4, 0.001, 0.01, 0.1}. Unless otherwise stated, these

parameters are selected to the values which produce the lowest RMSEw.
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TABLE I: SIM1: Abundance estimation errors for the whole and edge pixels using an optimal

combination of σ2 and λ.

RMSEw RMSEe

No-weight 0.0165 0.0165

w-HI 0.0088 0.007

w-PC1 0.0097 0.0077

w-A 0.0059 0.0058

w-DSM 0.0048 0.0056

w-HI-DSM 0.0048 0.0056

w-PC1-DSM 0.0050 0.0057

w-A-DSM 0.0048 0.0056

2) Results and discussion: Abundance errors RMSEw and RMSEe computed for the whole

pixels and the edge pixels are reported in Table. I. The methods referred to as w-A, w-HI

and w-PC1 which use the hyperspectral image, its first principal component or the abundances,

respectively, to adjust the weight produce better abundance estimates than the no-weight method.

As illustrated by the RMSEe reported in Table. I, these three methods specifically lead to more

accurate estimates of abundances for the pixels located in the edge. This demonstrates that

the weights computed from these guidance maps can correctly capture the spatial information

and guide the regularization. Finally, the methods that incorporated the DSM information to

design the weighted spatial regularization (i.e., w-DSM, w-A-DSM, w-HI-DSM and w-PC1-

DSM) systematically improve abundance estimation w.r.t. their counterparts which do not benefit

from the height information (see Table I). Moreover, unlike the w-A, w-HI and w-PC1 methods,

the methods incorporating DSM reach similar performance for the whole pixels and the pixels

located in the edge areas.

Besides, to evaluate the impact of the regularization parameter λ, the performances are repre-

sented as functions of λ in Fig. 2. The results clearly show that the method which does not include

weighed regularization performs poorly compared with other methods. In particular, Fig. 2 shows

that the absence of weighting leads to significant degradation performance for large values of

λ. This implies that, in absence of weighted spatial regularization, it is much more challenging

to choose an optimal parameter λ. Moreover, the methods exploiting the DSM information are

shown to be also more robust to varying values of the spatial regularization parameter than the
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Fig. 2: SIM1: Abundance estimation errors as functions of λ. (a) RMSEw computed for the

whole pixels. (b) RMSEe computed for the pixels located in the edge areas.

DSM-free weighting methods. This shows that the spatial information provided by DSM can

lead to robust estimates of abundances for a wide range of values of the regularization parameter

λ.

B. Synthetic hyperspectral data and real LiDAR data (SIM2)

1) Simulation protocol: In SIM1, simple spatially discrete piecewise homogeneous regions

have been used to generate the simulated hyperspectral data and DSM. To provide complementary

performance analysis on a more realistic scenario, a second synthetic dataset (referred to as SIM2)

has been considered. First, four endmember spectra have been manually extracted from a real

hyperspectral image composed of 260 × 180 pixels and acquired by the HySpex hyperspectral

camera in June 2016 over Saint-André, France. These spectral signatures are represented in
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Fig. 3: SIM2: (a) Endmember spectra used for simulated data. (b) Color composition image of

the synthetic hyperspectral image. (c) Real DSM data. (d) Extracted edge pixels.

Fig. 3a, where spectral ranges 1.34 − 1.55µm and 1.80 − 1.98µm of poor SNR have been

removed. A flat spectrum defined by a reflectance of 0.01 for all bands is also considered as an

additional shadow endmember. For this hyperspectral image, LiDAR data represented in Fig. 3c

was simultaneously acquired. Thus, given these five endmembers, the hyperspectral image has

been unmixed with the w-DSM unmixing method, whose spatial regularization is weighted by

DSM computed from the LiDAR data. Finally, a synthetic yet realistic hyperspectral image has

been generated following the LMM with the five endmembers and the estimated abundance maps.

An additive Gaussian noise corresponding to SNR= 20dB is finally considered, leading to the

hyperspectral image with the color composition shown in Fig. 3b. As for SIM1, a binary mask

identifying the pixels located in edge areas is estimated by thresholding the gradient amplitude

of DSM. This mask, shown in Fig.3d, will be used to specifically computed the RMSEe defined

by (23) for the edge pixels. Note that, when compared to SIM1, the SIM2 dataset is composed

of real LiDAR measurements and more realistic abundance maps. Moreover, contrary to SIM1,

DSM of SIM2 may not capture all edges between areas comprising the hyperspectral image.

