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Abstract 19 

Mycotoxin contamination of cereal grains causes well-recognized toxicities in animals and 20 

humans, but the fate of plant-bound masked mycotoxin in the gut is less well understood. 21 

Masked mycotoxins have been found to be stable under conditions prevailing in the small 22 

intestine, but are rapidly hydrolyzed by fecal microbiota. This study aims to assess the 23 

hydrolysis of the masked mycotoxin deoxynivalenol-3-glucoside (DON3Glc) by microbiota of 24 

different regions of the porcine intestine. 25 

Intestinal digesta samples were collected from the jejunum, ileum, caecum, colon and feces of 26 

5 pigs and immediately frozen under anaerobic conditions. Sample slurries were prepared in 27 

M2 culture medium, spiked with DON3Glc or free DON (2nmoles/mL) and incubated 28 

anaerobically up to 72 hours. Mycotoxin concentrations were determined using LC-MS/MS 29 

and microbiota composition was determined using qPCR methodology.  30 

Jejunal microbiota hydrolyzed DON3Glc very slowly, while samples from the ileum, caecum, 31 

colon and feces rapidly and efficiently hydrolyzed DON3Glc. No further metabolism of DON 32 

was observed in any sample. Microbial load and microbiota composition was significantly 33 

different in the ileum, but similar in caecum, colon and feces.  34 

 35 

Importance 36 

Results from this study clearly demonstrate the masked mycotoxin DON3Glc is hydrolyzed 37 

efficiently in the distal small intestine and large intestine of pigs. Once DON is released, 38 

toxicity and absorption in the distal intestinal tract are likely to occur in vivo. This study further 39 

supports the need to include masked metabolites into mycotoxin risk assessments and 40 

regulatory actions for feed and food. 41 

  42 
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Introduction 43 

Mycotoxin contamination of agricultural commodities is an intractable problem globally. In 44 

temperate climates Fusarium fungi comprise the most important mycotoxin producers and are 45 

particularly prevalent in small grain cereals such as wheat and barley as well as maize. The 46 

major groups of Fusarium mycotoxins include trichothecenes, zearalenone and fumonisins [1]. 47 

In addition to the well described trichothecenes deoxynivalenol (DON), nivalenol, T2 toxin 48 

and HT2 toxin, cereals have been found to be co-contaminated with plant-derived mycotoxin 49 

metabolites, so-called masked mycotoxins. In response to fungal infection and mycotoxin 50 

production, the plant’s own phase II metabolic enzyme systems conjugate mycotoxins with 51 

small molecules such as glucose, glutathione or sulphate and sequester these masked 52 

mycotoxins into the plant cell vacuole (for review see [2-4]). Mycotoxins and masked 53 

mycotoxins are stable compounds withstanding processing into various cereal products and are 54 

carried over into finished food and feed. Once ingested, mycotoxins have been shown to be 55 

rapidly absorbed in the small intestine of humans and various animal species and exert their 56 

toxicities either locally on the gut epithelium (e.g. trichothecenes) or systemically (e. g. 57 

zearalenone) [1,4-6]. Masked mycotoxins, such as DON-3-β,D-glucoside (DON3Glc), on the 58 

other hand are far less toxic compared to their free parent mycotoxins and are not absorbed 59 

intact [7-9]. Hence masked mycotoxins are transported into the distal parts of the intestine 60 

intact where the intestinal microbiota (as studied using fecal samples) rapidly hydrolyze 61 

masked mycotoxins and release free mycotoxins [7,10-12]. Microbial metabolism experiments 62 

have also demonstrated further metabolism of DON to de-epoxy DON (DOM-1) by microbiota 63 

samples derived from chickens, pigs, and some humans [10,13,14]. This purely microbial 64 

metabolite, DOM-1, is not toxic [15] and can be found in urine of some humans [10,16,17] and 65 

pigs [18] hence confirming its production and colonic absorption in vivo. 66 
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In pigs oral bioavailability and absorption of DON3Glc is significantly lower and slower, 67 

compared to DON [18,19]. The delay in DON3Glc absorption and the fact that only free DON 68 

and no DON3Glc are found in plasma and urine, confirms the hydrolysis and absorption to 69 

occur in the more distal parts of the intestinal tract compared to free DON. Microbial de-70 

