D. Klemm, F. Kramer, S. Moritz, T. Lindstrom, M. Ankerfors et al., Nanocelluloses: A New Family of Nature-Based Materials, Angew. Chem., Int. Ed, vol.50, pp.5438-5466, 2011.

A. Dufresne, Nanocellulose: a new ageless bionanomaterial

. Mater and . Today, , vol.16, pp.220-227, 2013.

R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev, vol.40, pp.3941-3994, 2011.

D. J. Cosgrove, Growth of the plant cell wall, Nat. Rev. Mol. Cell Biol, vol.6, pp.850-861, 2005.

S. J. Eichhorn, Cellulose nanowhiskers: promising materials for advanced applications, Soft Matter, vol.7, p.315, 2011.

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chem. Rev, vol.110, pp.3479-3500, 2010.

N. Lin, J. Huang, and A. Dufresne, Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review, Nanoscale, vol.4, pp.3274-3294, 2012.

C. Moreau, A. Villares, I. Capron, and B. Cathala, Tuning supramolecular interactions of cellulose nanocrystals to design innovative functional materials, Ind. Crops Prod, vol.93, pp.96-107, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01606350

I. A. Sacui, R. C. Nieuwendaal, D. J. Burnett, S. J. Stranick, M. Jorfi et al., Comparison of the Properties of Cellulose Nanocrystals and Cellulose Nanofibrils Isolated from Bacteria, Tunicate, and Wood Processed Using Acid, Enzymatic, Mechanical, and Oxidative Methods, ACS Appl. Mater. Interfaces, vol.6, pp.6127-6138, 2014.

T. Abitbol, A. Rivkin, Y. F. Cao, Y. Nevo, E. Abraham et al., Nanocellulose, a tiny fiber with huge applications, Curr. Opin. Biotechnol, pp.39-76, 2016.

I. Capron, O. J. Rojas, and R. Bordes, Behavior of nanocelluloses at interfaces, Curr. Opin. Colloid Interface Sci, vol.29, pp.83-95, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606560

E. Sipahi-saglam, M. Gelbrich, and E. Gruber, Topochemically modified cellulose. Cellulose, vol.10, pp.237-250, 2003.

A. R. Lokanathan, A. Nykanen, J. Seitsonen, L. Johansson, J. Campbell et al., Cilia-Mimetic Hairy Surfaces Based on End-Immobilized Nanocellulose Colloidal Rods, Biomacromolecules, vol.14, pp.2807-2813, 2013.

A. R. Lokanathan, M. Lundahl, O. J. Rojas, and J. Laine, Asymmetric cellulose nanocrystals: thiolation of reducing end groups via NHS-EDC coupling, Cellulose, vol.21, pp.4209-4218, 2014.

J. O. Zoppe, A. V. Dupire, T. G. Lachat, P. Lemal, L. Rodriguez-lorenzo et al., Cellulose Nanocrystals with Tethered Polymer Chains: Chemically Patchy versus Uniform Decoration, ACS Macro Lett, vol.6, pp.892-897, 2017.

H. Yang and T. G. Van-de-ven, A Bottom-up Route to a Chemically End-to-End Assembly of Nanocellulose Fibers, Biomacromolecules, vol.17, pp.2240-2247, 2016.

E. P. Diamandis and T. K. Christopoulos, The biotin (strept)-avidin system -Principles and applications in Biotechnology, Clin. Chem, vol.37, pp.625-636, 1991.

Y. Zhao, Y. J. Zhang, M. E. Lindstrom, and J. B. Li, Tunicate cellulose nanocrystals: Preparation, neat films and nanocomposite films with glucomannans, Carbohydr. Polym, vol.117, pp.286-296, 2015.

N. Lin and A. Dufresne, Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees, Nanoscale, vol.6, pp.5384-5393, 2014.

E. J. Foster, R. J. Moon, U. P. Agarwal, M. J. Bortner, J. Bras et al., Current characterization methods for cellulose nanomaterials, Chem. Soc. Rev, vol.47, pp.2609-2679, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02350540

T. Kaldeús, M. Nordenstrom, A. Carlmark, L. Wagberg, and E. Malmstrom, Insights into the EDC-mediated PEGylation of cellulose nanofibrils and their colloidal stability, Carbohydr. Polym, vol.181, pp.871-878, 2018.