As for SIM1, the performance of the unmixing procedures are evaluated in terms of RMSE

computed for the pixels of the whole image or only for the pixels located in edge areas. For this

dataset, the regularization parameter λ is chosen in the set λ ∈ {0.001, 0.005, 0.01, 0.05, 0.1} and

the parameters σ2 controlling the weight range have been selected in σ2 ∈ {10−4, 10−3, 0.01, 0.1, 0.5, 1}.

Unless otherwise stated, these parameters are fixed to the values which produce the lowest

RMSEw.
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TABLE II: SIM2: Abundance estimation errors for the whole and edge pixels using an optimal

combination of σ2 and λ.

Method RMSEw RMSEe

No-weight 0.0146 0.0189

w-HI 0.0143 0.0185

w-PC1 0.0147 0.0189

w-A 0.0136 0.017

w-DSM 0.0125 0.0154

w-HI-DSM 0.0125 0.0154

w-PC1-DSM 0.0125 0.0155

w-A-DSM 0.0125 0.0151

2) Results and discussion: As shown in Table II, the four methods w-DSM, w-PC1-DSM, w-

HI-DSM and w-A-DSM exploiting the availability of DSM provides relatively smaller abundance

estimation error RMSEw and RMSEe than the other methods.

Similarly to the behavior encountered for SIM1, the performance of the method which does

not use a weighted spatial regularization significantly degrades when the parameter λ increases,

as shown in Fig. 4. This behavior is even worse when focusing specifically on the edge areas. On

the other hand, the unmixing methods incorporating the height information provided by DSM

lead to smaller RMSEw and RMSEe for a wide range of the regularization parameter, except

for λ = 0.1. This can be explained by the fact that, for this dataset composed of real LiDAR

measurements, changes in the ground composition (i.e., abundance maps) do not systematically

lead to changes in DSM. Thus, for high value of λ, the DSM-based unmixing method tends to

promote spatial coherence of the abundance maps in edge areas erroneously, as illustrated in

Fig. 4(b).

IV. EXPERIMENTS USING REAL HYPERSPECTRAL AND LIDAR DATA

A. Description of the dataset and experimental protocol

The real hyperspectral image and real LiDAR data, already used to generate the synthetic

dataset SIM2 in Section III-B, were acquired in June 2016, over the city of Saint-André, France.

The hyperspectral image was composed of 415 spectral bands ranging from VNIR to SWIR

(0.40 − 2.40µm). The spectral bands in the spectral ranges 1.34 − 1.55µm and 1.80 − 1.98µm
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Fig. 4: SIM2: Abundance estimation errors as functions of λ. (a) RMSEw computed for the

whole pixels. (b) RMSEe computed for the pixels located in the edge areas.

have been removed since the bands were strongly affected by a large amount of noise. A 50×50

subset of the hyperspectral image has been extracted from the whole image and is depicted in

Fig. 5b. Note that this scene of interest includes pixels of shadow, represented by dark pixels in

the color composition, due to the presence of trees.

Endmember spectra of six distinct materials (i.e., tree, grass, soil, road, building 1 and building

2) have been manually extracted based on prior knowledge of the scene. An additional endmem-

ber corresponding to shadow has been also considered to account for possible illumination

variations and mitigate the presence of shadow. Unlike the simulated datasets SIM1 and SIM2,

ground truth in terms of actual abundance maps is not available for this real hyperspectral image.

Thus, the unmixing performances of the algorithms are qualitatively evaluated thanks to visual

inspection. More precisely, this experiment has been designed to assess whether DSM can help

reducing the impact of shadow pixels on the abundance estimation. Indeed, for the hyperspectral
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Fig. 5: Real image: (a) Endmember spectra extracted from the hyperspectral image. (b) Color

composition of the real hyperspectral image. (c) Real DSM data. (d) Pixels located on the

boundary of trees (white) and shaded grass (gray).

image corrupted by shadows, guidance maps derived from the hyperspectral image, its principal

components or abundances are expected to be affected by these illumination variations. This

may lead to erroneous spatial information incorporated into the corresponding weighted spatial

regularizations. Conversely, height information provided by external LiDAR data under the form

of DSM is known to be insensitive to presence of shadows in the scene, which may produce

more accurate guidance maps. To locate pixels possibly affected by these effects, the areas

corresponding to trees and the shaded grass are manually identified by visually inspecting DSM

and the color composition. These pixels, shown in Fig. 5d, will be of particular interest to

evaluate the consistence of the estimated abundance maps.