epoxidation of DON or DON3Glc by pig microbiota has been found in some studies [14,18] 71 

but not in others [19]. 72 

All studies published to date have used fecal samples from pigs or human to determine 73 

microbial hydrolysis and metabolism of mycotoxins. However, microbial metabolism of 74 

mycotoxins would need to occur in more proximal parts of the intestinal tract to release 75 

mycotoxin metabolites and allow intestinal absorption and/or potential colonic toxicity to 76 

occur. Therefore, the aim of this study was to investigate the capacity of intestinal microbiota 77 

derived from different regions of the small and large intestine of pigs to degrade masked 78 

mycotoxins. For this study, DON3Glc was used as model mycotoxin as it is commercially 79 

available. 80 

 81 

Materials and Methods 82 

The following mycotoxin standards were used in this study: DON as powder (Molekula, 83 

Gillingham, UK); DON, and DON3Glc in acetonitrile (Romer Labs, Runcorn, UK) and DOM-84 

1 in acetonitrile (Sigma-Aldrich Ltd, Poole, UK).       85 

 86 

Animals and ethical approval 87 

Five crossbred castrated male pigs, weaned at four weeks were bred in the animal facility of 88 

the INRA ToxAlim Laboratory (Toulouse, France). The experiment was conducted under the 89 
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authorization of the French ministry of Higher Education and Research after approval by the 90 

Ethics committee of Pharmacology-Toxicology of Toulouse-Midi-Pyrénées (Toxcométhique, 91 

N°: TOXCOM/0163 PP), in accordance with the European Directive (2010/63/EU) on the 92 

protection of animals used for scientific purposes. Feed and water were provided ad libitum 93 

throughout the experimental period. Pigs were fed during four days with starter diet and then 94 

with a commercial diet "STIMIO" for growing pigs (Evialis, Longue Jumelles, France), the 95 

feed composition is summarized in Table 1. As the presence of antibiotics or probiotics in feed 96 

can alter the composition of the luminal and mucosa-associated microbiota [20] non-97 

supplemented feed was used. Pigs were maintained until 57 days of age as the pig intestinal 98 

flora is stable between at least 48 and 70 days of age [21]. Then, they were subjected to 99 

electronarcosis and euthanized by exsanguination [22]. The intestinal tract was removed from 100 

each carcass and sections of the jejunum, ileum, caecum and colon were dissected. Five 101 

millilitres of intestinal digesta content from each gut section was collected separately into 102 

sterile Wheaton bottles. Feces (5 mL) was sampled directly from the pen. Ten mL of a sterile 103 

mixture of 70% phosphate buffered saline (pH 7.4) /30% glycerol bubbled with CO2 were 104 

added into each vial. Vials were sealed and the headspace flushed out with CO2 before being 105 

stored at -20°C. 106 

 107 

Microbial batch culture experiments  108 

After defrosting and vortexing, 15 mL of slurry were centrifuged at 2000 × g for 5 minutes. 109 

Supernatant was discarded and the remaining pellet was purged with CO2. At this stage, two 1 110 

mL aliquots were removed from each sample and stored in sample Matrix tubes at -70°C for 111 

subsequent DNA extraction. The remaining slurry was diluted 1/10 with anaerobic M2 medium 112 

as described before [10], placed in a shaking water bath (37°C, 100 rpm) in a sealed Wheaton 113 

bottle for 1 hour and 1mL aliquots were moved to sterile screw-capped Hungate tubes. Slurry 114 
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aliquots were spiked with individual mycotoxins (2 nmol/mL of DON, DON3Glc or DOM-1) 115 

and incubated anaerobically at 37°C for intervals between 0-72 hours. This wide range of 116 

incubation times was chosen to reflect both the short transit time in the small intestine (early 117 

time points) and the long transit time in the large intestine (late time points). Following 118 

incubation, 3 mL acetonitrile was added to each sample and samples were centrifuged for 5 119 

minutes at 2000 × g. Supernatants were evaporated under N₂ at 50°C, reconstituted with 1 mL 120 

of water and passed through C18 solid phase extraction columns (Agilent, Wokingham, UK). 121 

Samples were eluted with 3 mL methanol, evaporated under N₂ at 50°C, reconstituted into 1 122 

mL of 50% aqueous methanol, and analysed for DON, DON3Glc and DOM-1 using LC-123 

MS/MS. Blank digesta incubations (omitting spiking with mycotoxins) were included in each 124 

experiment to ensure that all digesta samples were free of mycotoxin residues. Furthermore, 125 