Y. Zhao and J. Li, Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species, Cellulose, vol.21, pp.3427-3441, 2014.

D. D. Perez, S. Montanari, and M. R. Vignon, TEMPOmediated oxidation of cellulose III, Biomacromolecules, vol.4, pp.1417-1425, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00306892

A. Benkaddour, C. Journoux-lapp, K. Jradi, S. Robert, and C. Daneault, Study of the hydrophobization of TEMPO-oxidized cellulose gel through two routes: amidation and esterification process, J. Mater. Sci, vol.49, pp.2832-2843, 2014.

M. Schwanninger, J. C. Rodrigues, H. Pereira, and B. Hinterstoisser, Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose, Vib. Spectrosc, vol.36, pp.23-40, 2004.

F. G. Hurtubise and H. Krassig, Classification of fine structural characteristics in cellulose by infrared spectroscopy -Use of potassium bromide pellet technique, Anal. Chem, vol.32, pp.177-181, 1960.

D. Lourdin, J. Peixinho, J. Breard, B. Cathala, E. Leroy et al., Concentration driven cocrystallisation and percolation in all-cellulose nanocomposites, Cellulose, vol.23, pp.529-543, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01528950

M. L. Nelson and R. T. O'connor, Relation of certain infrared bands to cellulose crystallinity and crystal lattice types. Part II. a new infrared ratio for estimation of cyrstallinity in celluloses I and II, J. Appl. Polym. Sci, vol.8, pp.1325-1341, 1964.

A. Holmberg, A. Blomstergren, O. Nord, M. Lukacs, J. Lundeberg et al., The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures, Electrophoresis, vol.26, pp.501-510, 2005.

D. E. Hyre, I. Le-trong, E. A. Merritt, J. F. Eccleston, N. M. Green et al., Cooperative hydrogen bond interactions in the streptavidin-biotin system, Protein Sci, vol.15, pp.459-467, 2006.

F. J. Liu, J. Z. Zhang, and Y. Mei, The origin of the cooperativity in the streptavidin-biotin system: A computational investigation through molecular dynamics simulations, Sci. Rep, vol.6, 2016.

C. Stamm and W. Lukosz, Integrated optical-difference interferometer as biochemical sensor, Sens. Actuators, B, vol.18, pp.183-187, 1994.

M. Amirkhani, S. Volden, K. Zhu, W. R. Glomm, and B. Nystroem, Adsorption of cellulose derivatives on flat gold surfaces and on spherical gold particles, J. Colloid Interface Sci, vol.328, pp.20-28, 2008.

M. Rodahl, F. Hook, C. Fredriksson, C. A. Keller, A. Krozer et al., Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion, Faraday Discuss, vol.107, pp.229-246, 1997.

S. Ahola, J. Salmi, L. S. Johansson, J. Laine, and M. Oesterberg, Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions, Biomacromolecules, vol.9, pp.1273-1282, 2008.

M. M. Lima, J. T. Wong, M. Paillet, R. Borsali, and R. Pecora, Translational and rotational dynamics of rodlike cellulose whiskers, Langmuir, vol.19, pp.24-29, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00306867

H. Funabashi, M. Ubukata, T. Ebihara, M. Aizawa, M. Mie et al., Assessment of small ligand-protein interactions by electrophoretic mobility shift assay using DNA-modified ligand as a sensing probe, Biotechnol. Lett, vol.29, pp.785-789, 2007.

M. L. Jones and G. P. Kurzban, Noncooperativy of biotin binding to tetrameric streptavidin, Biochemistry, vol.34, pp.11750-11756, 1995.

M. Fairhead, D. Krndija, E. D. Lowe, and M. Howarth, Plug-and-Play Pairing via Defined Divalent Streptavidins, J. Mol. Biol, vol.426, pp.199-214, 2014.

V. Favier, H. Chanzy, and J. Y. Cavaille, Polymer nanocomposites reinforced by cellulose whiskers, Macromolecules, vol.28, pp.6365-6367, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00310722

J. Sugiyama, J. Persson, and H. Chanzy, Combined infrared and electron diffraction study of the polymorphism of native celluloses, Macromolecules, vol.24, pp.2461-2466, 1991.

F. Shea and C. E. Watts, Dumas method for organic nitrogen, Ind. Eng. Chem., Anal. Ed, vol.11, pp.333-334, 1939.