B. Results and discussion

The abundance maps associated with the distinct materials have been estimated by the un-

mixing spatially regularized unmixing methods with the parameters σ2 and λ empirically tuned

to provide the less sensitive abundance maps w.r.t. the shadow effects. The estimated abundance

maps of the buildings, soil and road are similar for all the methods and are not reproduced here

for brevity (they can be found in the associated technical report [35]).

However, noticeable differences are observed for the abundance maps of the tree and the grass

estimated by the methods incorporating or ignoring DSM. Indeed, as illustrated in Fig. 6 and Fig.

7, the abundances estimated by the no-weight, w-A, w-HI and w-PC1 methods are significantly

affected by the shadow and show smooth transitions between pixels fully composed of tree
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Fig. 6: Real image: abundances estimated for tree.
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Fig. 7: Real image: abundances estimated for grass.
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and those fully composed of grass. These smooth transitions may be explained by nonlinear

interactions due to scattering effects between the trees and the grass, often observed in vegetated

areas [36], [37]. Thus, when computing the regularization weights directly from the hyperspectral

image, the spatial information may be corrupted and not correctly adjust the spatial regularization.

To quantitatively illustrate this finding, the means of estimated tree abundances of the pixels

located in the boundary between shaded grass and tree have been computed for each method.

The results are reported in Fig. 8. The four methods ignoring DSM information (i.e., no-weight,

w-A, w-HI and w-PC1) seem to overestimate the tree abundances in the pixels of grass affected by

shadow while underestimating these abundances in the pixels of tree. Conversely, the abundances

estimated by the methods incorporating DSM-based weighted regularization are shown to be less

sensitive to the shadow since leading to more sharper abundance maps.

V. CONCLUSION

This paper proposed a general framework to incorporate external DSM information into spa-

tially regularized spectral unmixing algorithms. Spatial information was derived from (possibly

combined) guidance maps and was exploited to weight the spatial regularization accordingly.

The performances of methods using a unique guidance image or a combination of them were

compared using simulated and real datasets, composed of a hyperspectral image and LiDAR

data. These experiments showed that weighting the spatial regularization using a guidance map

consistently outperformed weight-free spatial regularization. Moreover, when available, DSM

allowed a complementary guidance map to be easily designed, which led to more accurate

abundance estimates than the ones obtained by the DSM-free counterpart methods. This paper

deeply focused on TV-like regularizations but the proposed methodology has a great potential to

be instanced with other spatial regularizations. These opportunities will be investigated in future

works.

APPENDIX

This appendix provides details on the resolution of the optimization problem tackled by

Algorithm 1. The proposed approach is similar to [7], with the difference that the proposed

method imposes the sum-to-one constraint instead of imposing a sparsity constraint within each

pixel.
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Fig. 8: Average grass (left) and tree (right) abundances of tree pixels located on the boundary

between grass and tree.

First, the optimization w.r.t. U is written as
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which is solved by

U(k+1) =
(
ETE+ 3I

)−1 (
ETF

(k)
1 + F
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2 + F
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4 + F
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)
.
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The optimization w.r.t. V1 consists in solving

V
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1 = argmin
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1

2
‖V1 −Y‖2F +

µ

2
‖EU(k) −V1 −D

(k)
1 ‖2F .

which can be conducted by
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The optimization problem associated with V2 is
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and the resulting updating rule is
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Optimizing w.r.t. V3 consists in solving

V
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3 = argmin
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µ
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which is a standard sparse regression problem solved by a soft-thresholding step [38]
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The optimization w.r.t. V4 is written
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and solved by the projection
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which can be conducted as follows
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⊗ 1M where ⊗ is a Kronecker product.

Finally the Lagrange multipliers D1,D2,D3,D4,D5 are updated using the following rules
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