DON3Glc and DON (2 nmoles/mL) were spiked individually into bacteria-free M2 culture 126 

media (in duplicates) and incubated for 72 hours to ensure stability of DON3Glc and DON 127 

under incubation conditions in the absence of bacteria. Both compounds were stable with 128 

recoveries of 100.7± 4.7% and 102.8± 1.9%, respectively after 72 hours. Digesta samples 129 

spiked with DON (2nmoles/mL) were incubated between 0 and 72 hours and showed no mass 130 

loss of DON (recovery up to 119% of dose added) suggesting no binding of DON or further 131 

metabolism by microbes or any other digesta constituents. Each experiment also included 132 

digesta controls (in duplicate) spiked with DON3Glc, DON or DOM-1 individually, which 133 

were not incubated and immediately processed further (i.e. time 0) to account for potential 134 

matrix effects in mycotoxin detection. Mycotoxins detected in time 0 samples were set as 100% 135 

and all other results were calculated as % of time 0. 136 

 137 

QPCR analysis of microbial composition 138 
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Microbiota composition was analyzed using DNA extracted from untreated digesta samples 139 

(without mycotoxin spiking) derived from ileum, caecum, colon and feces of experimental 140 

pigs. DNA was extracted from 1 mL of digesta slurry using the FastDNAᵀᴹ Kit for Soil, (MP 141 

Biomedicals, Santa Ana, CA, USA) following the manufacturers’ instructions, and quantified 142 

using Qubit®dsDNA HS Assay Kit (Life Technologies). QPCR was performed using primers 143 

described in Table 2. The quantification of total bacteria, Prevotella spp., Bacteroides spp., 144 

Ruminococcaceae, Lachnospiraceae and Negativicutes, Lactobacillus spp., enterobacteria and 145 

bifidobacteria was performed as described before [24] using a Bio-Rad CFX384 Real Time 146 

system and Bio-Rad CFX Manager Software 3.0 (Bio-Rad Laboratories, City, Country). DNA 147 

concentrations were standardised to 1 ng per well and standard curves consisted of dilution 148 

series of amplified bacterial 16S rRNA genes from reference strains as described previously 149 

[30]. Sample and standards were run in duplicate and 5ng/µL Herring Sperm DNA (Promega) 150 

was included in all reactions for stabilization. The efficiencies of standard curves ranged from 151 

92.6 – 104.7% and R2 values ranged from 0.993 – 0.999 across all primers used. 152 

 153 

LC-MS/MS analysis  154 

The liquid chromatography analysis of the mycotoxins was performed on an Agilent 1200 155 

HPLC system (Agilent Technologies, Wokingham, UK) fitted with an Agilent Zorbax 5 µm, 156 

150 mm × 4.6 mm C18 column. The method parameters were described previously [10]. 157 

Mycotoxins were detected on a Q-Trap 4000 triple quadrupole mass spectrometer (AB Sciex, 158 

Warrington, UK) fitted with a Turbo Ion Spray™ (TIS) source. The transitions for DON, 159 

DOM-1 and DON3Glc from microbial incubations were: 355.1 → 265.1, 339.1 → 249.1 and 160 

517.3 → 427.3, respectively. Calibration curves for each metabolite ranged from 0.25 to 2 161 

nmol/mL. 162 

 163 
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Statistical analysis 164 

The time course over 72h of the DON and DON3Glc hydrolysis results from Figure 1 165 

(expressed as % of dose) were used to calculate the area under the curve (AUC, % × hr) for 166 

each animal and intestinal section individually. Bacterial count data were log-transformed to 167 

meet requirements of constant variance and normality (based on visual inspection of residual 168 

plots). These data were then analysed by ANOVA, with animal as random effect and tissue as 169 

fixed effect. When the effect of tissue was significant (p < 0.05), tissues were compared by 170 

post hoc t-test based on the ANOVA output.  The colon sample of one animal was excluded 171 

from the statistical analyses due to failure of the qPCR assay. All analyses were carried out 172 

using Genstat 17 Release 17.1 (Lawes Agricultural Trust, VSN international Ltd, Hemel 173 

Hempstead, UK). A P-value < 0.05 was regarded significant. Results are presented as 174 

mean±SEM, based on spread between animals. 175 

 176 

Results  177 

This study was conducted to assess the metabolism of DON and DON3Glc by porcine 178 

microbiota derived from different regions of the intestinal tract. Results show that 179 

detoxification of DON to DOM-1 did not occur in any animal or any gut region (Table 3). No 180 

trace of DOM-1 was detectable in any of the samples (data not shown), and recovery of DON 181 

was ranged from 87-119% of dose following incubation over 24-72 hours.  182 

Microbial hydrolysis of DON3Glc was efficient in all pigs and occurred at all intestinal 183 

regions tested (Figure 1). In the jejunum, DON3Glc hydrolysis was slowest and free DON was 184 

first observed after 24 hours of incubation, increasing to a maximum of 1–41% of the added 185 

DON3Glc dose after 72 hours. The ileal microbiota was more efficient in DON3Glc hydrolysis 186 

releasing 60±18% of the dose as free DON after 24 hours of incubation. Microbiota of the large 187 
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intestine hydrolyzed DON3Glc more rapidly with 2 and 3% of the dose detectable as free DON 188 

in caecum and colon incubations after 2 hours increasing to 8 and 14% after 6 hours of 189 

incubation. Fecal microbiota were most efficient in hydrolyzing DON3Glc with only 4±6% of 190 

the dose left as DON3Glc after 9 hours of incubation. 191 

The results from the DON3Glc hydrolysis time course experiments (Figure 1) were 192 

used to calculate the area under the curve (AUC) for each individual animal and each intestinal 193 

region for DON3Glc (Figure 2, top panel) and DON (bottom panel). DON3Glc hydrolysis rates 194 

were slowest for all animals in jejunal samples, as indicated by the highest AUC for DON3Glc 195 

curves and the lowest AUC for DON curves. Ileal DON3G hydrolysis was significantly faster 196 

in all animals (P < 0.05) than jejunal hydrolysis, but slower (P < 0.05) than rates observed in 197 

the large intestine. No differences were observed between DON3Glc hydrolysis rates in 198 

caecum, colon and fecal samples. 199 

Microbiota composition was analyzed using DNA extracted from untreated digesta 200 

samples (without mycotoxin spiking) derived from ileum, caecum, colon and feces of 201 

experimental pigs while ileal samples did not yield sufficient DNA to perform qPCR analysis. 202 

Total bacterial load showed a tendency (P=0.057) towards differences between intestinal 203 

regions, with a lower log count in the ileum compared to the caecum and colon (P<0.05) 204 

(Figure 3). Log counts of Bacteroides spp., Prevotella spp., Ruminococcaceae, 205 

Lachnospiraceae and Negativicutes were all lower in the ileum (P<0.05) but did not differ 206 

between caecum, colon and feces. In the ileum members of the phylum Firmicutes dominated 207 

the microbiota with lactobacilli forming the largest portion of bacteria. However, most bacteria 208 

in the ileum were not identified with the primers used, suggesting that the ileum harbors 209 

bacteria out with the groups covered here. 210 

 211 
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Discussion 212 

The current study was conducted to assess the microbial metabolism of the masked mycotoxin 213 

DON3Glc and the free form DON by intestinal microbiota derived from different regions of 214 

the small and large intestine of pigs. We found no evidence of microbial de-epoxydation of 215 

DON to DOM-1 in any digesta sample. Similarly, Eriksen and colleagues found no DOM-1 216 

production in ileal or fecal samples from 5 experimental pigs even though DOM-1 production 217 

was reported in pigs from commercial farms [14]. Interestingly, 4 of these 5 animals acquired 218 

the microbiota capable of DOM-1 production after they were exposed to feces of DOM-1 219 

producing animals.  This suggests that the microbes capable of DON de-epoxydation are 220 

acquired from the environment and confirms that ingestion of DON-contaminated feed may 221 

alter the intestinal microbiota [31,32]. 222 

The study presented here demonstrates for the first time that microbiota derived from 223 

the porcine small intestine efficiently hydrolyze the masked mycotoxin DON3Glc and release 224 

free DON in vitro. Furthermore, microbiota from the porcine caecum, colon and feces 225 

hydrolyze DON3Glc equally efficiently. Upon ingestion, DON3Glc has been found to be not 226 

toxic (in pig intestinal explants [8]) and is not absorbed intact in pigs, but free DON and further 227 

metabolites are detectable in plasma and urine.  DON3Glc absorption in pigs (as DON) is less 228 

efficient compared to free DON (16% vs 81% of dose absorbed after 8 hours [19]) and also 229 

slower than DON (42 vs 84% of dose excreted in urine after 24hours [18]). These findings 230 

suggest continuous, slow release of DON from DON3Glc prior to absorption, which would be 231 

in line with microbial hydrolysis beginning after 6 or 9 hours incubation as reported here.  232 

This slow and continuous DON release may result in toxicities in the more distal 233 

regions of the intestine than observed in DON dosed animals. There is some evidence that 234 

binding of DON to a clay-based feed additive results in DON exerting its intestinal toxicity 235 
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(disruption of intestinal barrier function, induction of oxidative stress) in the more distal part 236 

of the small intestine in chickens when compared to free DON, although colonic tissue was not 237 

evaluated in this study [33]. This suggests that binding of DON can lead to the intestinal 238 

toxicity being shifted to more distal intestinal regions and it can be hypothesized that plant-239 

bound DON3Glc could act as delivery mechanism to the ileum and colon where microbial 240 

hydrolysis will lead to DON exposure and potential toxicity. Upon ingestion of DON3Glc, it 241 

would be interesting to determine the absorption and the effect of DON in the large intestine. 242 

Microbiota profiling demonstrated that microbiota from the caecum, colon and feces 243 

were dominated by Prevotella spp., followed by Ruminococcaceae, Lachnospiraceae and 244 

Negativicutes. This is in agreement with literature suggesting Bacteroidetes and Fimicutes to 245 

be the dominant phyla in the large intestine and feces [34-36]. Enterobacteria represented a 246 

substantial group in the small and large intestine of only one pig, whereas Bacteroides spp. and 247 

bifidobacteria did not represent major groups in any animal or gut site. This is in contrast with 248 

published work [37] reporting Bacteroides spp. to be a major group in porcine feces. The 249 

current study focused on quantitative and qualitative analysis of the intestinal microbiota of the 250 

porcine intestine, but did not identify specific bacterial groups involved in hydrolysis. 251 

Published work  has identified bacteria from very different genera and phyla (lactobacilli, 252 

enterococci, bifidobacteria) that are capable of hydrolyzing DON3Glc and other masked 253 

mycotoxins [38,39] and future studies are required to understand their contribution to 254 

hydrolysis is mixed microbial communities and in vivo. 255 

The human intestinal microbiota possess several glycosyl hydrolase genes [41] and 256 

human fecal microbiota are known to hydrolyse DON3Glc [7,10,11]. It is therefore likely that 257 

DON3Glc hydrolysis occurs in the human inestine, but future experiments are required to 258 

provide evidence. The fact that the microbial metabolite DOM-1 is present in human urine 259 
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[10,16,17] further supports the hypothesis that microbial mycotoxin metabolism and absorption 260 

occur in vivo in humans.    261 

In conclusion, the present study demonstrates that masked mycotoxins can contribute 262 

to mycotoxin exposure following rapid, efficient and non-specific hydrolysis by intestinal 263 

microbiota of the distal regions of the intestinal tract. Potential specific toxicities of microbial 264 

mycotoxin release in the distal intestine remain to be investigated in future studies. 265 
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Figure legends 409 

 410 

Figure 1. Hydrolysis of DON3Glc and release of free DON by porcine intestinal microbiota 411 

form different regions of the small and large intestine over 0 – 72 hours. Results are presented 412 

as average of 5 animals±SEM. 413 

 414 

Figure 2. Individual differences in DON3Glc hydrolysis (top panel) and DON release (bottom 415 

panel) by intestinal microbiota of 5 animals. Data from time course experiments were 416 

summarized by area under the curve (AUC) for each individual animal and gut site. Effect of 417 

tissue was significant (P < 0.001, ANOVA) for both DON3Glc and DON. Tissues that do not 418 

share a superscript are significantly different (P < 0.05, post-hoc t-test). 419 

 420 

Figure 3. Microbial community analysis in porcine digesta samples from different regions of 421 

the small and large intestine. Results are presented as averages of 5 animals±SEM for ileum, 422 

caecum and feces and average of 4 animals±SEM for colon samples. Within those bacterial 423 

groups for which the effect of tissue was significant (P < 0.05, ANOVA), tissues that do not 424 

share a superscript are significantly different (P < 0.05). 425 

  426 
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Table 1. Summary of feed composition. 427 

Food constituent Unit Oligo elements  mg/kg 

Raw proteins 17 % Iron 86 

Raw fat 2.5 % Copper  160 

Raw ashes 4.5 % Manganese 40 

Crude fiber 4.5 % Zinc 110 

Phosphorus 0.55 % Iodine 1 

Calcium 0.65 % Selenium 0.3 

Sodium 0.2 %   

Lysine 11.9 g/kg   

Methionine 3.6 g/kg   

Additives (Units/kg)  Units/kg Enzymes  Units/kg 

E672 A vitamin  12000 Endo 1, 3 (4) beta glucanase 125 U 

E671 D3 vitamin  2000 Endo 1, 4 beta xylanase 87 U 

3a700 E vitamin E 60 Phytase 1880 U 

 428 

 429 

 430 

  431 
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Table 2. Summary of group-specific qPCR primers. 432 
Target group Sequence T Amplicon Reference 

strain 

Ref. 

Universal GTGSTGCAYGGYYGTCGTCA 60 141 Ruminococcus 

bromii L2-63  

[23] 

ACGTCRTCCMCNCCTTCCTC 

Prevotella spp. CRCRCRGTAAACGATGGATG 65 105 Prevotella copri 

DSM18205  

[24] 

TTGAGTTTCACCGTTGCCGG 

Bacteroides spp. GCTCAACCKTAAAATTGCAGTTG 63 110 Bacteroides 

thetaiotamicron 

B5482  

 

[24] GCAATCGGRGTTCTTCGTG 

Lactobacillus spp. AGCAGTAGGGAATCTTCCA 60 341 Lactobacillus 

reuteri 

DSM20016  

[25] 

CACCGCTACACATGGAG [26] 

Bifidobacteria TCGCGTCYGGTGTGAAAG 60 128 Bifidobacterium 

adolescentis 

DSM20083  

[23] 

GGTGTTCTTCCCGATATCTACA 
 

Enterobacteria GACCTCGCGAGAGCA 60 180 Escherichia coli 

XL1Blue  

[27] 

CCTACTTCTTTTGCAACCCA 

Cluster IV 

Ruminococcaceae 

family 

GCACAAGCAGTGGAGT1 60 241 R. bromii L2-63  [28] 

GCACAAGCGGTGGATT1 

CTTCCTCCGTTTTGTCAA 

Cluster IX 

Negativicutes 

class 

GTTGTCCGGAATYATTGGGC 63 321 Megasphaera 

elsdenii LC1  

[29] 

ATTGCGTTAACTCCGGCACA2 

ATTGCGTTAACTCCGGCACG2 

Cluster XIVa 

Lachnospiraceae 

family 

CGGTACCTGACTAAGAAGC 60 429 Roseburia 

hominis A2-183  

[30] 

AGTTTYATTCTTGCGAACG 

Both primers (1forward primers for cluster IV, 2reverse primers for cluster IX primers) were 433 

used together at equimolar concentration. T Annealing temperature. 434 

 435 

 436 

 437 

 438 
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Table 3. Recovery (% of dose 2 nmol/mL) of DON from microbial incubations. Results 440 

presented at average of 5 animals±SEM. 441 

 442 

Time Jejunum Ileum Caecum Colon Faeces 

0 hr 100.3 (±0.3) 102.7 (±1.2) 98.6 (±1.1) 100.5 (±0.3) 99.9 (±0.1) 

24 hr 103.9 (±6.7) 97.2 (±8.4) 94.0 (±9.3) 99.6 (±8.3) 119.4 (±5.7) 

48 hr 87.3 (±4.3) 90.0 (±6.1) 113.9 (±6.2) 103.9 (±9.3) 114.6 (±8.7) 

72 hr 90.3 (±6.2) 91.8 (±6.6) 116.0 (±6.5) 108.1 (±9.0) 113.6 (±7.8) 

 443 

  444 



22 
 

Figure 1 445 
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Figure 2  451 
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Figure 3 458 
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